The present invention relates generally to barrier systems. More particularly, the present disclosure relates to a vehicle barrier system and method where the barrier system includes a control system adapted to pivot a gate arm between a guarded and unguarded position to provide controlled access of vehicle traffic in restricted areas such as parking lots, parking garages, or other controlled access areas. The gate arm includes a plurality of light emitting diodes that are removeably inserted in channels formed along the length the gate arm to increase visibility and alert drivers or pedestrians to the presence of a vehicle barrier.
There are a number of physical barriers that are often used in regulating the flow of pedestrian traffic in designated areas. Exemplary types of physical barriers include erectable signs, banners, vertical cones, and gates. Such barriers have typically been developed to restrict individuals from entering or exiting controlled access areas, to provide warnings, or to identify passageways or direction to individuals. Many of these physical barriers are often used in banks, shopping centers, movie theaters, government buildings, and other public forums.
Traffic or vehicle barriers have also been developed to provide controlled access of vehicle traffic to restricted areas such as parking lots, parking garages, loading docks, or to control the flow of traffic on roads and highways. Typical vehicle barriers often include plastic barrels, cones, colored poles, interlocking barriers filled with a ballast material such as water or sand to help stabilize the barriers, reinforced steel barriers, cement barriers, traffic safety barriers including a plank disposed between A frame legs, and barriers including a gate arm that is operatively pivoted in a horizontal and generally vertical position to provide passage of vehicle traffic. Many conventional vehicle barriers employ physical indicators, such as reflective tape, markers, or bright colors, to help increase visibility and effectively capture drivers' attention to better assist them in visually identifying vehicle barriers from a distance, and at night. However, many vehicle barriers including such physical indicators provide limited use. For example, most physical indicators are more effective during the day when a driver's visibility is less impaired as compared to at night. Also, driver's often cannot see the physical indicators from greater distances, and as such, by the time the driver is alerted to the presence of the barrier, the vehicle is within close proximity of the barrier thereby further impairing the driver's ability to respond effectively. The reflective tape, markers or bright colors, used on vehicle barriers, tend to fade over time, are often covered with debris, and provide limited visibility at night.
To address the limitations that vehicle barriers with physical indicators provide, many vehicle barriers have been developed to include an electronic light assembly. In use, most light assemblies are typically fastened to the outer surface of barriers using mounting flanges, brackets, screws, or bolts. The light assembly typically includes a large, round red or yellow lens body attached to a waterproof receptacle for housing circuitry and a power source such as batteries. One or more incandescent bulbs are generally connected to the power source, via a switching mechanism. Such light assemblies are often seen on vehicle barriers comprising barrels, and safety barriers where the light assembly is secured on top of a horizontal plank, or on top of the support frame. Vehicle barriers including electronic light assemblies are designed to alert drivers to the presence of vehicle barriers at night or in low lit areas.
However, conventional vehicle barriers employing electronic light assemblies have certain drawbacks. Many vehicle barriers use a single, light assembly that is mounted on the external surface of the vehicle barrier. The single light assembly often provides limited visibility to drivers at night. Further, maintenance of such light assemblies can be time consuming, burdensome and costly. Prior art light assemblies tend to be bulky, heavy and are typically mounted on the external surface of vehicle barriers using large brackets, or a number of blots thus increasing both the costs and time in attaching and removing the light assemblies for each vehicle barrier. Technicians are often forced to remove light assemblies from vehicle barriers to make necessary repairs as a result of traffic engaging the vehicle barriers and damaging the lighting devices. Also, general maintenance of the light assemblies can be time consuming, and often results in the need for placing the vehicle barriers out of commission for a period of time while making necessary repairs, or replacing parts.
The present invention overcomes the deficiencies of the known art and the problems that remain unsolved by providing a barrier system including a control system adapted to pivot a gate arm between a horizontal position and a vertical position to control the flow of vehicle or pedestrian traffic in control access areas such as parking lots, or parking garages. The gate arm includes inset channels for removeably receiving an array of light emitting diodes to increase visibility and alert drivers or pedestrians to the presence of a gate arm at night.
In accordance with one implementation of the present invention, there is provided a vehicle barrier system comprising:
a housing;
a gate arm coupled to the housing and including at least one elongated inset channel having an opening, said at least one elongated inset channel formed along a longitudinal axis of the gate arm; a control system enclosed in the housing and operatively coupled to the gate arm to selectively pivot the gate arm between a horizontal position and a vertical position; a mounting member attached to the housing for installing the housing adjacent a roadway of a controlled access area; at least one light strip including a plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective member and including a first electrical cable connected to said plurality of light emitting diodes; an electronic connector electrically connected to the first electrical cable, and releasably fastened to the gate arm;
a power supply enclosed within the housing and releasably, electrically connected to the electronic connector;
an electrical switch selectively operated to couple the power supply to the at least one light strip; and
wherein the at least one light strip is removeably retained within the at least one elongated inset channel such that light from the plurality of light emitting diodes enumerates through the opening when the plurality of diodes are powered from said power supply.
In another aspect, the control system includes anyone of an electrically motorized system, a pneumatic system, a hydraulic system, or a spring-balanced system.
In another aspect, the at least one elongated inset channel includes a first elongated inset channel having a first opening, and a second elongated inset channel having a second opening, where the second elongated inset channel is disposed opposite the first elongated inset channel.
In another aspect, the gate arm includes a first pair of inset channel sidewalls integrally joined to a first inset channel backwall to form the first elongated inset channel, and a second pair of inset channel sidewalls integrally joined to a second inset channel backwall to form the second elongated inset channel, where the inset channel sidewalls and the inset channel backwalls extend along a longitudinal axis within the gate arm.
In another aspect, the at least one light strip comprises a second light strip including another plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective member, and also including a second electrical cable connected to the another plurality of light emitting diodes and to another electronic connector, the another electronic connector electrically coupled to the power supply.
In another aspect, the gate arm includes a top convex member having a first upper sidewall and a second upper sidewall, and a bottom convex member having a first lower sidewall coextensively aligned with the first upper sidewall, and a second lower sidewall wall coextensively aligned with the second upper sidewall, where the top convex member is attached to the bottom convex member via, the first and second pair of inset channel sidewalls, and the first and second inset channel backwalls.
In another aspect, the first upper sidewall and the first lower sidewall each terminate partially within the first opening for removeably securing the at least one light strip within the first elongated inset channel, and wherein the second upper sidewall and the second lower sidewall each terminate partially within the second opening for removeably securing the second light strip within the second elongated inset channel.
In another aspect, the vehicle barrier system further includes a top member comprising a semi-circular shape having one end terminating partially within the first opening, and another end terminating partially within the second opening, and a bottom member comprising a semi-circular shape having one end terminating partially within the first opening, and another end terminating partially within the second opening, where the top member and the bottom member are integrally joined together via, the first elongated inset channel and the second elongated inset channel forming a generally circular gate arm.
In another aspect, the second light strip is removeably retained within the second elongated inset channel aligning the plurality of light emitting diodes towards the second opening such that light from the plurality of light emitting diodes of the second light strip enumerates through the second opening when the plurality of diodes are powered from the power supply.
In another aspect, the protective member comprises anyone of a clear rubber material, a clear resin, a clear epoxy, a clear hardened gel, a clear vinyl, or a transparent protective enclosure.
In accordance with another implementation of the present invention, there is provided a barrier system providing controlled access to a designated area, said barrier system comprising:
a housing;
a control arm coupled to the housing and including a first channel having a first opening, and a second channel having a second opening, each channel formed along a longitudinal axis within the control arm and disposed opposite each other;
a control system enclosed in the housing and operatively coupled to the control arm to selectively pivot the control arm between a horizontal position and a vertical position;
a first light assembly including a plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective substrate and including a first electrical connector electrically coupled to the plurality of light emitting diodes;
a second light assembly including another plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective substrate and including a second electrical connector electrically coupled to the another plurality of light emitting diodes;
a power supply enclosed within the housing and releasably, electrically connected to the electrical connectors; an electrical switch selectively operated to couple the power supply to said light assemblies; and
wherein the first light assembly is removeably retained within the first channel with the plurality of light emitting diodes aligned towards the first opening and the first electrical connector removeably fastened to the control arm, and wherein the second light assembly is remove ably retained within the second channel with the another plurality of light emitting diodes aligned towards the second opening and the second electrical connector removeably fastened to the control arm.
In one aspect, the control arm comprises a circular geometric shape including a top member comprising a semi-circular shape having one end terminating partially within the first opening, and another end terminating partially within the second opening, and a bottom member comprising a semi-circular shape having one end terminating partially within the first opening, and another end terminating partially within the second opening, where the top member and the bottom member are integrally joined together via, the first and second channel.
In another aspect, the barrier system further includes a mounting post attached to the housing and adapted for installing the barrier system adjacent a roadway of a controlled access area such that the control arm is pivoted in a horizontal position to prevent the passage of vehicles, and in a generally vertical position to allow the passage of vehicles through.
In another aspect, the barrier system further includes a first power supply cable electrically connected to the power supply and releasably connected to the first electrical connector, and a second power supply cable electrically connected to the power supply and releasably connected to the second electrical connector.
In another aspect, the control system includes an activation device operated to pivot the control arm between a horizontal position and a vertical position. The activation device includes anyone of an electrical switch, a motion sensor system, a vehicle detection system, or a ticket dispenser.
In accordance with yet another implementation of the present invention, there is provided a method of regulating traffic in a controlled access area, said method comprising the steps of:
constructing a barrier system comprising:
a housing;
a gate coupled to the housing and including a first channel having a first opening, and a second channel having a second opening, each channel formed along a longitudinal axis within the gate and disposed opposite each other;
a control system operatively coupled to the gate and including an activation device to selectively pivot the gate between a horizontal position and a vertical position;
a first light assembly including a plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective enclosure and including a first electrical connector coupled to the plurality of light emitting diodes;
a second light assembly including another plurality of light emitting diodes each electrically connected in parallel and physically disposed adjacent one another in series, and encased within a protective enclosure and including a second electrical connector coupled to the another plurality of light emitting diodes;
a power supply enclosed within the housing and releasably, electrically connected to the electrical connectors; an electrical switch selectively operated to couple the power supply to the light assemblies; and
wherein the first light assembly is removeably retained within the first channel with the plurality of light emitting diodes aligned towards the first opening and the first electrical connector removeably fastened to the gate, and wherein the second light assembly is removeably retained within the second channel with the another plurality of light emitting diodes aligned towards the second opening and the second electrical connector removeably fastened to the gate;
installing the housing and gate near a roadway of a controlled access area;
electrically connecting the power supply to a power source;
activating the electrical switch to power the first and second light assembly; and
operating the activation device to pivot the gate between a horizontal position and a vertical position to selectively control the flow of traffic in the controlled access area.
In one aspect, the step of installing the housing and the gate near a roadway includes the step of attaching the housing to a mounting post and installing the mounting post adjacent said roadway.
In another aspect, the step of operating the control system to pivot the gate includes the step of detecting the presence of a vehicle or individual when situated near the gate a predetermined distance, and generating a signal to operate the control system.
These and other aspects, features, and advantages of the present invention will become more readily apparent from the attached drawings and the detailed description of the preferred embodiments, which follow.
The preferred embodiments of the invention will hereinafter be described in conjunction with the appended drawings provided to illustrate and not to limit the invention, in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
The present invention is directed to a vehicle barrier system 10 for use in providing controlled access of vehicle traffic in particular designated areas including, but not limited to, parking lots, parking garages, loading docks, highways, military bases, airports, roadways, or the like. It will be understood that the barrier system 10 of the present invention may be modified slightly to provide a barrier system for use in providing controlled access of individuals or pedestrian traffic in or out of various designated areas including but not limited to, buildings, walkways, bridges, tunnels, or other areas where controlled access to individuals is contemplated.
With reference made to
A mounting post 20 is provided for installing the barrier system 10 adjacent a designated roadway 22, as shown in
Housing 14 is preferably fabricated from a heavy weight sheet metal material or a durable thick plastic material and includes four sidewalls joined to a closed top and bottom. A locked door panel (not shown) may be hingedly attached to one of the four sidewalls to allow service technicians to access control system 16 and related components that are enclosed within the housing 14. Housing 14 is preferably waterproof to withstand the elements of rain and snow, and may include a small transparent window to view status indicators, gages, or other operative elements enclosed within housing 14. In another embodiment, other functional devices (not shown) such as a camera, an intercom, speakers, a phone, or a ticket dispenser, may be secured onto or within housing 14. For example, a camera may be implemented to take photos of license plates of vehicles 200 that pass along the roadway 22 through gate arm 18. Also, an operator may wish to converse with a driver using an intercom or speaker system.
Control system 16 is adapted to pivot gate arm 18 in a horizontal and vertical position to provide a guarded and unguarded position, respectively, to control traffic through roadway 22. Control system 16 may include an electrical control system (not shown) that includes an electric motor coupled to a gearing system such as a gear box, and an electronic DC controller, or variable frequency drive that is used to operate the speed and torque of a DC or AC electric motor. Alternatively, control system 16 may include a pneumatic system (not shown) or hydraulic system (not shown) including an air compressor, a hydraulic pump, fluid motors, pneumatic or hydraulic cylinders, electrical limit switches, valves, filters, couplings, regulators, and hoses or pipes where such components are operatively coupled together to control the pivoting movement of gate arm 18. The operative characteristics of the electric or fluid motors, pumps, compressor or cylinders should be selected to provide the optimum torque and force needed to pivot gate arm 18 in a horizontal and vertical position. An electrical AC power source, via a power cable 28, is provided to power control system 16. Preferably, control system 16 includes a control panel that includes an I/O interface, and may include a keypad or other input keys to program and/or operate functional parameters. A computer system including a processor, memory and interface may also be implemented to operate the vehicle barrier system 10. In yet another embodiment of the present invention, vehicle barrier 10 may include a spring-balanced system with the spring tension holding the security gate arm 18 in an upright, vertical position until pushed downwardly by force. An internal spring counter balancing weight may be included to allow easy lifting and lowering of gate arm 18.
Control system 16 may be operated locally or remotely by an attendant, or may include electronics that provides automated control of gate arm 18 in the absence of an attendant. For example, control system 16 may include an activation device (not shown) such as a camera, motion detectors, or other detectors used to detect or sense the presence of a vehicle 200 or individual and generate a signal to operate gate arm 18. Alternatively, control system 16 may include an electrical switch that comprises a pushbutton, or include an automated ticket dispenser, to permit drivers to operate gate arm 18, via, by manually operating pushbutton, or retrieving a ticket from the ticket dispenser, as often seen at airports.
With continued reference to
As illustrated in
The array of light emitting diodes 26 includes a plurality of light emitting diodes disposed adjacent each other in series, along the longitudinal axis of gate arm 18. The array of light emitting diodes 26 is removeably secured within inset channel 30 which is formed within the body of gate arm 18, as also illustrated in
With reference now made to
The array of light emitting diodes 26 is defined by a plurality of light emitting diodes that are electrically connected together in parallel, as shown in
Turning to
A first array of light emitting diodes 26 is inserted within inset channel 30 and cradled within the combination structure of inset channel sidewalls 60, 62, and inset channel backwall 64, as illustrated in
A second array of light emitting diodes 25 is also inserted within inset channel 72 and cradled within the combination structure of inset channel sidewalls 66, 68, and inset channel backwall 70, as seen in
Turning to
In a preferred embodiment, gate arm 80 includes a semi-circular shaped first member 82 joined to a semi-circular shaped second member 84, via, inset channels 92 and 100. Inset channel sidewalls 86, 88 and inset channel backwall 90 are integrally formed together, along a longitudinal axis within the interior of gate arm 80, to define inset channel 92 having an opening. Inset channel sidewalls 94, 96 and inset channel backwall 98 are also integrally formed together, along a longitudinal axis within the interior of gate arm 80, to define inset channel 100 having an opening. A first and second end of both members 82, 84 terminate partially within the openings of inset channel 92, and 100 to help retain an array of light emitting diodes within each inset channel 92, 100. Although inset channel 92 is oriented opposite inset channel 100, it will be noted that inset channels 92 and 100 may be oriented anywhere along gate arm 80. Also, gate arm 80 may include additional inset channels (not shown) to accommodate additional arrays of light emitting diodes, if desired.
As illustrated in
A lens (not shown) may be provided to help protect the array of light emitting diodes 25, 26 from debris or damage as a result of impact. The lens may comprise a transparent, opaque, tinted, or colored lens, or alternatively include an optical lens providing magnifying, reflective, or light focusing properties. In one non-limiting example, the lens may comprise a Fresnel lens. Preferably each lens comprises an elongated lens that spans the length of each inset channel 30, 72, 92, 100 and may be attached to the gate arm 18, 80 using any bonding agent, or fasteners.
Vehicle barrier system 10 may also include an audible system (not shown) such as an alarm or buzzer that is activated when gate arm 18, 80 is pivoted between horizontal and vertical positions to alert individuals that the gate arm 18, 80 is moving. Vehicle barrier system 10 may also include indicia, media or advertising that is provided anywhere on the housing 14, or gate arm 18, 80.
Turning to
Similar to the inset channels 30 and 72 depicted in
A second array of light emitting diodes is also inserted within inset channel 150, similar as the insert channel is described in
Turning to
In another embodiment, the flat top member 212 includes a upper left and upper right sidewall 260, 262 which terminate partially within the opening of inset channel 264. Inset channel sidewalls 266, 268 and inset channel backwall 270 are also integrally formed together, along a longitudinal axis within the interior of gate arm 210, to define inset channel 264 having an opening. The upper left and upper right sidewalls 260, 262 terminate partially within the opening of inset channel 264 wherein a light strip is cradled entirely within the elongated inset channel between the backwall and the inset channel sidewalls and retained therein solely by the terminating ends. In this embodiment, inset channel 264 is aligned at a 90 degree position to inset channels 240 and 250.
The flat bottom, member 219 may also include a lower left and lower right sidewall 272, 274 which terminate partially within the opening of inset channel 276. Inset channel sidewalls 278, 280 and inset channel backwall 282 are also integrally formed together, along a longitudinal axis within the interior of gate arm 210, to define inset channel 282 having an opening. The lower left and lower sidewalls 272, 280 terminate partially within the opening of inset channel 276 wherein a light strip is cradled entirely within the elongated inset channel between the backwall and the inset channel sidewalls and retained therein solely by the terminating ends. In this embodiment, inset channel 276 is aligned directly across from inset channel 264. The gate arm 210 may include additional inset channels (not shown) to accommodate additional arrays of light emitting diodes if desired. Gate arm 210 may be molded as one unit to include inset channels using well-known plastic injection molding techniques and methods although the preferred embodiment is extruded aluminum.
Similar to the inset channels 30 and 72 depicted in
A second array of light emitting diodes is also inserted within inset channel 250, similar as the insert channel is described in
Turning to
Similar to the inset channels 30 and 72 depicted in
A second array of light emitting diodes is also inserted within inset channel 350, similar as the insert channel is described in
Turning to
Similar to the inset channels 30 and 72 depicted in
A second array of light emitting diodes is also inserted within inset channel 450, similar as the insert channel is described in
Since many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalence.
In accordance with 37 C.F.R. §1.76, a claim of priority is included in an Application Data Sheet filed concurrently herewith. Accordingly, the present invention is a continuation-in-part of U.S. patent application Ser. No. 14/470,134, entitled “VEHICLE BARRIER SYSTEM WITH ILLUMINATING GATE ARM AND METHOD” filed Aug. 27, 2014, which is a continuation of U.S. patent application Ser. No. 13/803,093, entitled “VEHICLE BARRIER SYSTEM WITH ILLUMINATING GATE ARM AND METHOD” filed Mar. 14, 2013, now U.S. Pat. No. 8,845,125, issued Sep. 30, 2014, which claims priority of U.S. Provisional Patent Application No. 61/654,280, entitled “SECURITY GATE-ARM LIGHTING SYSTEM AND METHOD filed on Jun. 1, 2012. The contents of which the above referenced applications are incorporated hereby by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1211676 | Coleman | Jan 1917 | A |
4666108 | Fox | May 1987 | A |
4811516 | Anderson | Mar 1989 | A |
6472823 | Yen | Oct 2002 | B2 |
6487818 | Hamann et al. | Dec 2002 | B1 |
6691467 | Hincher, Sr. | Feb 2004 | B2 |
6860007 | Liu et al. | Mar 2005 | B1 |
6997417 | Zarkades | Feb 2006 | B2 |
7258461 | Izardel | Aug 2007 | B1 |
7258467 | Saccomanno et al. | Aug 2007 | B2 |
7818920 | Causey et al. | Oct 2010 | B2 |
8011797 | Rihl | Sep 2011 | B2 |
8231247 | Olmsted | Jul 2012 | B2 |
8845125 | Lumsden | Sep 2014 | B1 |
9157200 | Lumsden | Oct 2015 | B2 |
20070199243 | Youn | Aug 2007 | A1 |
20080038055 | Jankovsky | Feb 2008 | A1 |
20080136661 | Pederson et al. | Jun 2008 | A1 |
20080240854 | Binns | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
102008016070 | Oct 2009 | DE |
2105534 | Sep 2009 | EP |
2527536 | Nov 2012 | EP |
10200887282 | Jun 2007 | KR |
Entry |
---|
Amano McGann Parking Solutions, “APG-1700 Series Parking Gate”, Company Brochure Spec Sheet, Retrieved from Internet Oct. 28, 2014, http://www.amanomcgann.com, (2011). |
Amano Cincinnati AGP-1700 Parking Gate, Tsci, Spec Sheet, Retrieved from Internet Oct. 28, 2014, http://www.amanomcgann.com, (Nov. 22, 2011). |
Amano Parking Gates, “AGP-1700 Series Parking Barriers”, Product Sheet, Retrieved from Internet Oct. 28, 2014, http://www.amanomcgann.com/product/display/85?categoryid=137, (2012). |
Rexamination Office Action, U.S. Appl. No. 90/013,402, Apr. 21, 2015. |
Response to Office Action Ex Parte Reexamination, U.S. Appl. No. 90/013,402, Apr. 21, 2015. |
Supplemental Response to Office Action Ex Parte Reexamination, U.S. Appl. No. 90/013,402, Aug. 4, 2015. |
Gatearm Technologies, Inc. v. Access Masters, LLC., and Blacksky Technologies, Inc., Case No. 0:14-cv-62697-RNS (S.D.FL). |
Number | Date | Country | |
---|---|---|---|
20160032545 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61654280 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13803093 | Mar 2013 | US |
Child | 14470134 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14470134 | Aug 2014 | US |
Child | 14880823 | US |