The present application claims priority to and all the benefits of Chinese Patent Application 201510731518.7 filed on Oct. 30, 2015, Chinese Patent Application 201520860004.7 filed on Oct. 30, 2015, Chinese Patent Application 201510468824.6 filed on Aug. 4, 2015, Chinese Patent Application 201520576675.0 filed on Aug. 4, 2015, Chinese Patent Application 201510469324.4 filed on Aug. 4, 2015, and Chinese Patent Application 201520580148.7 filed on Aug. 4, 2015, all of which are hereby expressly incorporated herein by reference in their entirety.
1. Field of the Invention
Embodiments of the present invention generally relate to the field of vehicle, and more particularly, to a vehicle and a vehicle step apparatus.
2. Description of the Related Art
In relative art, a vehicle step apparatus of a vehicle uses a driving mechanism (with motor) and a driven mechanism (without motor) to drive a step to move. That is to say, the vehicle step apparatus uses one motor to drive the step to move. Thus, all of load is borne by the one motor, such that the load of the one motor is very high. Thus, a requirement for performance of the one motor is very high, a manufacturing difficulty, a manufacturing cost and a failure rate of the one motor are increased and a working life of the one motor is shortened.
Moreover, because the driving mechanism has a function of self-lock and the driven mechanism does not have a function of self-lock, the driven mechanism is easy to droop, especially when the step is very long.
The present invention seeks to solve at least one of the technical problems existing in the related art. Accordingly, a first aspect of the present invention provides a vehicle step apparatus.
A second aspect of the present invention provides a vehicle, which includes the above vehicle step apparatus.
Embodiments of a first aspect of the present invention provide a vehicle step apparatus, including: a first extending and retracting device comprising a first mounting bracket, a first step bracket, and a first arm assembly coupled between the first mounting bracket and the first step bracket and configured to drive the first step bracket to move between a first extending position and a first retracting position; a second extending and retracting device comprising a second mounting bracket, a second step bracket, and a second arm assembly coupled between the second mounting bracket and the second step bracket and configured to drive the second step bracket to move between a second extending position and a second retracting position; a step mounted on the first step bracket and the second step bracket; a first permanent magnet direct current motor mounted on the first mounting bracket and coupled with the first arm assembly to drive the first arm assembly; and a second permanent magnet direct current motor mounted on the second mounting bracket and coupled with the second arm assembly to drive the second arm assembly.
With the vehicle step apparatus according to embodiments of the first aspect of the present invention, the vehicle step apparatus is low in manufacturing cost, low in failure rate, and long in working life, has good synchronization, and drooping of the vehicle step apparatus can be prevented.
Embodiments of a second aspect of the present invention provide a vehicle, including: a first extending and retracting device comprising a first mounting bracket, a first step bracket, and a first arm assembly coupled between the first mounting bracket and the first step bracket and configured to drive the first step bracket to move between a first extending position and a first retracting position; a second extending and retracting device comprising a second mounting bracket, a second step bracket, and a second arm assembly coupled between the second mounting bracket and the second step bracket and configured to drive the second step bracket to move between a second extending position and a second retracting position; a step mounted on the first step bracket and the second step bracket; a first permanent magnet direct current motor mounted on the first mounting bracket and having a first motor shaft coupled with the first arm assembly; and a second permanent magnet direct current motor mounted on the second mounting bracket and having a second motor shaft coupled with the second arm assembly.
The vehicle is low in manufacturing cost, low in failure rate, and long in working life.
Other advantages of the invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Reference will be made in detail to embodiments of the present invention. Embodiments of the present invention are shown in drawings, in which the same or similar members and the members having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein according to drawings are explanatory and illustrative, not construed to limit the present invention.
The following description provides a plurality of embodiments or examples configured to achieve different structures of the present invention. In order to simplify the publication of the present invention, components and dispositions of the particular embodiment are described in the following, which are only explanatory and not construed to limit the present invention. In addition, the present invention may repeat the reference number and/or letter in different embodiments for the purpose of simplicity and clarity, and the repetition does not indicate the relationship of the plurality of embodiments and/or dispositions. Moreover, in description of the embodiments, the structure of the second characteristic “above” the first characteristic may include an embodiment formed by the first and second characteristic contacted directly, and also may include another embodiment formed between the first and the second characteristic, in which the first characteristic and the second characteristic may not contact directly.
In the description of the present invention, unless specified or limitation otherwise, it should be noted that, terms “mounted,” “coupled” and “coupled” may be understood broadly, such as electronic connection or mechanical connection, inner communication between two members, direct connection or indirect connection via intermediary. Those having ordinary skills in the art should understand the specific meanings in the present invention according to specific situations.
A vehicle 1000 according to embodiments of the present invention will be described with reference to the drawings.
As shown in
The first extending and retracting device 10a includes a first mounting bracket 11a, a first step bracket 12a and a first arm assembly 13a. The first arm assembly 13a is coupled between the first mounting bracket 11a and the first step bracket 12a and configured to drive the first step bracket 12a to move between a first extending position and a first retracting position. The first mounting bracket 11a is mounted on the chassis 40.
The second extending and retracting device 10b includes a second mounting bracket 11b, a second step bracket 12b and a second arm assembly 13b. The second arm assembly 13b is coupled between the second mounting bracket 11b and the second step bracket 12b and configured to drive the second step bracket 12b to move between a second extending position and a second retracting position. The second mounting bracket 11b is mounted on the chassis 40.
The step 20 is mounted on the first step bracket 12a and the second step bracket 12b. The first permanent magnet direct current motor 30a is mounted on the first mounting bracket 11a and coupled with the first arm assembly 13a to drive the first arm assembly 13a. The second permanent magnet direct current motor 30b is mounted on the second mounting bracket 11b and coupled with the second arm assembly 13b to drive the second arm assembly 13b.
In some embodiments, the first permanent magnet direct current motor 30a has a first motor shaft 32a coupled with the first arm assembly 13a. The second permanent magnet direct current motor 30b has a second motor shaft 32b coupled with the second arm assembly 13b.
Thus, the first step bracket 12a is driven to move between the first extending position and the first retracting position by the first permanent magnet direct current motor 30a via the first arm assembly 13a, and the second step bracket 12b is driven to move between the second extending position and the second retracting position by the second permanent magnet direct current motor 30b via the second arm assembly 13b. In other words, the vehicle 1000 uses the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b to drive the step 20 to extend and retract.
The vehicle 1000 uses two motors, i.e. the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b, to drive the step 20 to extend and retract, thus a load applied to the vehicle step apparatus 100 is distributed to the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b.
Thus, comparing to the vehicle step apparatus 100 employing only one motor, the load of the first permanent magnet direct current motor 30a is decreased so as to decrease a failure rate of the first permanent magnet direct current motor 30a, and the load of the second permanent magnet direct current motor 30b is decreased so as to decrease a failure rate of the second permanent magnet direct current motor 30b, thus prolonging a working life of the first permanent magnet direct current motor 30a and a working life of the second permanent magnet direct current motor 30b.
Because the load of the first permanent magnet direct current motor 30a is low, a requirement for performance of the first permanent magnet direct current motor 30a is decreased so as to lower a manufacturing difficulty and a manufacturing cost of the first permanent magnet direct current motor 30a.
Similarly, the load of the second permanent magnet direct current motor 30b is low, a requirement for performance of the second permanent magnet direct current motor 30b is decreased so as to lower a manufacturing difficulty and a manufacturing cost of the second permanent magnet direct current motor 30b.
Because both the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b have a function of self-lock, even the step 20 is very long, both the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b can be prevented from drooping.
Additionally, for the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b, a rotational speed is related to a load. Thus, a rotational speed of a motor will be decreased due to an increasing load, and a rotational speed of a motor will be increased due to a decreasing load.
Thus, a rotational speed of the first permanent magnet direct current motor 30a is dynamically balanced with a rotational speed of the second permanent magnet direct current motor 30b, so as to realize a synchronized motion of the first extending and retracting device 10a and the second extending and retracting device 10b.
Thus, the vehicle step apparatus 100 according to embodiments of the present invention is low in manufacturing cost, low in failure rate, long in working life, and has good synchronization, and the vehicle step apparatus 100 can be prevented from drooping.
As shown in
The first extending and retracting device 10a includes the first mounting bracket 11a, the first step bracket 12a and the first arm assembly 13a. The first mounting bracket 11a is mounted on the chassis 40. The first step bracket 12a is used to mount the step 20. The first arm assembly 13a is coupled between the first mounting bracket 11a and the first step bracket 12a and configured to drive the first step bracket 12a to move between the first extending position and the first retracting position.
The second extending and retracting device 10b includes the second mounting bracket 11b, the second step bracket 12b and the second arm assembly 13b. The second mounting bracket 11b is mounted on the chassis 40. The second step bracket 12b is used to mount the step 20. The second arm assembly 13b is coupled between the second mounting bracket 11b and the second step bracket 12b and configured to drive the second step bracket 12b to move between the second extending position and the second retracting position.
Both the first mounting bracket 11a and the second mounting bracket 11b may be mounted on the chassis 40 in well-known manner. The step 20 is mounted on the first step bracket 12a and the second step bracket 12b by known means.
As shown in
As shown in
The first permanent magnet direct current motor 30a is mounted on the first mounting bracket 11a, and the second permanent magnet direct current motor 30b is mounted on the second mounting bracket 11b. As shown in
As shown in
Alternatively, the first extending and retracting device 10a is configured in the form of four-link mechanism 10a1, five-link mechanism 10a2 or six-link mechanism 10a3, and the second extending and retracting device 10b is configured in the form of the four-link mechanism 10a1, five-link mechanism 10a2 or six-link mechanism 10a3.
It can be understood that a structure of the second extending and retracting device 10b may be the same as that of the first extending and retracting device 10a. Thus, the first extending and retracting device 10a will be described below, and the second extending and retracting device 10b will be omitted here.
In an embodiment shown in
A first end (an upper end) of the first arm 131 is pivotally coupled with the first mounting bracket 11a via a first connection pin 136, and a second end (a lower end) of the first arm 131 is pivotally coupled with the first step bracket 12a via a second connection pin 137. A first end (an upper end) of the second arm 132 is pivotally coupled with the first mounting bracket 11a via a third connection pin 138, and a second end (a lower end) of the second arm 132 is pivotally coupled with the first step bracket 12a via a fourth connection pin 139.
The first motor shaft 32a of the first permanent magnet direct current motor 30a is coupled with one of the first arm 131 and the second arm 132. Thus, the first motor shaft 32a drives the one of the first arm 131 and the second arm 132 to rotate, thereby drives the first step bracket 12a to extend and retract.
In an embodiment shown in
A first end (an upper end) of the first arm 131 is pivotally coupled with the first mounting bracket 11a via a first connection pin 136, and a second end (a lower end) of the first arm 131 is pivotally coupled with the first step bracket 12a via a second connection pin 137. A first end (an upper end) of the second arm 132 is pivotally coupled with the first mounting bracket 11a via a third connection pin 138, and a second end (a lower end) of the second arm 132 is pivotally coupled with a first end (an upper end) of the third arm 133 via a fifth connection pin 140. A second end (a lower end) of the third arm 133 is pivotally coupled with the first step bracket 12a via a fourth connection pin 139.
The first motor shaft 32a of the first permanent magnet direct current motor 30a is coupled with one of the first arm 131 and the second arm 132. Thus, the first motor shaft 32a drives the one of the first arm 131 and the second arm 132 to rotate, thereby drives the first step bracket 12a to extend and retract.
In an embodiment shown in
A first end (an upper end) of the first arm 131 is pivotally coupled with the first mounting bracket 11a via a first connection pin 136, and a second end (a lower end) of the first arm 131 is pivotally coupled with the first step bracket 12a via a second connection pin 137. A first end (an upper end) of the second arm 132 is pivotally coupled with the first mounting bracket 11a via a third connection pin 138.
A first end (an upper end) of the third arm 133 is pivotally coupled with a second end (a lower end) of the second arm 132 via a fifth connection pin 140, and a second end (a lower end) of the third arm 133 is pivotally coupled with the first step bracket 12a via a fourth connection pin 139. A first end of the fourth arm 134 is pivotally coupled with both of the second end of the second arm 132 and the first end of the third arm 133, and a second end of the fourth arm 134 is pivotally coupled with a middle portion of the first arm 131 via a sixth connection pin 141.
The first motor shaft 32a of the first permanent magnet direct current motor 30a is coupled with one of the first arm 131 and the second arm 132. Thus, the first motor shaft 32a drives the one of the first arm 131 and the second arm 132 to rotate, thereby drives the first step bracket 12a to extend and retract.
The vehicle step apparatus according to other embodiments of the present invention will be described with reference to
In some other embodiments, the vehicle step apparatus 100 includes the first extending and retracting device 10a, the second extending and retracting device 10b, the step 20, the first permanent magnet direct current motor 30a, the second permanent magnet direct current motor 30b, a first elastic member 50a and a second elastic member 50b.
The first elastic member 50a is configured to elastically deform so as to store energy when the first permanent magnet direct current motor 30a drives the first step bracket 12a to move towards the first extending position, and to release energy so as to assist the first permanent magnet direct current motor 30a to drive the first extending and retracting device 10a, i.e. to drive the first step bracket 12a, when the first permanent magnet direct current motor 30a drives the first step bracket 12a to move towards the first retracting position.
The second elastic member 50b is configured to elastically deform so as to store energy when the second permanent magnet direct current motor 30b drives the second step bracket 12b to move towards the second extending position, and to release energy so as to assist the second permanent magnet direct current motor 30b to drive the second extending and retracting device 10b, i.e. to drive the second step bracket 12b, when the second permanent magnet direct current motor 30b drives the second step bracket 12b to move towards the second retracting position.
The load of the first permanent magnet direct current motor 30a during driving the step 20 to retract is bigger than that of the first permanent magnet direct current motor 30a during driving the step 20 to extend, so that the working current of the first permanent magnet direct current motor 30a during driving the step 20 to retract is larger than that of the first permanent magnet direct current motor 30a during driving the step 20 to extend.
The load of the second permanent magnet direct current motor 30b during driving the step 20 to retract is bigger than that of the second permanent magnet direct current motor 30b during driving the step 20 to extend, so that the working current of the second permanent magnet direct current motor 30b during driving the step 20 to retract is larger than that of the second permanent magnet direct current motor 30b during driving the step 20 to extend.
For the vehicle step apparatus, when the step 20 is extended, the first motor shaft 32a drives the first elastic member 50a to move and the second motor shaft 32b drives the second elastic member 50b to move. Thus, both the first elastic member 50a and the second elastic member 50b are caused to be elastically deformed so as to store energy.
When the step 20 is retracted, the first elastic member 50a releases energy to assist the first permanent magnet direct current motor 30a in driving the first extending and retracting device 10a, so that the load and the working current of the first permanent magnet direct current motor 30a are decreased during driving the step 20 to retract. The second elastic member 50b releases energy to assist the second permanent magnet direct current motor 30b in driving the second extending and retracting device 10b, so that the load and the working current of the second permanent magnet direct current motor 30b are decreased during driving the step 20 to retract.
Thus, the working current of the first permanent magnet direct current motor 30a in the processes of driving the step 20 to retract is generally consistent with that of the first permanent magnet direct current motor 30a in the processes of driving the step 20 to extend, and the working current of the second permanent magnet direct current motor 30b in the processes of driving the step 20 to retract is generally consistent with that of the second permanent magnet direct current motor 30b in the processes of driving the step 20 to extend. Thus, the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b are protected effectively, and the working life of the first permanent magnet direct current motor 30a and that of the second permanent magnet direct current motor 30b are prolonged.
In some embodiments, the first elastic member 50a includes a first scroll spring, and the second elastic member 50b includes a second scroll spring. A first end 51a of the first scroll spring is fixed, and a second end 52a of the first scroll spring is driven by the first motor shaft 32a of the first permanent magnet direct current motor 30a so as to twist. A first end 51b of the second scroll spring is fixed, and a second end 52b of the second scroll spring is driven by the second motor shaft 32b of the second permanent magnet direct current motor 30b so as to twist.
As shown in
An end of the outermost ring of the second scroll spring is bent outwards to form the first end 51b, and an end of an innermost ring of the second scroll spring is bent inwards to form the second end 52b. The first end 51b includes the end of the outermost ring of the second scroll spring and a portion of the outermost ring coupled with the end of the outermost ring. The second end 52b includes the end of the innermost ring of the second scroll spring and a portion of the innermost ring coupled with the end of the innermost ring.
When the step 20 is extended, the first end 51a of the first scroll spring and the first end 51b of the second scroll spring are fixed, and the second end 52a of the first scroll spring rotates along with the first motor shaft 32a and is twisted tightly to store energy, and the second end 52b of the second scroll spring rotates along with the second motor shaft 32b and is twisted tightly to store energy.
When the step 20 is retracted, the first end 51a of the first scroll spring and the first end 51b of the second scroll spring are fixed, and the second end 52a of the first scroll spring rotates along with the first motor shaft 32a and releases energy so as to assist the first permanent magnet direct current motor 30a to drive the first extending and retracting device 10a to retract, and the second end 52b of the second scroll spring rotates along with the second motor shaft 32b and releases energy so as to assist the second permanent magnet direct current motor 30b to drive the second extending and retracting device 10b to retract.
However, the present invention is not limited to this, both the first elastic member 50a and the second elastic member 50b may be a spring leaf, a disk spring or other units or parts easy to be deformed elastically.
As shown in
A first recess 312a is formed in a first motor casing 31a of the first permanent magnet direct current motor 30a, and the first cover 70a covers the first recess 312a to define a first cavity. The first connection plate 60a is mounted within the first cavity and driven by the first motor shaft 32a of the first permanent magnet direct current motor 30a to rotate. The first scroll spring is mounted within the first cavity, the first end 51a of the first scroll spring is fixed in the first cover 70a, and the second end 52a of the first scroll spring is coupled with the first connection plate 60a.
A second recess 312b is formed in a second motor casing 31b of the second permanent magnet direct current motor 30b, and the second cover 70b covers the second recess 312b to define a second cavity. The second connection plate 60b is mounted within the second cavity and driven by the second motor shaft 32b of the second permanent magnet direct current motor 30b to rotate. The second scroll spring is mounted within the second cavity, the first end 51b of the second scroll spring is fixed in the second cover 70b, and the second end 52b of the second scroll spring is coupled with the second connection plate 60b.
As shown in
The second cover 70b is detachably fastened to the second motor casing 31b of the second permanent magnet direct current motor 30b. A second limitation notch 71b is formed in the second cover 70b, a second limitation column 111b is formed on the second mounting bracket 11b, the second limitation column 111b is fitted within the second limitation notch 71b to mount the second cover 70b on the second mounting bracket 11b. The first end 51b of the second scroll spring is fitted over the second limitation column 111b.
Specifically, the first connection plate 60a is configured as a substantially circular plate. The first connection plate 60a is disposed within the first cavity, and the first connection plate 60a defines a first surface opposing to the first recess 312a and a second surface opposing to the first cover 70a. The first connection plate 60a is coupled with the first motor shaft 32a directly or indirectly, so that the first connection plate 60a can rotate under the drive of the first motor shaft 32a. The first scroll spring is fitted over the first connection plate 60a, and the second end 52a of the first scroll spring is connected to the first connection plate 60a and rotates along with the first connection plate 60a in a same direction.
The second connection plate 60b is configured as a substantially circular plate. The second connection plate 60b is disposed within the second cavity, and the second connection plate 60b defines a first surface opposing to the second recess 312b and a second surface opposing to the second cover 70b. The second connection plate 60b is coupled with the second motor shaft 32b directly or indirectly, so that the second connection plate 60b can rotate under the drive of the second motor shaft 32b. The second scroll spring is fitted over the second connection plate 60b, and the second end 52b of the second scroll spring is connected to the second connection plate 60b and rotates along with the second connection plate 60b in a same direction.
Therefore, the first scroll spring and the second scroll spring can be integrated in the first permanent magnet direct current motor 30a and the second permanent magnet direct current motor 30b respectively so as to decrease transmission loss and make the structure of the vehicle step apparatus 100 more compactly.
The first connection plate 60a, the second connection plate 60b, the first cover 70a, the second cover 70b, the first recess 312a and the second recess 312b may have a circular shape or an oval shape.
A number of each of the first limitation notch 71a, the first limitation column 111a, the second limitation notch 71b and the second limitation column 111b is not limited to two, and when there are more than two first limitation notches 71a and two second limitation notches 71b, the first limitation notches 71a are provided and evenly spaced apart from each other along a circumferential direction of the first cover 70a, and the second limitation notches 71b are provided and evenly spaced apart from each other along a circumferential direction of the second cover 70b.
A first catch groove 61a is formed in an outer circumferential surface of the first connection plate 60a, and the second end 52a of the first scroll spring is inserted into and fitted within the first catch groove 61a. The first connection plate 60a is fitted over the first connection shaft 80a and coupled with the first connection shaft 80a via spline coupling.
A second catch groove 61b is formed in an outer circumferential surface of the second connection plate 60b, and the second end 52b of the second scroll spring is inserted into and fitted within the second catch groove 61b. The second connection plate 60b is fitted over the second connection shaft 80b and coupled with the second connection shaft 80b via spline coupling.
As shown in
The first motor shaft 32a drives the first connection shaft 80a and the first connection plate 60a to rotate, and the second end 52a of the first scroll spring fixed on the first connection plate 60a rotates along with the first connection plate 60a. The second motor shaft 32b drives the second connection shaft 80b and the second connection plate 60b to rotate, and the second end 52b of the second scroll spring fixed on the second connection plate 60b rotates along with the second connection plate 60b.
Thus, the first scroll spring and the second scroll spring are gradually rolled up tightly, thus resulting in a simple and compact structure. In addition, the first connection shaft 80a is coupled with the first motor shaft 32a and the first connection plate 60a via spline connection so as to ensure driving force transmission and make installation and disassembly to be easy, and the second connection shaft 80b is coupled with the second motor shaft 32b and the second connection plate 60b via spline connection so as to ensure driving force transmission and make installation and disassembly to be easy.
As shown in
A second mounting hole 311b is formed in the second motor casing 31b, and the second limitation column 111b is passed through the second mounting hole 311b. A second threaded hole 1111b is formed in the second limitation column 111b, and the second permanent magnet direct current motor 30b is mounted on the second mounting bracket 11b via a second bolt 90b fitted within the second threaded hole 1111b.
The first limitation column 111a is passed through the first limitation notch 71a and bears against the first motor casing 31a. The first mounting hole 311a of the first motor casing 31a is opposite to the first threaded hole 1111a of the first limitation column 111a. The first bolt 90a is passed through the first mounting hole 311a and is fitted within the first threaded hole 1111a so as to mount the first motor casing 31a to the first mounting bracket 11a.
The second limitation column 111b is passed through the second limitation notch 71b and bears against the second motor casing 31b. The second mounting hole 31b of the second motor casing 31b is opposite to the second threaded hole 1111b of the second limitation column 111b. The second bolt 90b is passed through the second mounting hole 311b and is fitted within the second threaded hole 1111b so as to mount the second motor casing 31b to the second mounting bracket 11b.
Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. The appearances of the phrases throughout this specification are not necessarily referring to the same embodiment or example of the present invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present invention, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0468824 | Aug 2015 | CN | national |
2015 1 0469324 | Aug 2015 | CN | national |
2015 2 0576675 U | Aug 2015 | CN | national |
2015 2 0580148 U | Aug 2015 | CN | national |
2015 1 0731518 | Oct 2015 | CN | national |
2015 2 0860004 U | Oct 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
694572 | Peyton et al. | Mar 1902 | A |
752031 | Chadwick | Feb 1904 | A |
2125085 | Pool | Jul 1938 | A |
4068542 | Brand et al. | Jan 1978 | A |
4275664 | Reddy | Jun 1981 | A |
6135472 | Wilson et al. | Oct 2000 | A |
6435534 | Stone | Aug 2002 | B1 |
6533303 | Watson | Mar 2003 | B1 |
6557911 | Nelsen et al. | May 2003 | B2 |
6834875 | Leitner et al. | Dec 2004 | B2 |
6840526 | Anderson et al. | Jan 2005 | B2 |
6955370 | Fabiano et al. | Oct 2005 | B2 |
6990873 | Rennen et al. | Jan 2006 | B2 |
7007961 | Leitner et al. | Mar 2006 | B2 |
7128191 | Fisher | Oct 2006 | B2 |
7163221 | Leitner | Jan 2007 | B2 |
7367574 | Leitner | May 2008 | B2 |
7637519 | Leitner et al. | Dec 2009 | B2 |
7740260 | VanBelle et al. | Jun 2010 | B2 |
7740261 | Leitner et al. | Jun 2010 | B2 |
7775473 | Mori | Aug 2010 | B2 |
7976042 | Watson et al. | Jul 2011 | B2 |
8042821 | Yang et al. | Oct 2011 | B2 |
8052162 | Yang et al. | Nov 2011 | B2 |
8056913 | Kuntze et al. | Nov 2011 | B2 |
8146935 | Adams | Apr 2012 | B1 |
8469380 | Yang et al. | Jun 2013 | B2 |
8544811 | Theis et al. | Oct 2013 | B2 |
8662512 | May | Mar 2014 | B2 |
8668217 | Ziaylek et al. | Mar 2014 | B2 |
D713772 | Ziaylek et al. | Sep 2014 | S |
8870207 | Parvey | Oct 2014 | B2 |
9176517 | Pelletier et al. | Nov 2015 | B2 |
9205781 | May | Dec 2015 | B1 |
9346405 | Leitner et al. | May 2016 | B2 |
20020096889 | Nelsen et al. | Jul 2002 | A1 |
20030038446 | Anderson | Feb 2003 | A1 |
20030094781 | Jaramillo et al. | May 2003 | A1 |
20030132595 | Fabiano et al. | Jul 2003 | A1 |
20040108678 | Berkebile | Jun 2004 | A1 |
20050035568 | Lee | Feb 2005 | A1 |
20050173886 | Leitner | Aug 2005 | A1 |
20060181049 | Kobayashi et al. | Aug 2006 | A1 |
20060214386 | Watson | Sep 2006 | A1 |
20060219484 | Ogura | Oct 2006 | A1 |
20080042396 | Watson et al. | Feb 2008 | A1 |
20080100023 | Ross et al. | May 2008 | A1 |
20080157500 | Raley et al. | Jul 2008 | A1 |
20080179920 | Watson | Jul 2008 | A1 |
20090250896 | Watson | Oct 2009 | A1 |
20090295114 | Yang et al. | Dec 2009 | A1 |
20090295115 | Yang | Dec 2009 | A1 |
20100044993 | Watson | Feb 2010 | A1 |
20100102288 | Yang et al. | Apr 2010 | A1 |
20120025485 | Yang et al. | Feb 2012 | A1 |
20120098231 | Huotari et al. | Apr 2012 | A1 |
20130154230 | Ziaylek et al. | Jun 2013 | A1 |
20130234488 | Pleskot | Sep 2013 | A1 |
20150123374 | Smith | May 2015 | A1 |
20150137527 | Hattori | May 2015 | A1 |
20150197199 | Kuo | Jul 2015 | A1 |
20150274079 | Yang et al. | Oct 2015 | A1 |
20160039346 | Yang et al. | Feb 2016 | A1 |
20160262969 | Ohta et al. | Sep 2016 | A1 |
20170021781 | Du et al. | Jan 2017 | A1 |
20170036605 | Du et al. | Feb 2017 | A1 |
20170036606 | Du et al. | Feb 2017 | A1 |
20170036608 | Du et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
101381060 | Mar 2009 | CN |
101497325 | Aug 2009 | CN |
201901077 | Jul 2011 | CN |
101279594 | Aug 2011 | CN |
102416907 | Apr 2012 | CN |
202806578 | Mar 2013 | CN |
202806580 | Mar 2013 | CN |
203211209 | Sep 2013 | CN |
103909871 | Jul 2014 | CN |
104192070 | Dec 2014 | CN |
104285079 | Jan 2015 | CN |
204149942 | Feb 2015 | CN |
104385989 | Mar 2015 | CN |
204659599 | Sep 2015 | CN |
105083136 | Nov 2015 | CN |
105083137 | Nov 2015 | CN |
204801649 | Nov 2015 | CN |
105128751 | Dec 2015 | CN |
204895311 | Dec 2015 | CN |
204915491 | Dec 2015 | CN |
205344528 | Jun 2016 | CN |
H0891127 | Apr 1996 | JP |
2006199200 | Aug 2006 | JP |
100821687 | Apr 2008 | KR |
2006050297 | May 2006 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/097927 dated Apr. 13, 2016 (13 pages). |
First Office Action for Chinese Patent Application No. 201510468824.6 dated Nov. 28, 2016 (13 pages). |
First Office Action for Chinese Patent Application No. 201510469324.4 dated Nov. 28, 2016 (16 pages). |
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/100159 dated May 13, 2016 (13 pages). |
First Office Action for Chinese Patent Application No. 201510731518.7 dated May 3, 2017 (19 pages). |
Second Office Action for Chinese Patent Application No. 201510468824.6 dated May 15, 2017 (10 pages). |
Non-Final Office Action for U.S. Appl. No. 15/200,830 dated Nov. 30, 2017. |
Communication for European Patent Application No. 15900290.6 dated Jun. 19, 2018 transmitting the Extended European Search Report dated Jun. 12, 2018. |
Examination Report No. 1 for Australian Patent Application No. 2015404902 dated Aug. 7, 2018. |
Non-Final Office Action for U.S. Appl. No. 141929,720 dated May 31, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/929,699 dated Oct. 21, 2016. |
Number | Date | Country | |
---|---|---|---|
20170036607 A1 | Feb 2017 | US |