The present invention generally relates to a charging apparatus and more specifically relates to a charging apparatus for a vehicle storage compartment.
Modern vehicles utilize various systems to improve convenience and ease of use. Some vehicles may utilize various illumination devices to enable occupants to more easily store and/or organize belongings in various storage compartments.
According to one aspect of the present invention, a vehicle charging compartment is disclosed. The compartment comprises a charging device comprising a plurality of light sources configured to emit a charging emission. The light sources are disposed on an interior surface formed by the compartment. A controller is configured to selectively illuminate the charging device in response to an environmental condition and a vehicle fault communicated to the controller.
According to another aspect of the present invention, a vehicle charging compartment is disclosed. The compartment comprises a charging device comprising a plurality of light sources. The light sources are configured to emit a charging emission and are disposed on an interior surface formed by the compartment. The charging compartment further comprises a light sensor configured to monitor an ambient light proximate the vehicle and a controller. The controller is configured to selectively illuminate the charging device in response to a vehicle fault communicated to the controller and the ambient light being less than a brightness threshold.
According to yet another aspect of the present invention, a method for controlling a charging apparatus for a vehicle storage compartment is disclosed. The method comprises detecting a control signal corresponding to at least one of an environmental condition and a vehicle fault condition. The method continues by identifying a closure status of an access door of a storage compartment. In response to the closure status and the control signal, the method may continue by activating a light source to emit a charging emission. The charging emission is configured to charge a photoluminescent material disposed in the storage compartment.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present disclosure are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
The terms first, second, third, etc. as utilized herein may provide designations in reference to the figures for clarity. For example, a first portion and a second portion may be referred to in some implementations and only a second portion may be referred to in some additional implementations. Such designations may serve to demonstrate exemplary arrangements and compositions and should not be considered to designate a specific number of elements or essential components of any specific implementation of the disclosure, unless clearly specified otherwise. These designations, therefore, should be considered to provide clarity in reference to various possible implementations of the disclosure which may be combined in various combinations and/or individually utilized to clearly reference various elements of the disclosure.
The following disclosure describes a charging apparatus for a vehicle. The charging apparatus may be disposed in a storage compartment, which may be configured to receive an article or device comprising a persistent luminescent material disposed on or dispersed in at least one surface. The charging device may correspond to a light source configured to output an emission of light or a charging emission configured to charge the persistent luminescent material. The charging apparatus may comprise a controller, which may be in communication with various sensors and/or a vehicle control module. In this configuration, the controller may be configured to respond to one of more control signals or inputs from the sensors and/or the vehicle control module to selectively activate the charging device to emit the charging emission. As discussed herein, the articles or devices comprising the persistent luminescent material may be referred to as photoluminescent objects.
In various embodiments, the charging apparatus may be operable to charge a photoluminescent object in the storage compartment such that the persistent luminescent material emits an output emission that may illuminate the article or device. In some embodiments, the controller may be configured to control the charging device such that the charging device is charged to emit an output emission prior to an expected or probable use of the photoluminescent object. For example, in response to a vehicle fault communicated from the vehicle control module, the controller may activate the charging apparatus for predetermined period of time to charge the photoluminescent object, which may correspond to an illuminated umbrella, high visibility clothing, road hazard triangle, or various objects that may be used in the event of the vehicle fault. In this way, the photoluminescent object may be charged that the persistent photoluminescent material may illuminate a photoluminescent object to improve a visibility of the photoluminescent object during a roadside repair.
Referring now to
For example, in the event of a vehicle fault, the vehicle control module may communicate a fault signal to the controller. Additionally, the operation of the vehicle may fail or the operator of the vehicle may be prompted or required to stop the vehicle 10. In response to receiving the fault signal, the controller may activate the charging apparatus 12, in anticipation of the operator or a passenger of the vehicle 10 accessing and utilizing the photoluminescent object 24 to assist in resolving the vehicle fault. For example, the photoluminescent object 24 may correspond to a variety of tools, garments, and/or devices that may be utilized to assist in resolving the vehicle fault. For example, the photoluminescent object 24 may correspond to a jack, road hazard marker, high visibility garment, illuminated umbrella, and/or various devices that may be associated for use with a vehicle or in a road hazard scenario. In this way, the charging apparatus 12 may charge the photoluminescent object 24 to improve a visibility of the object.
The light sources 16 of the light device 14 may be configured to emit the charging emission 20 as a high intensity emission of light that may be distracting to an occupant of the vehicle 10 if witness during a charging operation. Accordingly, the storage compartment 18 may be equipped with an access door 30 configured to significantly prevent the charging emission 20 from entering the passenger compartment 8 while providing access to the interior volume 22 of the storage compartment 18. To ensure that the access door 30 is closed when the charging emission 20 is activated, the charging apparatus 12 may further comprise a door sensor 32 in communication with the controller. In this configuration, the door sensor 32 may be configured to identify a closed status of the access door 30. Accordingly, the controller may control the activation of the light source to only activate when the door sensor 32 indicates the closed status of the access door 30.
In some embodiments, the controller of the charging apparatus 12 may further be in communication with an ambient light sensor 34. The ambient light 34 sensor may be disposed on a portion of the vehicle 10 where local environmental light may reach a photo-sensor of the light sensor 34. In this configuration, the controller may be configured to monitor the ambient light proximate the vehicle 10. If the ambient light exceeds a brightness threshold, the controller may suppress the activation of the charging apparatus 12. Additionally, upon an indication that the ambient light level is below the brightness threshold, the controller may withdraw the suppression of the charging apparatus 12 such that the photoluminescent object 24 may be charged in response the control module communicating the vehicle fault.
In some embodiments, the charging apparatus 12 may be in communication with a rain sensor via a communication bus and/or the control module of the vehicle 10. For example, the charging apparatus 12 may be configured to activate the lighting device 14 to output the charging emission 20 in response to the rain sensor indicating a condition of rain and/or precipitation proximate the vehicle 10. In response to the rain condition, the controller may activate the charging emission 20 to charge the photoluminescent object 24. Such an embodiment, may be particularly beneficial when the photoluminescent object 24 corresponds to a high visibility garment or illuminated umbrella as discussed in reference to
The controller may further control the charging apparatus 12 to charge the photoluminescent object 24 in response to receiving the indication of the rain condition from the rain sensor in combination with the indication from the light sensor 34. For example, utilizing the high visibility garment 24f or illuminated umbrella 24g may be more likely during conditions wherein the ambient light level is below the brightness threshold and precipitation is detected. In such implementations, the charging apparatus may be configured to identify and charge the photoluminescent object 24 during conditions corresponding to low light and precipitation to conserve energy that may otherwise be expended while charging the photoluminescent object 24.
In some embodiments, the charging apparatus 12 may comprise one or more control circuits 38 that may allow for an occupant of the vehicle 10 to manually control the lighting device 14. Such control circuits 38 may comprise a user interface or switch 40 configured to manually activate the charging apparatus 12. In such embodiments, the controller may similarly activate the charging apparatus 12 and may suppress the activation of the charging emission 20 until the door sensor 32 indicates that the access door 30 is closed. Accordingly, the charging apparatus 12 may be configured to operate in response to various inputs alone or in combination as described herein to provide for flexible implementation in a variety of applications and locations of the vehicle 10.
In some embodiments, the interior surface 18 of the storage compartment 18 may comprise a reflective coating 42. The reflective coating 42 may correspond to a metallic coating, metallic paint, mirrored surface finish or a variety of reflective coatings. The reflective coating 42 may serve to reflect the charging emission 20 with the storage compartment 18. In this configuration, the charging emission 20 may be reach portions of the photoluminescent object 24 that may otherwise be blocked or obstructed by the photoluminescent object 24 or various objects that may be stored in the storage compartment 18.
Referring now to
The charging emission 20 emitted from the light sources 16 may correspond to a first wavelength of light configured to charge the persistent luminescent material of the photoluminescent object 24. In response to receiving the charging emission, the photoluminescent object 24 may charge and retain a charge of potential energy and emit an output emission 26 having a second wavelength different from the first wavelength. In some embodiments, the output emission 26 may comprise one or more wavelengths, one of which may be longer than the first wavelength and the second wavelength.
In some embodiments, the output emission 26 may correspond to a plurality of wavelengths. Each of the plurality of wavelengths may correspond to significantly different spectral color ranges. For example, the output emission 26 may correspond to a plurality of wavelengths configured to correspond to a specific color that may be different from a color of the charging emission 20. The plurality of wavelengths may be generated by a red-emitting luminescent material having a wavelength of approximately 620-750 nm, a green emitting luminescent material having a wavelength of approximately 526-606 nm, and a blue or blue green emitting luminescent material having a wavelength of approximately 400-525 nm.
The persistent luminescent materials as discussed herein may correspond to phosphorescent materials. Persistent luminescent materials may correspond to alkaline earth aluminates and silicates, for example doped (di)silicates. Such substances may incorporate persistent luminescent phosphors or other doped compounds. Persistent luminescent substances may be doped with one or more ions, which may correspond to rare earth elements, for example: Eu2+, Tb3+, Dy3+, and R3+. Persistent luminescent materials may be defined as being operable to carry a charge and discharge light for a period of several minutes. For example, persistent luminescent materials as described herein may have an afterglow decay time longer than several minutes. The decay time may be defined as the time between the end of the excitation and the moment when the light intensity of the photoluminescent material drops below a minimum visibility of 0.32 mcd/m2. The minimum visibility is roughly 100 times the sensitivity of the dark-adapted human eye, which corresponds to a definition used in the safety signage and by various researchers of luminescent properties.
A persistent luminescent material as discussed herein may be operable to emit light at an intensity of 0.32 mcd/m2 after a decay time of 10 minutes. In an exemplary embodiment, a persistent luminescent material may be operable to emit light at an intensity of 0.32 mcd/m2 after a decay time of 30 minutes and in some embodiments for a period longer than 60 minutes. In an exemplary embodiment, a persistent luminescent material may have a luminance ratio of greater than or equal to 20% of a first intensity after 10 minutes of decay time relative to a second intensity after 30 minutes of decay time. Additionally, in some embodiments, a persistent luminescent material may have a luminance ratio of greater than or equal to 10% of a first intensity after 10 minutes of decay time relative to a second intensity after 60 minutes of decay time.
As discussed herein, persistent luminescent materials may be operable to store energy received from the charging emission 20 or any form of activation emission or a corresponding wavelength of light. The stored energy may then be emitted from the persistent luminescent material for a wide range of times, some extending up to approximately 24 hours. Such materials, when utilized in various luminescent portions 52 of the photoluminescent objects 24 may provide for a sustained emission of the output emission 26 in response to the charging emission 20 impinging upon the luminescent portions 52 while contained in the storage compartment 18 of the vehicle 10. The controller may control the charging period by activating the light sources 16 to irradiate one or more of the photoluminescent objects 24 for a predetermined charging period. In this way, the controller may charge the photoluminescent object 24 in anticipation of a use of the photoluminescent objects 24. As previously discussed, the controller may identify such probable times of use of the photoluminescent objects 24 in response to a vehicle condition communicated from the vehicle control module; an environmental condition indicated by a rain sensor, light sensor, etc.; and/or various inputs that may be communicated by one or more sensors or systems of the vehicle 10.
The photoluminescent materials discussed herein may correspond to organic or inorganic fluorescent dyes configured to convert the charging emission 20 to the output emission 26. For example, the photoluminescent materials may comprise a photoluminescent structure of rylenes, xanthenes, porphyrins, phthalocyanines, or other materials suited to a particular Stokes shift defined by an absorption range and an emission fluorescence. In some embodiments, the photoluminescent materials may be of at least one inorganic luminescent material selected from the group of phosphors. The inorganic luminescent material may more particularly be from the group of Ce-doped garnets, such as YAG:Ce. As such, each of the photoluminescent portions may be selectively activated by a wide range of wavelengths received from the activation emission configured to excite one or more photoluminescent materials to emit an output emission 26 having a desired color.
As discussed herein, each of the luminescent portions 52 may comprise one or more photoluminescent and/or persistent luminescent materials. The luminescent portions 52 may be applied to various surfaces of the photoluminescent objects 24. Additional information regarding the construction of photoluminescent structures to be utilized in at least one photoluminescent portion of a vehicle is disclosed in U.S. Pat. No. 8,232,533 to Kingsley et al., entitled “PHOTOLYTICALLY AND ENVIRONMENTALLY STABLE MULTILAYER STRUCTURE FOR HIGH EFFICIENCY ELECTROMAGNETIC ENERGY CONVERSION AND SUSTAINED SECONDARY EMISSION,” filed Jul. 31, 2012, the entire disclosure of which is incorporated herein by reference.
The light sources 16 as described herein may correspond to any form of light source or light generating device. For example, the light sources 16 may correspond to one or more light generating devices such as halogen lights, fluorescent lights, light emitting diodes (LEDs), organic LEDs (OLEDs), polymer LEDs (PLEDs), solid state lighting or any other form of lighting. As such, the light sources 16 may be configured to emit the charging emission 20 configured to correspond to the absorption range or ranges of the luminescent materials of each of the luminescent portions 52 of the photoluminescent objects 24.
Referring now to
For example, in response to a vehicle fault, the vehicle control module 72 may communicate the vehicle control signal 62e to the controller. If the control signal 62e is received in combination with the light level signal 62f identifying that the ambient light is below a predetermined light level, the controller may respond by activating the charging apparatus 12. Similarly, the controller may determine that the ambient light level is below the predetermined light level in response to the headlamp control signal 62b indicating the headlights of the vehicle 10 are active. Additionally, the controller may determine if the door signal 62k from the door sensor 32 indicates that the access door 30 is closed prior to activating the lighting device 14. The controller may activate the lighting device 14 of the charging apparatus 12 for a predetermined time to charge the photoluminescent object 24 in the storage compartment 18.
In some embodiments, the controller may additionally or alternatively be configured to activate the lighting device 14 of the charging apparatus 12 to charge the photoluminescent object 24 in response to various individual signals or combinations of control inputs 62. For example, in response to an indication of rain (e.g. receiving rain wiper signal 62c from the control module or a rain sensor signal 62d from the rain sensor), the controller may activate the lighting device 14 to charge the photoluminescent object 24 (e.g. the high visibility garment 24f, an illuminated umbrella 24g, etc.). Additionally, the controller may activate the lighting device 14 in response to a combination of the indication of rain with an indication that the ambient light level is below the predetermined light level. Accordingly, the controller may be configured to charge the photoluminescent object 24 in response to dark, rainy conditions. Though specific combinations of the signal utilized by the controller to control the charging apparatus 12 are discussed in detail, it shall be understood that the controller may be configured to control the charging apparatus 12 in response to individual control inputs 62 or various combinations of the control inputs 62 as discussed herein.
In some embodiments, the controller of the charging apparatus 12 may be configured to detect and/or learn a usage pattern of the vehicle 10 based on one or more of the control inputs 62. For example, the controller may track and identify times of the day and days of the week (additionally calendar months) that correspond to a schedule of use of the vehicle 10. The controller may identify that the vehicle is typically utilized during specific portions of the day (e.g. 7:00 AM-9:00 AM and 4:30 PM-6:15 PM Monday through Friday) by detecting usage of the vehicle based the control inputs 62. Based on the usage schedule of the vehicle 10, the controller may selectively activate the lighting device 14 for a predetermined time preceding the expected time of use or occupancy of the vehicle 10. In this way, the controller may charge the photoluminescent objects 24 such that the persistent luminescent portions 52 are charged to emit the output emission 26 when the vehicle is typically utilized.
Referring to
The controller 70 may include a processor 76 comprising one or more circuits configured to receive the signals from the communication bus 74 and output signals to control the charging apparatus 12. The processor 76 may be in communication with a memory 78 configured to store instructions to control the activation of the light sources 16. The controller 70 may further be in communication with the door sensor 32 to monitor a closure status of the access door 30 and the ambient light sensor 34 to determine an ambient light level of the environment proximate the vehicle 10. Based on the various inputs from the sensors 32 and 34, as well as the control inputs 62 from communication bus 74, the controller 70 may selectively activate the charging apparatus 12 to charge the persistent luminescent portions 52 of the photoluminescent objects 24 based on a various individual signals or combinations of the signals as discussed in reference to
The ambient light sensor 34 may be operable to communicate a light condition, for example a level brightness or intensity of the ambient light proximate the vehicle 10. Accordingly, the controller 70 may be operable to charge the photoluminescent objects 24 during periods wherein the ambient light proximate the vehicle 10 is below a threshold light level. In this configuration, the controller 70 may conserve energy from a battery of the vehicle 10 by limiting charge cycles of the charging apparatus 12 to periods when the lighting conditions proximate the vehicle 10 are conducive to illuminated objects, such as the photoluminescent objects 24 discussed herein.
For the purposes of describing and defining the present teachings, it is noted that the terms “substantially” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
2486859 | Meijer et al. | Nov 1949 | A |
5053930 | Benavides | Oct 1991 | A |
5434013 | Fernandez | Jul 1995 | A |
5709453 | Krent et al. | Jan 1998 | A |
5839718 | Hase et al. | Nov 1998 | A |
6031511 | DeLuca et al. | Feb 2000 | A |
6117362 | Yen et al. | Sep 2000 | A |
6196241 | Doolan | Mar 2001 | B1 |
6207077 | Burnell-Jones | Mar 2001 | B1 |
6294990 | Knoll et al. | Sep 2001 | B1 |
6419854 | Yocom et al. | Jul 2002 | B1 |
6494490 | Trantoul | Dec 2002 | B1 |
6577073 | Shimizu et al. | Jun 2003 | B2 |
6599444 | Burnell-Jones | Jul 2003 | B2 |
6729738 | Fuwausa et al. | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6773129 | Anderson, Jr. et al. | Aug 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6851840 | Ramamurthy et al. | Feb 2005 | B2 |
6859148 | Miller | Feb 2005 | B2 |
6871986 | Yamanaka et al. | Mar 2005 | B2 |
6953536 | Yen et al. | Oct 2005 | B2 |
6990922 | Ichikawa et al. | Jan 2006 | B2 |
7015893 | Li et al. | Mar 2006 | B2 |
7161472 | Strumolo et al. | Jan 2007 | B2 |
7213923 | Liu et al. | May 2007 | B2 |
7216997 | Anderson, Jr. | May 2007 | B2 |
7249869 | Takahashi et al. | Jul 2007 | B2 |
7264366 | Hulse | Sep 2007 | B2 |
7264367 | Hulse | Sep 2007 | B2 |
7326435 | Buckingham et al. | Feb 2008 | B2 |
7441914 | Palmer et al. | Oct 2008 | B2 |
7501749 | Takeda et al. | Mar 2009 | B2 |
7575349 | Bucher et al. | Aug 2009 | B2 |
7635212 | Seidler | Dec 2009 | B2 |
7726856 | Tsutsumi | Jun 2010 | B2 |
7745818 | Sofue et al. | Jun 2010 | B2 |
7753541 | Chen et al. | Jul 2010 | B2 |
7834548 | Jousse et al. | Nov 2010 | B2 |
7862220 | Cannon et al. | Jan 2011 | B2 |
7987030 | Flores et al. | Jul 2011 | B2 |
8016465 | Egerer et al. | Sep 2011 | B2 |
8022818 | la Tendresse et al. | Sep 2011 | B2 |
8044415 | Messere et al. | Oct 2011 | B2 |
8066416 | Bucher | Nov 2011 | B2 |
8071988 | Lee et al. | Dec 2011 | B2 |
8075801 | Jones | Dec 2011 | B2 |
8097843 | Agrawal et al. | Jan 2012 | B2 |
8118441 | Hessling | Feb 2012 | B2 |
8120236 | Auday et al. | Feb 2012 | B2 |
8136425 | Bostick | Mar 2012 | B2 |
8163201 | Agrawal et al. | Apr 2012 | B2 |
8169131 | Murazaki et al. | May 2012 | B2 |
8178852 | Kingsley et al. | May 2012 | B2 |
8197105 | Yang | Jun 2012 | B2 |
8203260 | Li et al. | Jun 2012 | B2 |
8207511 | Bortz et al. | Jun 2012 | B2 |
8232533 | Kingsley et al. | Jul 2012 | B2 |
8247761 | Agrawal et al. | Aug 2012 | B1 |
8261686 | Birman et al. | Sep 2012 | B2 |
8282858 | Agrawal et al. | Oct 2012 | B2 |
8286378 | Martin et al. | Oct 2012 | B2 |
8317329 | Seder et al. | Nov 2012 | B2 |
8317359 | Harbers et al. | Nov 2012 | B2 |
8329061 | Jia | Dec 2012 | B2 |
8333907 | Comanzo et al. | Dec 2012 | B2 |
8408766 | Wilson et al. | Apr 2013 | B2 |
8409662 | Agrawal et al. | Apr 2013 | B2 |
8415642 | Kingsley et al. | Apr 2013 | B2 |
8421811 | Odland et al. | Apr 2013 | B2 |
8459832 | Kim | Jun 2013 | B2 |
8466438 | Lambert et al. | Jun 2013 | B2 |
8506843 | Srivastava et al. | Aug 2013 | B2 |
8519359 | Kingsley et al. | Aug 2013 | B2 |
8519362 | Labrot et al. | Aug 2013 | B2 |
8539702 | Li et al. | Sep 2013 | B2 |
8552848 | Rao et al. | Oct 2013 | B2 |
8606430 | Seder et al. | Dec 2013 | B2 |
8624716 | Englander | Jan 2014 | B2 |
8631598 | Li et al. | Jan 2014 | B2 |
8664624 | Kingsley et al. | Mar 2014 | B2 |
8683722 | Cowan | Apr 2014 | B1 |
8724054 | Jones | May 2014 | B2 |
8754426 | Marx et al. | Jun 2014 | B2 |
8773012 | Ryu et al. | Jul 2014 | B2 |
8846184 | Agrawal et al. | Sep 2014 | B2 |
8851694 | Harada | Oct 2014 | B2 |
8876352 | Robbins et al. | Nov 2014 | B2 |
8905610 | Coleman et al. | Dec 2014 | B2 |
8952341 | Kingsley et al. | Feb 2015 | B2 |
8994495 | Dassanayake et al. | Mar 2015 | B2 |
9006751 | Kleo et al. | Apr 2015 | B2 |
9018833 | Lowenthal et al. | Apr 2015 | B2 |
9057021 | Kingsley et al. | Jun 2015 | B2 |
9059378 | Verger et al. | Jun 2015 | B2 |
9065447 | Buttolo et al. | Jun 2015 | B2 |
9080764 | Gonzalez | Jul 2015 | B2 |
9187034 | Tarahomi et al. | Nov 2015 | B2 |
9299887 | Lowenthal et al. | Mar 2016 | B2 |
9315148 | Schwenke et al. | Apr 2016 | B2 |
9568659 | Verger et al. | Feb 2017 | B2 |
9616812 | Sawayanagi | Apr 2017 | B2 |
20020159741 | Graves et al. | Oct 2002 | A1 |
20020163792 | Formoso | Nov 2002 | A1 |
20030167668 | Fuks et al. | Sep 2003 | A1 |
20030179548 | Becker et al. | Sep 2003 | A1 |
20040213088 | Fuwausa | Oct 2004 | A1 |
20050084229 | Babbitt et al. | Apr 2005 | A1 |
20050189795 | Roessler | Sep 2005 | A1 |
20060043336 | van Schoor | Mar 2006 | A1 |
20060087826 | Anderson, Jr. | Apr 2006 | A1 |
20060097121 | Fugate | May 2006 | A1 |
20070032319 | Tufte | Feb 2007 | A1 |
20070285938 | Palmer et al. | Dec 2007 | A1 |
20070297045 | Sakai et al. | Dec 2007 | A1 |
20080205075 | Hikmet et al. | Aug 2008 | A1 |
20090217970 | Zimmerman et al. | Sep 2009 | A1 |
20090219730 | Syfert et al. | Sep 2009 | A1 |
20090251920 | Kino et al. | Oct 2009 | A1 |
20090260562 | Folstad et al. | Oct 2009 | A1 |
20090262515 | Lee et al. | Oct 2009 | A1 |
20100102736 | Hessling | Apr 2010 | A1 |
20110012062 | Agrawal et al. | Jan 2011 | A1 |
20120001406 | Paxton et al. | Jan 2012 | A1 |
20120104954 | Huang | May 2012 | A1 |
20120183677 | Agrawal et al. | Jul 2012 | A1 |
20120280528 | Dellock et al. | Nov 2012 | A1 |
20120304512 | Martin et al. | Dec 2012 | A1 |
20130050979 | Van De Ven et al. | Feb 2013 | A1 |
20130092965 | Kijima et al. | Apr 2013 | A1 |
20130335994 | Mulder et al. | Dec 2013 | A1 |
20140003044 | Harbers et al. | Jan 2014 | A1 |
20140029281 | Suckling et al. | Jan 2014 | A1 |
20140065442 | Kingsley et al. | Mar 2014 | A1 |
20140103258 | Agrawal et al. | Apr 2014 | A1 |
20140211498 | Cannon et al. | Jul 2014 | A1 |
20140264396 | Lowenthal et al. | Sep 2014 | A1 |
20140266666 | Habibi | Sep 2014 | A1 |
20140293617 | O'Kell | Oct 2014 | A1 |
20140373898 | Rogers et al. | Dec 2014 | A1 |
20150046027 | Sura et al. | Feb 2015 | A1 |
20150109602 | Martin et al. | Apr 2015 | A1 |
20150138789 | Singer et al. | May 2015 | A1 |
20150166883 | Krook | Jun 2015 | A1 |
20150267881 | Salter et al. | Sep 2015 | A1 |
20150307033 | Preisler et al. | Oct 2015 | A1 |
20160016506 | Collins et al. | Jan 2016 | A1 |
20160102819 | Misawa et al. | Apr 2016 | A1 |
20160131327 | Moon et al. | May 2016 | A1 |
20160236613 | Trier | Aug 2016 | A1 |
20170158125 | Schuett et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2927780 | Aug 2007 | CN |
101337492 | Jan 2009 | CN |
201169230 | Feb 2009 | CN |
201193011 | Feb 2009 | CN |
101485511 | Jul 2009 | CN |
201379161 | Jan 2010 | CN |
201480243 | May 2010 | CN |
202698032 | Jan 2013 | CN |
204127823 | Jan 2015 | CN |
4120677 | Jan 1992 | DE |
29708699 | Jul 1997 | DE |
10319396 | Nov 2004 | DE |
1793261 | Jun 2007 | EP |
2778209 | Sep 2014 | EP |
2000159011 | Jun 2000 | JP |
2007238063 | Sep 2007 | JP |
20060026531 | Mar 2006 | KR |
2006047306 | May 2006 | WO |
2008148138 | Dec 2008 | WO |
2014068440 | May 2014 | WO |
2014161927 | Oct 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20180069426 A1 | Mar 2018 | US |