The present application claims under 35 U.S.C. § 119(a) the benefit of Korean Patent Application No. 10-2021-0052501, filed Apr. 22, 2021, the entire contents of which are incorporated by reference herein.
The present disclosure relates to a vehicle battery case in which an impact absorption space is formed by a side upper panel and a side lower panel on a side surface part of a housing on which a battery is mounted, and a reinforcement panel having a predetermined inclination secures stiffness against lateral collisions in the impact absorption space.
A vehicle battery case refers to a device for accommodating a battery module in a vehicle, the vehicle battery case arranged for protecting the battery against external environments and impacts. For example, the vehicle may be an electric vehicle having a traveling distance of 400 km or more have a battery capacity of 60 kWh or more, and a protective device for protecting the battery module typically is made of aluminum for the purpose of lightness.
An electric vehicle having a traveling distance of less than 400 km typically has a protective device made of a steel material, but this has a problem in that a simple structure (having the shape of a slab and an angled tube) for mounting on a side lower portion of the chassis is applied, and cannot sufficiently protect the battery module against collision or compressive load.
That is, a battery case made of steel has a simple structure which buckles in the case of a lateral collision and an external force applied thereto, and is not advantageous for lightness. Therefore, there is a need for development of a vehicle battery case capable of securing stiffness against lateral collisions while using a steel material.
The above descriptions regarding background technologies have been made only to help understanding of the background of the present disclosure, and are not to be deemed by those skilled in the art to correspond to already-known prior arts.
The present disclosure provides a vehicle battery case in which an impact absorption space is formed by a side upper panel and a side lower panel on a side surface part of a housing on which a battery is mounted, and a reinforcement panel having a predetermined inclination secures stiffness against lateral collisions in the impact absorption space, thereby preventing buckling deformation.
According to an aspect of the present disclosure, a vehicle battery case may include: a housing in which a battery is mounted and which has a side surface part formed to cover a side surface of the battery; a side upper panel which is coupled to the side surface part of the housing and extends in a longitudinal direction along the side surface part of the housing; a side lower panel which is coupled to the side surface part of the housing while being spaced downward apart from the side upper panel and extends in the longitudinal direction along the side surface part of the housing, an end of the side lower panel being coupled to an end of the side upper panel so as to form an impact absorption space between the side lower panel and the side upper panel; and a reinforcement panel which is inserted into the impact absorption space and extends in the longitudinal direction along the side surface part of the housing, wherein the side lower panel and the reinforcement panel are disposed to have increasing inclinations while extending from the side surface part of the housing in a width direction.
The reinforcement panel may be disposed closer to the side lower panel than to the side upper panel, and when an impact occurs, the reinforcement panel may be deformed and brought into contact with the side lower panel.
The side surface part of the housing may include multiple side wall panels stacked in the lateral direction, and each of the side upper panel, the side lower panel, and the reinforcement panel may have an end coupled to an outermost side wall panel.
The multiple side wall panels may be shaped to extend along a side surface of the housing and coupled to each other to form a closed section.
The upper panel may have multiple protrusions arranged in a longitudinal direction, and each of the protrusions may have an end supported by the reinforcement panel.
The protrusions may include pipe members formed in a cylindrical shape, the side upper panel may have multiple through-holes which are formed in the longitudinal direction and into which the pipe members are inserted, respectively, and the inserted pipe members may have bottoms supported by a top surface of the reinforcement panel.
The reinforcement panel may be shaped to be continuously bent in a longitudinal direction, and may include ridges protruding upward and troughs protruding downward.
The ridges and troughs of the reinforcement panel may have increasing inclinations while extending from the side surface part of the housing in a width direction, and the ridges and the troughs may have different inclinations.
The side upper panel may have multiple through-holes formed in a longitudinal direction, the pipe members may be inserted into the respective through-holes, and the inserted pipe members may have bottoms supported by the ridges of the reinforcement panel.
Each of the ridges of the reinforcement panel may include: an inner portion extending from the side surface part of the housing in a width direction; and an outer portion extending from the inner portion in the width direction, and each of the pipe members may have a bottom supported by the outer portion.
In each ridge of the reinforcement panel, the inner portion may be formed to have a larger inclination value than the outer portion.
In each ridge of the reinforcement panel, the inner portion may be formed to have a smaller inclination value than the side lower panel.
The troughs of the reinforcement panel may be formed to have a larger inclination value than the side lower panel.
The side upper panel may have an end bent upward, the side lower panel and the reinforcement panel may have ends bent downward, and the bent ends may be coupled to each other while being in surface contact with each other or with the side surface part of the housing.
The side upper panel may have an end bent downward, the side lower panel and the reinforcement panel may have ends bent upward, and the bent ends may be coupled to each other while being in surface contact with each other.
A vehicle battery case according to the present disclosure is advantageous in that an impact absorption space is formed by a side upper panel and a side lower panel on a side surface part of a housing on which a battery is mounted, and a reinforcement panel having a predetermined inclination secures stiffness against lateral collisions in the impact absorption space, thereby preventing buckling deformation.
The above and other aspects, features and advantages of the present disclosure will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
It is understood that the term “vehicle” or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum). As referred to herein, a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered vehicles.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the specification, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. In addition, the terms “unit”, “-er”, “-of”, and “module” described in the specification mean units for processing at least one function and operation, and can be implemented by hardware components or software components and combinations thereof.
Further, the control logic of the present disclosure may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller or the like. Examples of computer readable media include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices. The computer readable medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a Controller Area Network (CAN).
Research and development efforts recently have focused on an electric vehicle, and because a battery is an essential element of the electric vehicle, much time and attention have focused on developing a case for mounting the battery. A battery case is configured such that a high-voltage battery for driving the electric vehicle can be mounted or replaced, and at the time of a vehicle collision, is required to absorb and distribute a load and thus prevent a fire and explosion due to battery damage. If the side wall of the battery case is formed of simple steel beams, buckling deformation may be easily caused by an impact as a side member become extended in a transverse direction. Therefore, if the buckling deformation is not prevented, a battery may be damaged by the impact.
The buckling deformation may be prevented by increasing the second moment of area. In this case, the weight of the battery case may increase with an increase in the cross-section thickness of a steel material, and thus power efficiency may be reduced. Therefore, the battery case according to an embodiment of the present disclosure ensures stiffness and a minimized weight by forming a closed section using side wall panels made of a steel material and through inclinations of panels laterally disposed at the outer side of the battery case.
Specifically, in the vehicle battery case according to an embodiment of the present disclosure, the side surface part 100 of the housing may include multiple side wall panels 101, 102, 103, and 104 which are stacked in the lateral direction, and each of the side upper panel 201, the side lower panel 203, and the reinforcement panel 202 may be coupled at the end thereof to an outermost side wall panel 104. The multiple side wall panels 101, 102, 103, and 104 may be shaped to extend along the side surface of the housing, and may be coupled to each other to form a closed section.
That is, the multiple side wall panels 101, 102, 103, and 104 may form a side wall of the battery case, and may effectively withstand a load applied from the side surface through a closed section structure, thereby protecting a battery. Further, the side upper panel 201, the side lower panel 203, and the reinforcement panel 202 may form an impact absorption space, and may prevent buckling deformation of the side surface structure of the battery case, thereby performing functions of absorbing and distributing a load applied from the side surface.
Specifically, the panels may be coupled to each other through welding. The panels are thin, and thus may be coupled to each other by mainly using spot welding and partially using laser welding. The pipe members 210 may be inserted into the through-holes of the side upper panel 201, and may be coupled thereto through arc welding. Further, the side upper panel 201, the reinforcement panel 202, and the side lower panel 203 may be coupled to each other by spot welding while being in surface contact with each other through flanges arranged at the ends thereof. The multiple side wall panels 101, 102, 103, and 104 may also be spot-welded and coupled to each other through flanges formed at the tops or bottoms thereof.
Referring to
Specifically, in the vehicle battery case according to an embodiment of the present disclosure, the reinforcement panel 202 is shaped to be continuously bent in the longitudinal direction, and may include: ridges protruding upward; and troughs protruding downward. Further, the ridges and troughs of the reinforcement panel 202 have increasing inclinations while extending from the side surface part of the housing in the width direction, and the ridges and the troughs may have different inclinations.
Further, in the vehicle battery case according to an embodiment of the present disclosure, the side upper panel 201 may have multiple through-holes formed in the longitudinal direction, the pipe members 210 may be inserted into the respective through-holes, and the inserted pipe members 210 may be supported at the bottoms thereof by the ridges of the reinforcement panel 202.
In the vehicle battery case according to an embodiment of the present disclosure, each of the ridges of the reinforcement panel 202 may include: an inner portion extending from the side surface part 100 of the housing in the width direction; and an outer portion extending from the inner portion in the width direction, and each of the pipe members 210 may be supported at the bottom thereof by the outer portion. In each ridge of the reinforcement panel 202, the inner portion may be formed to have a larger inclination value than the outer portion. Referring to
Further, in each ridge of the reinforcement panel 202, the inner portion may be formed to have a smaller inclination value than the side lower panel 203. A section toward the inside of the housing is formed to have an inclination of about 1.5 degrees, and the side lower panel 203 is formed to have an inclination of about 2 degrees, whereby, at the time of lateral collision, the side lower panel 203 is deformed upward at the inner side thereof and downward at the outer side thereof, and thus the overall side structure thereof stably remains as horizontal as possible.
The troughs of the reinforcement panel 202 may be formed to have a larger inclination value than the side lower panel 203. Referring to the cross section taken along B-B′ in
Further, in the vehicle battery case according to an embodiment of the present disclosure, the end of the side upper panel 201 may be bent upward, the ends of the side lower panel 203 and the reinforcement panel 202 may be bent downward, and the bent ends may be coupled to each other while being in surface contact with each other or the side surface part of the housing. The end of the side upper panel 201 may be bent downward, the ends of the side lower panel 203 and the reinforcement panel 202 may be bent upward, and the bent ends may be coupled to each other while being in surface contact with each other.
That is, the side upper panel 201, the reinforcement panel 202, and the side lower panel 203 have predetermined inclinations in the inner impact absorption space, and thus, at the time of lateral collision, the overall shapes thereof are uniformly deformed while remaining horizontal, thereby properly absorbing the impact. Further, the panels may be welded while being in surface contact with each other through flanges formed at the ends thereof to form a closed section, thereby withstanding a larger load at the time of collision. In the test result, referring to the graph in
The present disclosure has been illustrated and described in relation to specific embodiments thereof. However, it will be obvious to those skilled in the art that various changes and modifications therein can be made without departing from the technical spirit of the present disclosure, provided by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0052501 | Apr 2021 | KR | national |