Real power is the capacity of a circuit for performing work in a particular time. Apparent power is the product of the current and voltage of the circuit. The apparent power may be greater than the real power due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source.
The power factor of an AC electric power system may be defined as the ratio of the real power flowing to the load to the apparent power (a number between 0 and 1).
In an electric power system, a load with a low power factor draws more current than a load with a high power factor, for the same amount of useful power transferred. The higher currents may increase the energy lost in the distribution system, and may require larger wires and other equipment. Because of the costs of larger equipment and wasted energy, electric utilities may charge a higher cost to customers with a low power factor.
In a purely resistive AC circuit, voltage and current waveforms are in phase, changing polarity at the same instant in each cycle. Where reactive loads are present, such as with capacitors or inductors, energy storage in the loads results in a time difference (phase) between the current and voltage waveforms. This stored energy returns to the source and is not available to do work at the load. Thus, a circuit with a low power factor will have higher currents to transfer a given quantity of real power compared to a circuit with a high power factor.
AC power flow has the three components: real power (P) measured in watts (W); apparent power (S) measured in volt-amperes (VA); and reactive power (Q) measured in reactive volt-amperes (VAr). Power factor may thus be defined as
P/S (1)
In the case of a perfectly sinusoidal waveform, P, Q and S can be expressed as vectors that form a vector triangle such that
S
2
=P
2
+Q
2 (2)
If 0 is the phase angle between the current and voltage, then the power factor is equal to |cos θ|, and
P=S*|cos θ|(3)
When power factor is equal to 0, the energy flow is entirely reactive, and stored energy in the load returns to the source on each cycle. When the power factor is equal to 1, all the energy supplied by the source is consumed by the load. Power factors may be stated as “leading” or “lagging” to indicate the sign of the phase angle.
If a purely resistive load is connected to a power supply, current and voltage will change polarity in phase, the power factor will be unity, and the electrical energy will flow in a single direction across the network in each cycle. Inductive loads such as transformers and motors consume power with the current waveform lagging the voltage. Capacitive loads such as capacitor banks or buried cables cause reactive power flow with the current waveform leading the voltage. Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle. For example, to achieve 1 kW of real power if the power factor is unity, 1 kVA of apparent power needs to be transferred (1 kW÷1=1 kVA). At low values of power factor, however, more apparent power needs to be transferred to achieve the same real power. To achieve 1 kW of real power at 0.2 power factor, 5 kVA of apparent power needs to be transferred (1 kW÷0.2=5 kVA).
A vehicle may include a traction battery and a battery charger. The battery charger may receive power from a remote power distribution circuit and charge the traction battery at a rate selected in response to whether a load other than the battery charger is electrically connected with the power distribution circuit.
A battery charger may receive power from a power distribution circuit including a neutral and ground and operate based on a measured voltage between the neutral and ground.
Embodiments of the present disclosure are described herein; however, it is to be understood that the disclosed embodiments are merely examples and other embodiments may take various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures may be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, may be desired for particular applications or implementations.
Referring now to
As known to those of ordinary skill, power from a power source 25, e.g., utility grid, etc., is delivered to the distribution circuit 10 (and thus the battery charger 20 and loads 22) via the fuse box 18. Attempts to draw current from the distribution circuit 10 that exceed its capabilities may trip fuses within the fuse box 18.
In the embodiment of
Referring now to
The battery charger 20 may also include voltage sensors 34, 36 and a current sensor 38. The voltage sensor 34 measures the voltage between the line 12′ and neutral 14′. The sensor 36 measures the voltage between the neutral 14′ and ground 16. As apparent to those of ordinary skill, this voltage depends on the current through the neutrals 14, 14′. The sensor 38 measures the current through the neutral 14′. The sensors 34, 36, 38 are in communication with the microprocessor 32.
If the charger 20 is not operating, all load current due to the loads 22 passes through the neutral 14. The neutral 14, having an internal resistance R14, experiences a voltage drop between the loads 22 and fuse box 18 that is proportional to, and in phase with, the current through the loads 22. This voltage drop can be measured at the charger 20 by either of the sensors 34, 36. Hence, a voltage measured by the sensor 36 indicates the presence of the loads 22; a change in voltage measured by the sensor 34 indicates the presence of the loads 22. If the loads 22 contain a reactive component, the voltage measured by the sensor 36 will be out of phase with the voltage measured by the sensor 34. From (5) (discussed below), the power factor can thus be computed.
If the loads 22 were absent, the charger 20 could produce the same voltage drop by charging at a rate that causes a current through the neutrals 14, 14′ that is equal to
((R14+R14′)*Icharger)/R14 (4)
where R14′, is the internal resistance of the neutral 14′ and Icharger is the current through the charger 20 (the current through the sensor 38).
The charger 20 may charge the power storage unit 24 at a rate that depends on whether the presence of the loads 22 is detected. If, for example, the loads 22 are detected, the charger 20 may charge the power storage unit 24 at a rate of 600 W. If the loads 22 are not detected, the charger may charge the power storage unit 24 at a rate of 1200 W. In other examples, the charge rate may vary inversely with the voltage as measured by the sensor 36 or the change in voltage associated with the sensor 34.
If the charger 20 is operating and the loads 22 are present, the reactive component of power due to these combined loads will have an associated current that can be determined based on the measured voltage 36. Due to this component of current, the measured voltage waveform at the sensor 36 (VNG) will be out of phase with the measured voltage waveform at the sensor 34 (VLN). If the charger 20 is commanded to operate as a load with a reactive power such that the measured voltage waveform at the sensor 36 is substantially aligned with the measured voltage waveform at the sensor 34, the power at the fuse box 18 will have little or no reactive component.
From (4), if R14′ is small relative to R14, the charger current necessary to correct and align the phase of VNG with VLN will be approximately equal to the current magnitude and phase of the example above where the charger 20 is not operating and thus all load current due to the loads 22 passes through the neutral 14. If R14′ is not small relative to R14, a portion of reactive power may still be observed at the fuse box 18.
The microprocessor 32 may determine the power factor (and thus differences in phase between the voltage and current) of the distribution circuit 10 based on information from the sensors 34, 36. For example, the microprocessor 32 may determine the power factor based on the period, T, of the voltage waveform as measured by the sensor 34 and the phase between the voltage waveforms as measured by the sensors 34, 36. Other suitable techniques, however, may also be used.
To find T, for example, the microprocessor 32 may determine the time between two consecutive zero-crossings of the voltage waveform as measured by the sensor 34, and multiply this time by a factor of 2. Alternatively, the microprocessor 32 may determine the time between alternate zero-crossings of the voltage waveform as measured by the sensor 34. Other schemes are also possible. To find the phase between the voltage waveforms as measured by the sensors 34, 36, the microprocessor 32 may determine the time, t, between a zero-crossing of the voltage waveform as measured by the sensor 34 and an immediately subsequent zero-crossing of the voltage waveform as measured by the sensor 36. The microprocessor 32 may then find the power factor of the distribution circuit 10 as
PF=cos((t/T)*360) (5)
The microprocessor 32 may communicate this power factor to the PF controlled boost circuit 28. The PF controlled boost circuit 28 (which may take the form of circuitry described in the UNITRODE Application Note “UC3854 Controlled Power Factor Correction Circuit Design” by Philip C. Todd, 1999, or any other known and/or suitable form) may control the power drawn in order to correct for reactive power caused by the loads 22. This control may be accomplished, for example, with the addition of a digital or analog lead/lag of the current measured by the sensor 38 (or by a lag/lead of the voltage measured by the sensor 34) prior to the signal being processed by the PF controlled boost circuit 28. In this example, a lag in the current signal will produce a corresponding lead in the power factor at the input of the charger 20, and the PF controlled boost circuit 28 will no longer be drawing unity PF at its input as originally intended. Conversely, a lead will produce a corresponding lag in the power factor at the input of the charger 20, etc.
If the loads 22 are motors, for example, they will typically have an inductive reactance, X1, which will cause a lagging power factor. A leading power factor equivalent to a capacitive reactance, Xc, may be provided such that Xc≈X1. With this approximate match, little or no reactive power will flow on the line 12 and neutral 14, and will instead flow on the line 12′ and neutral 14′.
If the reactive power needed to correct for reactive power caused by the loads 22 is known, the PF controlled boost regulator 28 may be directed to produce the needed (complementary) reactive power. Alternatively, considering (4) and the prior discussion of current produced voltages at the sensor 36, for small values of R14′ relative to R14 there will be little or no reactive power flow through the line 12, neutral 14 and fuse 23, and VNG will be in phase with VLN. Even for larger values of R14′ when VNG is in phase with VLN, the reactive power flow through the line 12, neutral 14, and fuse 23 will be reduced. Of course, if the reactive power of the loads 22 is known, the reactive power produced current can be directly calculated and controlled.
Control signal inputs to the PF controlled boost circuit 28 may be based on the voltage (rectified) between the lines 12′, 14′, and the magnitude of the voltage between the lines 14′, 16, which, of course, is proportional to the current through the neutrals 14, 14′. As apparent to those of ordinary skill, the above control signal input scheme allows the PF controlled boost circuit 28 to substantially correct the power factor of the distribution circuit 10 as opposed to just the battery charger 20.
The boost circuit 28 may measure, in a known fashion, the rectified AC voltage from the bridge rectifier 26 and control, in a known fashion, the current, i, through its inductor such that the instantaneous value of the magnitude of i is proportional to the instantaneous value of the magnitude of the voltage between lines 14′, 16.
If the battery charger 20 is the only load on the distribution circuit 10, the line 12 will have a power factor of approximately unity. Because the current, i, is proportional to the AC voltage on the line 12 (they are in phase), the power factor of the distribution circuit 10 is unity. If, however, there are additional loads, such as loads 22, with reactive components, the distribution circuit 10 will also have a power factor of approximately unity at the fuse box 18 because of the control input scheme discussed above.
Assuming the microprocessor 32 finds the power factor for the distribution circuit 10 as discussed above, it may control the PF controlled boost circuit 28 so as to produce reactive power sufficiently equal (and of opposite sign) to the reactive power caused by the loads 22. The reactive power produced by the PF controlled boost circuit 28 will thus cancel with the reactive power of the distribution circuit 10 and increase the real power for a given amount of apparent power.
From (2) and (3), and assuming a lagging power factor of 0.8 and an apparent power of 375 VA for the distribution circuit 10, the real power is approximately equal to 300 W and the reactive power is approximately equal to 225 VAr (current lagging voltage in this example). The PF controlled boost circuit 28 may thus operate to produce approximately 225 VAr (current leading voltage) and drive the apparent power to a value of 300 VA. Operation of the battery charger 20 may thus increase the efficiency at which power is delivered by the distribution circuit 10 under circumstances where non-power factor corrected loads, such as the loads 22 illustrated in
Referring now to
In the embodiment of
The power source 125 may include, for example, a wireless transmitter/transceiver or modulator (for power line communication) to communicate such requests for reactive power (and receive information from battery chargers as explained below). Any suitable information transmission technique, however, may be used.
Referring now to
The transceiver 133 is configured to transmit and/or receive wireless signals in a known fashion. The transceiver 133 may, for example, receive requests/commands for reactive power (of a particular sign) wirelessly transmitted by the power source 125 in a known fashion. These requests/commands may then be forwarded to the microprocessor 132 for processing. In other embodiments, the battery charger 120 may include HOMEPLUG-like (or similar) technology for receiving and/or transmitting over-the-wire communications from and/or to the power source 125. As apparent to those of ordinary skill, such a HOMEPLUG module would be electrically connected with the power and return lines 112′, 114′. As known in the art, with HOMEPLUG information is supper-imposed on AC lines at particular frequencies. With appropriate circuitry, this information can be read at the receiving end.
The microprocessor 132 may use the requested/commanded reactive power as a target by which to “tune” the reactive power of the distribution circuit 110n. For example, if 5 VAr total of reactive power (current leading voltage) is needed to substantially correct the power factor of the distribution system 140, and the microprocessor 132 has determined, using the techniques described herein, that 1 VAr (current leading voltage) is available to be produced by the charger 120, the microprocessor 132, in response to a request for reactive power (current leading voltage) from the power source 125, may control the PF controlled boost regulator 128 to produce 1 VAr of reactive power (current leading voltage) by, for example, controlling the digital or analog lead/lag of the current measured by the sensor 138 (or the lag/lead of the voltage measured by the sensor 134) as discussed above thus driving the reactive power of the distribution circuit 110n to 4 VAr (voltage leading current).
The microprocessor 132 may also determine the capacity of the battery charger 120 to cause a specified reactive power to be present on the distribution circuit 110 and communicate this information to the power source 125 via, for example, the transceiver 133. The power source 125 may aggregate this information from all such battery chargers electrically connected with the power distribution system 140 and issue requests for reactive power accordingly (e.g., based on the aggregate capacity).
Based on the apparent power and power factor of the distribution circuit 110n from (1) and (2), the real and reactive powers may be found. The incremental reactive power available may then be found using the power/current ratings of the distribution circuit 110n, which may be, for example, assumed, determined or input by a user. If, for example, the real and reactive powers are 10.6 W and 10.6 VAr (current leading voltage) respectively, and the power rating of the distribution circuit 110n is 15 W, the battery charger 120 cannot produce additional leading reactive power (current leading voltage) because, from (2), the apparent power is equal to the power rating of the distribution circuit 110n. One of ordinary skill, however, will recognize that the battery charger 120 can still produce lagging reactive power if needed. If, for example, the real and reactive powers are 0 W and 0 VAr respectively, and the available power rating of the distribution circuit 110n is 15 W, the battery charger 120 has the capacity to produce 15 VAr of reactive power of either sign.
In certain embodiments, the power source 125 may measure the PF and determine whether voltage is leading or lagging current using any suitable technique, and broadcast a command for all battery chargers to produce, for example, 1 VAr of reactive power having a sign opposite to the net reactive power. The power source 125 may then periodically measure the PF and broadcast commands for all battery chargers to increase the reactive power (of sign opposite to the net reactive power) produced until the net reactive power on the distribution system 140 has been sufficiently reduced and/or eliminated. In other embodiments, such as those having two-way communication between the power source 125 and any battery chargers 120, the power source 125 may request, in a known fashion, that respective battery chargers 120 produce/generate different amounts of reactive power (based on their respective capacities) provided, of course, that each battery charger reporting its capacity also provides identifying information that may distinguish it from others. Other control scenarios are also possible.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure and claims. As previously described, the features of various embodiments may be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments may have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics may be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes may include, but are not limited to: cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and may be desirable for particular applications.
This application is a continuation-in-part of application Ser. No. 12/423,160, filed Apr. 14, 2009, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12423160 | Apr 2009 | US |
Child | 13316605 | US |