Vehicle battery tray with tubular peripheral wall

Information

  • Patent Grant
  • 11088412
  • Patent Number
    11,088,412
  • Date Filed
    Thursday, September 13, 2018
    6 years ago
  • Date Issued
    Tuesday, August 10, 2021
    3 years ago
Abstract
A battery tray for supporting batteries at a lower portion of a vehicle frame includes a floor plate and a perimeter wall disposed around the of the floor plate to substantially surround a containment area for storing vehicle battery cells. The perimeter wall includes a tubular member that extends along a periphery of the floor plate to form a perimeter wall around a containment area for storing vehicle battery cells. The perimeter wall is attached at an upper surface of the floor plate, such that the containment area may be generally bounded horizontally by the perimeter wall and at the bottom by the floor plate.
Description
TECHNICAL FIELD

The present invention generally relates to vehicle battery support structures, and more particularly to structural components for holding and supporting protected batteries, such as battery packs or modules or the like for electric and hybrid-electric vehicles.


BACKGROUND

Electric and hybrid-electric vehicles are typically designed to locate and package battery modules on the vehicle in a manner that protects the batteries from damage when driving in various climates and environments, and also that protects the batteries from different types of impacts. It is also fairly common for vehicle frames to locate batteries in a portion of the frame or sub-structure of the vehicle, such as between the axles and near the floor of the vehicle, which can distribute the weight of the batteries across the vehicle frame and establish a low center of gravity for the vehicle. Similar to other vehicle components, low weight and high strength-to-weight ratio are important properties in battery support structural components.


SUMMARY

The present disclosure provides a perimeter wall for a vehicle battery tray that may comprise a tubular structure formed to extend along more than a single linear extent of the perimeter wall, such as around three sides or around the entire periphery of the battery tray. Such a construction can increase energy absorption and reduce intrusion distances for lateral vehicle impacts, along with reducing seams extending along or into the containment area of the battery tray. The tubular structure may use a single elongated reinforcement member that is formed to confirm to the relatively sharp corners of a battery tray by cutting notches along an interior portion of the member and bending the tubular member at the notches to form the desired angles at the corner portions of the battery tray. The tubular member may be bent in a manner to close the notch and thereby enclose the hollow interior of the tubular structure.


According to one aspect of the present disclosure, a battery tray is provided for supporting batteries at a lower portion of a vehicle frame. The battery tray includes a floor plate and a tubular member that extends along a periphery of the floor plate to form a perimeter wall around a containment area for storing vehicle battery cells. The perimeter wall is attached at an upper surface of the floor plate. The tubular member may include a single hollow beam, such as with a rectangular cross-sectional shape. The outer wall section of the tubular member may further provide a seamless surface around corner sections of the perimeter wall, such that the corner sections may have a welded seam along the inner wall section of the beam.


According to another aspect of the present disclosure, a battery tray is provided for supporting batteries at a lower portion of a vehicle frame. The battery tray includes a floor plate that has at least four perimeter edges. A perimeter wall is attached at an upper surface of the floor plate and includes a hollow metal beam that extends along at least three of the perimeter edges of the floor plate. An outer wall section of the hollow metal beam includes a seamless surface that extends around a corner section of the perimeter wall. Also, an inner wall section of the hollow metal beam may have a welded seam at the corner section of the perimeter wall, such that the corner section of the perimeter wall may have a closed notch seam extending along an upper wall section, the inner wall section, and a lower wall section of the hollow metal beam.


According to yet another aspect of the present disclosure, a method is provided for forming a vehicle battery tray. The method includes attaching a perimeter wall around a floor plate to substantially surround a containment area for storing vehicle battery cells. The perimeter wall may include a hollow metal beam that extends along at least three sides of the perimeter wall that are substantially perpendicular to each other. The method may further include laser cutting a notch along an upper wall section, a lower wall section, and an inner wall section of the hollow metal beam. The hollow metal beam may be bent to close the notch to form a corner section of the perimeter wall. It is also provided in an aspect of the disclosure that opposing ends of the hollow metal beam may be attached together to provide a continuous boundary around the containment area of the battery tray.


These and other objects, advantages, purposes, and features of the present disclosure will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a battery support structure secured at a mounting location on a vehicle;



FIG. 2 is top plan view of the battery support structure shown in FIG. 1, illustrating rocker rails and other portions of the vehicle in dashed lines;



FIG. 3 is an upper perspective view of the battery support structure shown in FIG. 1, showing battery modules supported therein;



FIG. 4 is an upper perspective view of the battery support structure with the battery modules removed;



FIG. 5 is an exploded upper perspective view of the battery support structure;



FIG. 6 is a flow chart of a forming process for a tubular peripheral member;



FIG. 7 is an upper perspective view of a tubular peripheral member at an initial step of the forming process shown in FIG. 6;



FIGS. 8A-8C are upper perspective views taken at a notched section of the tubular peripheral member, showing a corner bending process;



FIG. 9 is a top plan view of an additional example of a tubular peripheral wall of a batter support structure;



FIG. 10 is a top plan view of another example of a tubular peripheral wall of a batter support structure;



FIG. 11 is a top plan view of yet another example of a tubular peripheral wall of a batter support structure;



FIG. 12 is an upper perspective view of another example of a battery support structure, showing a cover enclosing the battery containment area;



FIG. 13 is a cross-sectional view of the battery support structure shown in FIG. 12, taken at line XIII-XIII shown in FIG. 12;



FIG. 14 is a top plan view of the battery support structure shown in FIG. 12, having the cover removed;



FIG. 15 is a cross-sectional view of the battery support structure shown in FIG. 14, taken at line XV-XV;



FIGS. 16A-16D are upper perspective views of an assembly process for forming a tray wall and a floor portion of the battery tray shown in FIG. 12;



FIG. 17 is a top plan view of a tubular peripheral member held in a fixture during the assembly process;



FIG. 18 is a perspective view of an additional embodiment of a vehicle, showing a bumper reinforcement beam in dashed lines;



FIG. 19 is an upper perspective view of the bumper reinforcement beam shown in FIG. 18, having two tubes in a stacked arrangement;



FIG. 20 is a cross-sectional view of the bumper reinforcement beam shown in FIG. 19, illustrating the two tubes attached together with an adhesive layer; and



FIG. 21 is a cross-sectional view of an additional example of a bumper reinforcement beam, illustrating two tubes of the beam attached together with weld seams.





DETAILED DESCRIPTION

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle battery tray or structure 10 is provided for supporting and protecting batteries, such as battery packs or modules or the like, for powering and operating electric motors and other electrical components of an electric or hybrid-electric vehicle 12, such as shown in FIGS. 1-5. The battery tray 10 may be attached or mounted at or near the lower portion of the vehicle 12, such as at the lower frame or rocker rails 14, which may also locate the batteries 16 contained in the battery tray 10 in a central location on the vehicle 12. Such a low and centralized location may avoid damage and disruption to the batteries 16 by being spaced away from probable impact locations on the vehicle frame, such as near the front and rear bumper areas. Also, such a mounting location of the tray 10 suspended and spanning below an interior cabin of the vehicle 12 may evenly distribute the weight of the batteries 16 on the vehicle frame between the wheels and may provide the vehicle 12 with a relatively low center of gravity due to the substantial weight of the batteries 16 held in the battery tray 10.


The battery tray 10 is provided with a base panel or floor plate 18 that forms the bottom containment structure of the battery tray 10. When the battery tray 10 is engage with the lower portion of the vehicle 12, the base panel or floor plate 18 of the battery tray 10 may be span below the interior cabin in generally parallel with the floor of the interior cabin of the vehicle 10, such that the base panel or floor plate 18 of the battery tray 10 may form the bottom or lowermost undercarriage surface of the vehicle body 12, as shown in FIG. 1.


The battery tray 10 may be disengaged or detached from the rocker rails 14 of the vehicle 12, such as for replacing or performing maintenance on the batteries 16 or related electrical components. To facilitate this optional disengagement or detachment from the vehicle 12, the battery tray 10 can be a modular design with standardized mounting locations capable of disengagement, such as with bolts or releasable fasteners or the like. Accordingly, the battery support tray 10 may accommodate various vehicle body types and designs.


As shown in FIGS. 3-5, the battery tray 10 includes a perimeter containment wall 20 that is disposed around a peripheral edge of the of the floor plate 18 to substantially surround a battery containment area 22 of the battery tray 10. The perimeter containment wall 20 is formed by at least one perimeter reinforcement member 24 that extends along at least one section or side of the peripheral edge of the floor plate 18 to provide a protective barrier around the battery containment area 22. Thus, the perimeter containment wall 20 may be segmented into separate members or beams that are attached together at the ends or may be a single beam.


To reduce the attachment seams and connection interfaces along the perimeter containment wall 20, which can be susceptible to leaks into and out of the battery containment area 22, the perimeter reinforcement member 24 may be bent or formed at a corner of the battery tray 10 to have at least a portion of the beam that continuously extends along more than a single linear side of the perimeter wall 20. For example, as shown in FIGS. 3-5, the perimeter reinforcement member comprises a single metal tubular beam that extends along four sides of the periphery of the battery tray 10 and its ends attach together to enclose the containment area 22.


As shown in FIG. 2, the peripheral shape of the perimeter containment wall 20, when viewed from above, may be generally rectangular or square shaped, where the corners of the perimeter containment wall 20 are approximately 90 degrees. The interior surface of the perimeter containment wall 20 at such sharp angled corners can provide a corresponding square or rectangular shaped battery containment area 22. This orthogonal shape of the battery containment area 22 corresponds with a generally rectangular or orthogonal shape of the battery modules 16 shown in FIG. 3, and as such the battery containment area can be filled to its volumetric capacity and thereby maximize battery containment capacity of the tray 10. However, it is also contemplated that the peripheral shape may have alternative designs, such as shown in another example illustrated in FIG. 14 that is indented or angled at or near the front or rear wheel wells of the vehicle, but still may have some right-angled corners.


The illustrated perimeter containment wall 20 shown in FIGS. 1-5 has a single reinforcement member 24 that is a roll formed tubular beam having a closed cross-sectional shape, which may be roll formed from a metal sheet, such as a high-strength steel. The hollow or open interior channel 26 (FIG. 7) of the reinforcement member 24 may extend along a length of the respective beam. By having an exterior or outer wall section of the beam spaced from an interior or inner wall section by the interior channel 26, such a tubular construction can increase energy absorption and reduce intrusion distances for lateral vehicle impacts. The elongated reinforcement member or members may also or alternatively include a welded multi-sheet beam, a pultruded beam, an extruded beam or the like, where the shape and material of the reinforcement member or members may be adapted to absorb and reduce impact forces delivered to exterior portions of the battery tray 10. It is further contemplated that the perimeter reinforcement member or members may be made with polymer or related composites, aluminum, combinations of materials or like materials. Also, the reinforcement member or members may be formed to have various shapes and combinations of open and/or closed cross-sectional shapes or profiles.


As further shown in FIGS. 3-5, the tubular member 24 has a rectangular cross-sectional shape formed by an inner wall section 28, an outer wall section 30, an upper wall section 32, and a lower wall section 34 of the tubular beam. The inner and outer wall sections 28, 30 are generally perpendicular relative to a planar extent of the floor plate 18 and substantially coplanar with each other. Similarly, the upper and lower wall sections 32, 34 are generally parallel relative to the planar extent of the floor plate 18 and substantially coplanar with each other. The lower wall section 34 of the tubular beam 24 has a planar surface that is attached at the upper surface of the floor plate along the respective perimeter edge of the floor plate. The attachment of the perimeter wall 20 to the floor plate 18 may be done by welding, adhesive, or fasteners or other similar attachment interface that is generally adapted to form a sealed attachment seam that is impervious to liquid and gas.


Referring again to the corner sections 36 of the perimeter wall 20, such as shown in FIGS. 3-5, the outer wall section 30 of the tubular member 24 may have a seamless surface around at least one corner section 36 of the perimeter wall 20. This seamless surface along the outer wall section 30 may have a small to negligible radiused curvature from bending the corner. To provide such a seamless surface at the outer wall section 36 at the sharp angled corner, a closed notch seam 38 may be provided at the corner sections 36 that extends along the upper, inner, and lower wall sections 32, 28, 34 of the beam 24, where such a forming process is shown in FIGS. 8A-8C and further described below. The closed notch seam 38 may be fixed when the notch seam is closed, so as to have a welded seam along at least the inner wall section 28 of the beam 24. It is also contemplated that a weld seam may be provided along the entire closed notch seam 38 to provide a sealed closure to the hollow interior of the tubular beam.


The corner sections 36 of the perimeter containment wall 20 shown in FIGS. 3-5 have a closed notch seam 38 at three of the corner sections 36 and a mitered end attachment 40 at the final corner to attach together the opposing ends of the tubular beam 24. The mitered end attachment 40 is formed by cutting each of the opposing ends of the tubular member 24 at an angle that is half of desired corner angle and securing the ends together, such as at 45 degrees for a 90 degree corner. The mitered end attachment 40 may be formed by welding, adhesive, or fasteners or other similar attachment interface that is generally adapted to form a sealed attachment seam that is impervious to liquid and gas. It is also contemplated that the ends of the tubular beam may be attached together at a straight-cut joint 40a, 40b, such as shown in FIGS. 10 and 11. As shown in FIG. 11, the end attachment joint 40b of the tubular beam is reinforced with brackets 41 that attach the inner and outer wall sections of the beam.


The perimeter wall 20 provides a generally consistent height with even and generally flush top and bottom surfaces for attaching a top cover or plate at the top surface and a bottom cover or floor plate 18 at the bottom surface, which together seal the upper and lower portions of the battery containment area 22. The top cover may be attached in a manner that is relatively easy to remove while maintaining the sealed battery containment area 22, such as via bolts, screws, or other removable fasteners that may compress a gasket or other sealing member between the top cover and the top surface of the perimeter wall 20. The removability of the top cover also allows access to the battery modules 16 or other electric components housed in the battery containment area 22 for replacement, maintenance, or inspection or the like. As further shown in FIG. 3, the upper wall section 32 of the perimeter wall 20 has fastener openings 42 that are configured to receive a mechanical fastener.


The floor plate 18, such as shown in FIG. 5, is a generally planar structure but may include formations adapted to improve structural stiffness of the floor and to adapt the floor for the battery modules 16. The floor plate 18 includes groupings of elongated depressions 44 that extend laterally on the floor plate 18 below sections of the battery containment area 22 that are each directly below a battery module 16. Such elongated depressions 44 increase lateral stiffness of the floor plate, while also providing air flow channels below the battery modules 16. Also, depressed features 45 are provided on the floor plate 18 that extend below the cross members 28 of the tray 10 to similarly provide structural strengthening and air flow improvements. The floor plate 18 may provide a sealed connection along the bottom surface of the perimeter wall 20 via welding, adhesive, or fasteners or the like. The seal between the floor plate 18 and the reinforcement member 24 forming the perimeter wall 20 may be reinforced or supplemented with a sealing agent or sealing material, such as an epoxy, silicone sealant, gasket material, or the like.


It is understood that the sealed battery containment area 22 may be vented for accommodating battery swelling or contraction, such as at a vented opening that is difficult for liquid or debris to enter, such as by locating the vented opening at an upper portion or interior portion or of the battery tray 10. For example, as shown in FIG. 5, end openings 46 in the perimeter containment wall 20 that are used for wiring may also be provided with an air conduit to assist with venting. Such a vented opening 46 may include a filter, membrane, or fabric cover that is air permeable and liquid impermeable to provide the desired liquid sealed environment for storing the batteries or electrical equipment or other vehicle-related item in the battery tray.


Referring again to FIGS. 3-5, the battery support structure 10 has cross members 48 that extend laterally to attach between the inside surfaces or inner wall sections 28 of the tubular member 24 at opposing lateral side sections of the perimeter wall 20. The cross members 48 span between the lateral side sections of the reinforcement members 24 to transmit lateral loads and impact forces through generally linear load paths along the cross members 48 to prevent laterally inward deformation to the reinforcement member 24 and thus limit disruption to the battery containment area 22. The cross members 48 may be formed to have a height that is less than the height of the perimeter wall 20. Accordingly, the cross members 48 may, provide a direct load path transmission between the lateral side sections of the perimeter wall 20.


The battery tray 10 shown in FIGS. 3-5 also includes outer rail extensions 50 that are attached at opposing longitudinal sides or portions of the perimeter containment wall 20 of the battery tray 10. As illustrated, the rail extensions 50 have a C-shaped or hat shaped cross sectional shape, where the end flanges 52 of the cross-sectional shape are attached to the outer wall sections 30 of the tubular beam 24 of the perimeter containment wall 20. The rail extensions 50 extend laterally outboard from the outer wall sections 30 of the metal tubular beam 24 to provide a mounting structure for the battery tray 10 to attach to the frame of the vehicle 12. Specifically, as shown in FIG. 2, the upper section of the rail extensions 50 have fastener holes 54 that may be used to attach the rail extensions 50 to the rocker rails 14, such that the rail extensions 50 also allow the batteries 16 contained in the battery tray 10 to be secured further inboard from the outer perimeter of the overall vehicle frame structure.


Several different attachment techniques and configurations may be used to permanently or releasable secure the battery support structure to a vehicle frame, such as below a floor of the vehicle and generally between the axles. Further, with respect to the general installation or attachment or formation, the steps discussed herein may be performed in various different sequences from those discussed to result in engaging, disengaging, or forming the battery support structure or components thereof.


Further, as shown in FIG. 6, an exemplary flow chart is provided that shows the process of forming the perimeter wall 20. At step 56, a straight roll formed beam 58 may be provided having a generally rectangular cross sectional shape, such as shown in FIG. 7. The roll formed beam 58 may then be trimmed with a laser or other cutting device, at step 60, to provide notches 62 along the beam 58 at the desired bending points that correspond to the shape and desired angular corner bends of the perimeter wall 20, such as shown in FIG. 8A. For example, the beam may be provided in approximately less than 28 foot length to accommodate a laser cutting machine. Specifically, the notches may remove material along three of the four wall section of the beam 58, where the remaining exterior or outer wall section may be the bending point and the top and bottom walls have angular cutouts that correspond to the desired angle of the corner transition in the perimeter wall 20 of the battery tray 10. The notches 62 at the top and bottom walls may also include interlocking features 64 to provide a more surface area along the weld seam and increased stability of the seam. After the notches are formed, the beam is bent to close the notches 62 along the beam 58, such as shown in FIG. 8B. This bending may be done at a bending station. Once the beam 58 is bent as shown in FIG. 8C, the closed notches 62 are fixed in the closed position, such as by using a laser welding process with or without filler wire or powered metal deposition at step 66 in FIG. 6. Further, at step 67, the ends may be trimmed and holes may be formed, such as the fastener openings 42 in the upper wall section 32 of the perimeter wall 20 and the end openings 46 in the perimeter containment wall 20 that are used for wiring. It is also contemplated that riv nuts or other fastener receivers or finishings may be inserted in the formed holes or openings.


As shown in an additional example of a perimeter wall in FIG. 9, the perimeter wall includes an additional wall member 68 that connects between end portions of the reinforcement member to provide a continuous perimeter wall around the containment area of the battery tray. This is provided in the illustrated embodiment shown in FIG. 9 at the rear of the battery tray. In areas where collision impact may not have a high risk or likelihood of interacting with the containment wall, such as at the front or rear, the additional wall member may be provided with an alternative cross-sectional shape and with less or lighter material, as it may not need to be designed to withstand or manage the same impact energy as the wall member at other areas of the perimeter wall.


Referring now to FIGS. 12-17, an additional example of a battery tray 110 includes a perimeter wall 120 that is disposed around the of the floor plate 118 to substantially surround the containment area 122. The perimeter wall 120 includes at least two reinforcement members 124 that are disposed in a stacked multi-tubular structure that extends along more than a single linear extent of the perimeter wall 120, such as shown in FIG. 14 extending along three sides of the periphery of the battery tray 110. The illustrated stacked multi-tubular structure of the perimeter wall 120 includes two reinforcement members 124, such as shown in FIG. 15, that are attached together with a lower wall section of an upper reinforcement member 124a disposed at or against an upper wall section of a lower reinforcement member 124b, such that the inner and outer wall sections of the upper and lower reinforcement members 124a, 124b are aligned to be substantially coplanar with each other.


The perimeter reinforcement members 124 may be bent or formed at a corner section 136 of the battery tray 110 to have at least a portion of the beam that continuously extends along more than a single linear side of the perimeter wall 120, such as provided by a closed notch seam 138. As shown in FIG. 14, the stacked multi-tubular structure of perimeter reinforcement members 124 extends along three sides of the perimeter wall 120 so as to form a horseshoe shape along the front and opposing lateral sides of the battery tray 110. The perimeter wall 120 also includes an additional wall member 168 that connects between end portions of the two reinforcement members 124 to provide a continuous boundary around the containment area 122 of the battery tray 110. The additional wall member 168 has a smaller thickness to reduce weight, as additional material is not necessary to withstand or manage probable impact energy.


This seamless surface along the outer wall sections of the closed notch seams 138 may have a small to negligible radiused curvature from bending the corner. The closed notch seam 138 may be provided at the corner sections 136 that extends along the upper, inner, and lower wall sections of the stacked beam 124, where such a forming process is shown in FIGS. 8A-8C. The closed notch seam 138 may be fixed when the notch seam is closed, so as to have a welded seam along at least the inner wall section of the stacked beams 124. It is also contemplated that a weld seam may be provided along the entire closed notch seam 138 to provide a sealed closure to the hollow interiors 126 of the tubular beams 124a, 124b.


The multi-tubular structure of perimeter reinforcement members 124 may be formed at a fixture, such as shown in FIG. 17 with pegs 174 that are disposed at the corner sections 136 of the perimeter wall 120. The pegs 174 may be used to hold the shape of the reinforcement members 124 as they are secured together in the stacked arrangement. Also or alternatively, the pegs 174 may be used to bend the reinforcement members at the corner sections 136 and close the notches when forming the closed notch seams 138. The reinforcement members 124 may be attached together, such as with applying adhesive or welding, so as to form the stacked arrangement extending upward from the floor plate 118.


As shown in FIGS. 12 and 13, the perimeter wall 120 provides a generally consistent height with even and generally flush top surfaces for attaching a top cover 170. The cover 170 is attached at the top surface of the upper tubular beam 124a, such that the floor plate 118 and the cover 170 together seal the upper and lower portions of the battery containment area 122. The top cover 170 may be attached in a manner that is relatively easy to remove while maintaining the sealed battery containment area 122, such as via bolts, screws, or other removable fasteners that may compress a gasket or other sealing member between the top cover 170 and the top surface of the perimeter wall 120. The removability of the top cover 170 also allows access to the battery modules or other electric components housed in the battery containment area 122 for replacement, maintenance, or inspection or the like.


As further shown in FIGS. 13-15, the battery support structure 110 has cross members 148 that extend laterally to attach between the inside surfaces or inner wall sections of the tubular members 124 at opposing lateral side sections of the perimeter wall 120. As shown in FIG. 15, the cross members 148 may include end brackets 172 that span vertically along the interior surfaces of the tubular members 124a, 124b, such that loads transmitted by the cross members are distributed to both tubular members. The cross members 148 may be formed to have a height along sections of the cross members that is less than the height of the peripheral wall 120, such as from section of the cross members 148 have a stacked tube structure and other sections having a single tube height. The cross members 148 may also attach at a central longitudinal beam 149. The cross members 148 may be formed to have a height in sections that is less than the height of the peripheral wall 120. Accordingly, the cross members 148 may, together with the central longitudinal beam 149, provide a direct load path transmission between the lateral side sections of the perimeter wall 120.


Features of the battery tray 110 that are similar to the battery tray 10 may not be described in detail again, and similar reference numbers are used, incremented by 100.


Referring now to FIGS. 18-21, a vehicle 212 may be equipped with a bumper reinforcement beam 280 that has a stacked tubular arrangement similar to the reinforcement beams 124 used in the perimeter wall 120 of the battery tray 110 shown in FIGS. 12-17. The vehicle reinforcement beam 280 is configured to span laterally across a vehicle frame, where opposing end portions of the reinforcement beam are configured to attach at the vehicle frame. As shown in FIGS. 19-21, the reinforcement beam 280 has two members or beams 224a, 224b that are separately roll formed from a metal sheet, such as sheet steel material having a thickness of 0.8 mm to 1.4 mm and a tensile strength of about 800 to 2000 MPa. The separate beams 224a, 224b are then attached together in the stacked tubular arrangement to provide a multi-tubular reinforcement beam. As shown in FIG. 20, the beams 224a, 224b are attached together with an adhesive layer 282 that securely bonds the beams together. The lower wall section of the upper reinforcement member 224a is adhered along and against the upper wall section of the lower reinforcement member 224b, such that the adhered wall sections provide a center wall of the bumper reinforcement beam 280 with a doubled wall thickness.


As shown in FIG. 20, the overall bumper reinforcement beam 280 is about 80 mm high and 40 mm deep, where each of the individual beams 224a, 224b have a channel rib 284a, 284b formed in a front face of the respective beam. Each illustrated channel rib is about 8-10 mm deep and 8-10 mm wide, and includes a rounded bottom having a semicircular shape. Nonetheless, it is contemplated that a depth and size of the channel ribs can be made shallow, deeper, wider, narrower, flat-bottomed, or otherwise modified to satisfy specific functional requirements of a beam.


As further shown in FIG. 21, an additional embodiment of the bumper reinforcement beam 380 has a stacked tubular arrangement with the two members or beams 324a, 324b welded together. Similar to the vehicle reinforcement beam 280 shown in FIG. 20, the vehicle reinforcement beam 380 is configured to span laterally across a vehicle frame, where opposing end portions of the reinforcement beam are configured to attach at the vehicle frame. The two members or beams 324a, 324b that are separately roll formed from a metal sheet, such as sheet steel material having a thickness of 0.8 mm to 1.4 mm and a tensile strength of about 800 to 2000 MPa. The beams 324a, 324b are attached together with weld seams 384 that securely attaches the beams together. The lower wall section of the upper reinforcement member 324a is welded against the upper wall section of the lower reinforcement member 324b, such that the fixed wall sections provide a center wall of the bumper reinforcement beam 380 with a doubled wall thickness. The welding of the weld seams 384 may be done simultaneously via laser welding. Alternatively, the welding can occur in two separate steps and by alternative welding methods.


As similarly shown in FIG. 21, the overall bumper reinforcement beam 380 is about 80 mm high and 40 mm deep, where each of the individual beams 324a, 324b have a channel rib 384a, 384b formed in a front face of the respective beam. Each illustrated channel rib is about 8-10 mm deep and 8-10 mm wide, and includes a rounded bottom having a semicircular shape. Nonetheless, it is contemplated that a depth and size of the channel ribs can be made shallow, deeper, wider, narrower, flat-bottomed, or otherwise modified to satisfy specific functional requirements of a beam.


It is to be understood that the specific devices and processes illustrated in the attached drawings, and described in this specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific values and other precise physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Changes and modifications in the specifically described embodiments may be carried out without departing from the principles of the present disclosure, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law. The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.

Claims
  • 1. A battery tray for supporting batteries at a lower portion of a vehicle frame, said battery tray comprising: a floor plate;a first tubular member comprising a hollow beam having a lower wall section attached at an upper surface of the floor plate and extending along a peripheral section of the floor plate, the first tubular member comprising a metal sheet with edge portions welded together to form a weld seam along a length of the hollow beam;a second tubular member comprising a hollow beam having a lower wall section fixedly attached at an upper wall section of the first tubular beam with a weld in a stacked tubular arrangement separate from the vehicle frame, the second tubular member comprising a metal sheet with edge portions welded together to form a weld seam along a length of the hollow beam; andwherein the second tubular member extends along the peripheral section to form a perimeter wall with the first tubular member at least partially around a battery containment area that is disposed above the upper surface of the floor plate.
  • 2. The battery tray of claim 1, wherein the hollow beams of the first and second tubular members each have a rectangular cross-sectional shape.
  • 3. The battery tray of claim 1, wherein the first and second tubular members each have aligned inner and outer wall sections that are generally perpendicular relative to the floor plate.
  • 4. The battery tray of claim 3, wherein the first and second tubular members each include a corner section between linear sections of the perimeter wall that extend along corresponding linear sections of the peripheral section of the floor plate.
  • 5. The battery tray of claim 4, wherein the outer wall sections of the first and second tubular members comprise a seamless surface around the corner sections.
  • 6. The battery tray of claim 5, wherein the corner sections have a welded seam along at least the inner wall sections of the first and second tubular members to form a closed notch seam.
  • 7. The battery tray of claim 1, wherein the lower wall section of the hollow beam comprises a planar surface that is welded at the upper surface of the floor plate.
  • 8. The battery tray of claim 3, wherein a plurality of cross members attach at the inner wall sections of the tubular member at opposing lateral sides of the perimeter wall and extend across the battery containment area.
  • 9. A battery tray for supporting batteries at a lower portion of a vehicle frame, said battery tray comprising: a floor plate that has at least four perimeter edges;a perimeter wall attached at an upper surface of the floor plate and comprising (i) a first hollow metal beam extending along at least three of the perimeter edges of the floor plate and (ii) a second hollow metal beam fixedly attached at an upper wall of the first hollow metal beam and extending along the at least three of the perimeter edges of the floor plate;wherein an outer wall section of each of the first and second hollow metal beams comprises a seamless surface that extends around a corner section of the perimeter wall; andwherein an inner wall section of each of the first and second hollow metal beams comprise a welded seam at the corner section of the perimeter wall.
  • 10. The battery tray of claim 9, wherein the first and second hollow metal beams are welded together.
  • 11. The battery tray of claim 9, wherein the first and second hollow metal beams each comprise a rectangular cross-sectional shape.
  • 12. The battery tray of claim 11, wherein the inner and outer wall sections are generally perpendicular relative to the floor plate.
  • 13. The battery tray of claim 11, wherein the welded seam at the corner section extends along an upper wall section and a lower wall section of the first and second hollow metal beams.
  • 14. The battery tray of claim 9, wherein at least two corner sections of the perimeter wall comprise a closed notch seam extending along an upper wall section, the inner wall section, and a lower wall section of each of the first and second hollow metal beams.
  • 15. The battery tray of claim 9, wherein a lower wall section of the first hollow metal beam comprises a planar surface that is welded to the upper surface of the floor plate.
  • 16. The battery tray of claim 9, wherein a plurality of cross members attach at the inner wall section of each of the first and second hollow metal beams at opposing lateral side sections of the perimeter wall and extend across a battery containment area.
  • 17. The battery tray of claim 9, wherein the perimeter wall includes an additional beam that extends between ends of the first and second hollow metal beams to provide a continuous boundary around a battery containment area.
  • 18. A method for forming a vehicle battery tray, said method comprising: providing a floor plate;attaching a perimeter wall around the floor plate to substantially surround a containment area for storing vehicle battery cells;wherein the perimeter wall includes a pair of hollow metal beams welded together in a stacked tubular arrangement that continuously extends along at least three sides of the perimeter wall that are substantially perpendicular to each other; andwherein the pair of hollow metal beams each comprise a metal sheet with edge portions welded together to form a weld seam along a length of the respective hollow metal beam.
  • 19. The method of claim 18, further comprising: laser cutting a notch along an upper wall section, a lower wall section, and an inner wall section of the pair of hollow metal beams; andbending the pair of hollow metal beam to close the notch to form a corner section of the perimeter wall.
  • 20. The method of claim 19, wherein opposing ends of the pair of hollow metal beams are attached together to provide a continuous boundary around the containment area of the battery tray.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit and priority under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 62/558,100, filed Sep. 13, 2017, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (515)
Number Name Date Kind
3708028 Hafer Jan 1973 A
3930552 Kunkle et al. Jan 1976 A
3983952 McKee Oct 1976 A
4174014 Bjorksten Nov 1979 A
4252206 Burkholder et al. Feb 1981 A
4317497 Alt et al. Mar 1982 A
4339015 Fowkes Jul 1982 A
4506748 Thomas Mar 1985 A
5015545 Brooks May 1991 A
5198638 Massacesi Mar 1993 A
5378555 Waters et al. Jan 1995 A
5390754 Masuyama et al. Feb 1995 A
5392873 Masuyama et al. Feb 1995 A
5476151 Tsuchida et al. Dec 1995 A
5501289 Nishikawa Mar 1996 A
5513721 Ogawa et al. May 1996 A
5523666 Hoelzl Jun 1996 A
5534364 Watanabe et al. Jul 1996 A
5549443 Hammerslag Aug 1996 A
5555950 Harada et al. Sep 1996 A
5558949 Iwatsuki et al. Sep 1996 A
5561359 Matsuura et al. Oct 1996 A
5567542 Bae Oct 1996 A
5585204 Oshida Dec 1996 A
5585205 Kohchi Dec 1996 A
5612606 Guimarin et al. Mar 1997 A
5620057 Klemen et al. Apr 1997 A
5709280 Beckley et al. Jan 1998 A
5736272 Veenstra Apr 1998 A
5760569 Chase, Jr. Jun 1998 A
5833023 Shimizu Nov 1998 A
5853058 Endo et al. Dec 1998 A
5866276 Ogami et al. Feb 1999 A
5934053 Fillman et al. Aug 1999 A
6040080 Minami et al. Mar 2000 A
6079984 Torres et al. Jun 2000 A
6085854 Nishikawa Jul 2000 A
6094927 Anazawa et al. Aug 2000 A
6109380 Veenstra Aug 2000 A
6130003 Etoh et al. Oct 2000 A
6158538 Botzelmann et al. Dec 2000 A
6188574 Anazawa Feb 2001 B1
6189635 Schuler et al. Feb 2001 B1
6220380 Mita et al. Apr 2001 B1
6227322 Nishikawa May 2001 B1
6260645 Pawlowski et al. Jul 2001 B1
6402229 Suganuma Jun 2002 B1
6406812 Dreulle et al. Jun 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6541151 Minamiura et al. Apr 2003 B2
6541154 Oogami et al. Apr 2003 B2
6565836 Ovshinsky et al. May 2003 B2
6598691 Mita et al. Jul 2003 B2
6648090 Iwase Nov 2003 B2
6668957 King Dec 2003 B2
6736229 Amori et al. May 2004 B1
6811197 Grabowski et al. Nov 2004 B1
7004274 Shibasawa et al. Feb 2006 B2
7017361 Kwon Mar 2006 B2
7070015 Mathews et al. Jul 2006 B2
7128999 Martin et al. Oct 2006 B1
7201384 Chaney Apr 2007 B2
7207405 Reid et al. Apr 2007 B2
7221123 Chen May 2007 B2
7249644 Honda et al. Jul 2007 B2
7267190 Hirano Sep 2007 B2
7323272 Ambrosio et al. Jan 2008 B2
7401669 Fujii et al. Jul 2008 B2
7405022 Kang et al. Jul 2008 B2
7412309 Honda Aug 2008 B2
7416039 Anderson et al. Aug 2008 B1
7424926 Tsuchiya Sep 2008 B2
7427156 Ambrosio et al. Sep 2008 B2
7501793 Kadouchi et al. Mar 2009 B2
7507499 Zhou et al. Mar 2009 B2
7520355 Chaney Apr 2009 B2
7610978 Takasaki et al. Nov 2009 B2
7654351 Koike et al. Feb 2010 B2
7654352 Takasaki et al. Feb 2010 B2
7661370 Pike et al. Feb 2010 B2
7686111 Koenekamp et al. Mar 2010 B2
7687192 Yoon et al. Mar 2010 B2
7713655 Ha et al. May 2010 B2
7749644 Nishino Jul 2010 B2
7807288 Yoon et al. Oct 2010 B2
7854282 Lee et al. Dec 2010 B2
7858229 Shin et al. Dec 2010 B2
7875378 Yang et al. Jan 2011 B2
7879480 Yoon et al. Feb 2011 B2
7879485 Yoon et al. Feb 2011 B2
7926602 Takasaki Apr 2011 B2
7931105 Sato et al. Apr 2011 B2
7948207 Scheucher May 2011 B2
7967093 Nagasaka Jun 2011 B2
7984779 Boegelein et al. Jul 2011 B2
7990105 Matsumoto et al. Aug 2011 B2
7993155 Heichal et al. Aug 2011 B2
7997368 Takasaki et al. Aug 2011 B2
8006626 Kumar et al. Aug 2011 B2
8006793 Heichal et al. Aug 2011 B2
8012620 Takasaki et al. Sep 2011 B2
8034476 Ha et al. Oct 2011 B2
8037954 Taguchi Oct 2011 B2
8079435 Takasaki et al. Dec 2011 B2
8091669 Taneda et al. Jan 2012 B2
8110300 Niedzwiecki et al. Feb 2012 B2
8146694 Hamidi Apr 2012 B2
8163420 Okada et al. Apr 2012 B2
8167070 Takamura et al. May 2012 B2
8186468 Parrett et al. May 2012 B2
8187736 Park et al. May 2012 B2
8205702 Hoermandinger et al. Jun 2012 B2
8206846 Yang et al. Jun 2012 B2
8210301 Hashimoto et al. Jul 2012 B2
8211564 Choi et al. Jul 2012 B2
8256552 Okada Sep 2012 B2
8268469 Hermann et al. Sep 2012 B2
8268472 Ronning et al. Sep 2012 B2
8276697 Takasaki Oct 2012 B2
8286743 Rawlinson Oct 2012 B2
8298698 Chung et al. Oct 2012 B2
8304104 Lee et al. Nov 2012 B2
8307930 Sailor et al. Nov 2012 B2
8323819 Lee et al. Dec 2012 B2
8327962 Bergmeier et al. Dec 2012 B2
8343647 Ahn et al. Jan 2013 B2
8353374 Sugawara et al. Jan 2013 B2
8371401 Illustrato Feb 2013 B1
8397853 Stefani et al. Mar 2013 B2
8409743 Okada et al. Apr 2013 B2
8418795 Sasage et al. Apr 2013 B2
8420245 Im et al. Apr 2013 B2
8439144 Murase May 2013 B2
8453773 Hill et al. Jun 2013 B2
8453778 Bannier et al. Jun 2013 B2
8455122 Shin et al. Jun 2013 B2
8465866 Kim Jun 2013 B2
8481343 Hsin et al. Jul 2013 B2
8486557 Lee et al. Jul 2013 B2
8492016 Shin et al. Jul 2013 B2
8501344 Yang et al. Aug 2013 B2
8511412 Kawaguchi et al. Aug 2013 B2
8540282 Yoda et al. Sep 2013 B2
8551640 Hedrich et al. Oct 2013 B2
8557425 Ronning et al. Oct 2013 B2
8561743 Iwasa et al. Oct 2013 B2
8563155 Lee et al. Oct 2013 B2
8567543 Kubota et al. Oct 2013 B2
8584780 Yu et al. Nov 2013 B2
8587907 Gaben Nov 2013 B2
8592069 Anderson et al. Nov 2013 B1
8602139 Takamura et al. Dec 2013 B2
8609271 Yoon et al. Dec 2013 B2
8658303 Chung et al. Feb 2014 B2
8672077 Sand et al. Mar 2014 B2
8672354 Kim et al. Mar 2014 B2
8689918 Yu et al. Apr 2014 B2
8689919 Maeda et al. Apr 2014 B2
8691421 Lee et al. Apr 2014 B2
8708080 Lee et al. Apr 2014 B2
8708402 Saeki Apr 2014 B2
8709628 Carignan et al. Apr 2014 B2
8722224 Lee et al. May 2014 B2
8728648 Choo et al. May 2014 B2
8733486 Nishiura et al. May 2014 B2
8733488 Umetani May 2014 B2
8739908 Taniguchi et al. Jun 2014 B2
8739909 Hashimoto et al. Jun 2014 B2
8741466 Youngs et al. Jun 2014 B2
8746391 Atsuchi et al. Jun 2014 B2
8757304 Amano et al. Jun 2014 B2
8789634 Nitawaki Jul 2014 B2
8794365 Matsuzawa et al. Aug 2014 B2
8802259 Lee et al. Aug 2014 B2
8803477 Kittell Aug 2014 B2
8808893 Choo et al. Aug 2014 B2
8818588 Ambrosio et al. Aug 2014 B2
8820444 Nguyen Sep 2014 B2
8820461 Shinde et al. Sep 2014 B2
8827023 Matsuda et al. Sep 2014 B2
8833495 Iwata et al. Sep 2014 B2
8833499 Rawlinson Sep 2014 B2
8835033 Choi et al. Sep 2014 B2
8841013 Choo et al. Sep 2014 B2
8846233 Lee et al. Sep 2014 B2
8846234 Lee et al. Sep 2014 B2
8852794 Laitinen Oct 2014 B2
8862296 Kurakawa et al. Oct 2014 B2
8865332 Yang et al. Oct 2014 B2
8875828 Rawlinson et al. Nov 2014 B2
8895173 Gandhi et al. Nov 2014 B2
8900736 Choi et al. Dec 2014 B2
8905170 Kyoden et al. Dec 2014 B2
8905171 Lee et al. Dec 2014 B2
8911899 Lim et al. Dec 2014 B2
8936125 Nakamori Jan 2015 B2
8939245 Jaffrezic Jan 2015 B2
8939246 Yamaguchi et al. Jan 2015 B2
8951655 Chung et al. Feb 2015 B2
8960346 Ogawa Feb 2015 B2
8970061 Nakagawa et al. Mar 2015 B2
8973697 Matsuda Mar 2015 B2
8975774 Kreutzer et al. Mar 2015 B2
8978800 Soma' et al. Mar 2015 B2
8980458 Honjo et al. Mar 2015 B2
8986864 Wiegmann et al. Mar 2015 B2
9004535 Wu Apr 2015 B2
9012051 Lee et al. Apr 2015 B2
9017846 Kawatani et al. Apr 2015 B2
9023502 Favaretto May 2015 B2
9023503 Seong et al. May 2015 B2
9024572 Nishihara et al. May 2015 B2
9033084 Joye May 2015 B2
9033085 Rawlinson May 2015 B1
9034502 Kano et al. May 2015 B2
9052168 Rawlinson Jun 2015 B1
9054402 Rawlinson Jun 2015 B1
9061714 Albery et al. Jun 2015 B1
9065103 Straubel et al. Jun 2015 B2
9070926 Seong et al. Jun 2015 B2
9073426 Tachikawa et al. Jul 2015 B2
9077058 Yang et al. Jul 2015 B2
9090218 Karashima Jul 2015 B2
9093701 Kawatani et al. Jul 2015 B2
9101060 Yamanaka et al. Aug 2015 B2
9102362 Baccouche et al. Aug 2015 B2
9126637 Eberle et al. Sep 2015 B2
9136514 Kawatani et al. Sep 2015 B2
9156340 van den Akker Oct 2015 B2
9159968 Park et al. Oct 2015 B2
9159970 Watanabe et al. Oct 2015 B2
9160042 Fujii et al. Oct 2015 B2
9160214 Matsuda Oct 2015 B2
9172071 Yoshioka et al. Oct 2015 B2
9174520 Katayama et al. Nov 2015 B2
9184477 Jeong et al. Nov 2015 B2
9192450 Yamashita et al. Nov 2015 B2
9193316 McLaughlin et al. Nov 2015 B2
9196882 Seong et al. Nov 2015 B2
9203064 Lee et al. Dec 2015 B2
9203124 Chung et al. Dec 2015 B2
9205749 Sakamoto Dec 2015 B2
9205757 Matsuda Dec 2015 B2
9216638 Katayama et al. Dec 2015 B2
9227582 Katayama et al. Jan 2016 B2
9231285 Schmidt et al. Jan 2016 B2
9236587 Lee et al. Jan 2016 B2
9236589 Lee Jan 2016 B2
9238495 Matsuda Jan 2016 B2
9246148 Maguire Jan 2016 B2
9252409 Lee et al. Feb 2016 B2
9254871 Hotta et al. Feb 2016 B2
9263249 Tomohiro et al. Feb 2016 B2
9269934 Yang et al. Feb 2016 B2
9277674 Watanabe Mar 2016 B2
9281505 Hihara et al. Mar 2016 B2
9281546 Chung et al. Mar 2016 B2
9283837 Rawlinson Mar 2016 B1
9306201 Lu et al. Apr 2016 B2
9306247 Rawlinson Apr 2016 B2
9308829 Matsuda Apr 2016 B2
9308966 Kosuge et al. Apr 2016 B2
9312579 Jeong et al. Apr 2016 B2
9321357 Caldeira et al. Apr 2016 B2
9321433 Yin et al. Apr 2016 B2
9327586 Miyashiro May 2016 B2
9331321 Berger et al. May 2016 B2
9331366 Fuerstner et al. May 2016 B2
9333868 Uchida et al. May 2016 B2
9337455 Yang et al. May 2016 B2
9337457 Yajima et al. May 2016 B2
9337458 Kim May 2016 B2
9337516 Klausner et al. May 2016 B2
9346346 Murray May 2016 B2
9350003 Wen et al. May 2016 B2
9358869 Le Jaouen et al. Jun 2016 B2
9373828 Kawatani et al. Jun 2016 B2
9381798 Meyer-Ebeling Jul 2016 B2
9412984 Fritz et al. Aug 2016 B2
9413043 Kim et al. Aug 2016 B2
9425628 Pham et al. Aug 2016 B2
9434243 Nakao Sep 2016 B2
9434270 Penilla et al. Sep 2016 B1
9434333 Sloan et al. Sep 2016 B2
9444082 Tsujimura et al. Sep 2016 B2
9446643 Vollmer Sep 2016 B1
9450228 Sakai et al. Sep 2016 B2
9452686 Yang et al. Sep 2016 B2
9457666 Caldeira et al. Oct 2016 B2
9461284 Power et al. Oct 2016 B2
9461454 Auguet et al. Oct 2016 B2
9463695 Matsuda et al. Oct 2016 B2
9478778 Im et al. Oct 2016 B2
9481249 Yamazaki Nov 2016 B2
9484564 Stuetz et al. Nov 2016 B2
9484592 Roh et al. Nov 2016 B2
9487237 Vollmer Nov 2016 B1
9502700 Haussman Nov 2016 B2
9520624 Lee et al. Dec 2016 B2
9531041 Hwang Dec 2016 B2
9533546 Cheng Jan 2017 B2
9533600 Schwab et al. Jan 2017 B1
9537186 Chung et al. Jan 2017 B2
9537187 Chung et al. Jan 2017 B2
9540055 Berger et al. Jan 2017 B2
9545962 Pang Jan 2017 B2
9545968 Miyashiro et al. Jan 2017 B2
9561735 Nozaki Feb 2017 B2
9564663 Kim et al. Feb 2017 B2
9564664 Tanigaki et al. Feb 2017 B2
9579963 Landgraf Feb 2017 B2
9579983 Inoue Feb 2017 B2
9579986 Bachir Feb 2017 B2
9590216 Maguire et al. Mar 2017 B2
9597973 Penilla et al. Mar 2017 B2
9597976 Dickinson et al. Mar 2017 B2
9608244 Shin et al. Mar 2017 B2
9614206 Choi et al. Apr 2017 B2
9614260 Kim et al. Apr 2017 B2
9616766 Fujii Apr 2017 B2
9620826 Yang et al. Apr 2017 B2
9623742 Ikeda et al. Apr 2017 B2
9623911 Kano et al. Apr 2017 B2
9627664 Choo et al. Apr 2017 B2
9627666 Baldwin Apr 2017 B2
9630483 Yamada et al. Apr 2017 B2
9636984 Baccouche et al. May 2017 B1
9643660 Vollmer May 2017 B2
9647251 Prinz et al. May 2017 B2
9653712 Seong et al. May 2017 B2
9660236 Kondo et al. May 2017 B2
9660288 Gendlin et al. May 2017 B2
9660304 Choi et al. May 2017 B2
9673433 Pullalarevu et al. Jun 2017 B1
9673495 Lee et al. Jun 2017 B2
9692095 Harris Jun 2017 B2
9694772 Ikeda et al. Jul 2017 B2
9718340 Berger et al. Aug 2017 B2
9789908 Tsukada et al. Oct 2017 B2
9796424 Sakaguchi et al. Oct 2017 B2
9802650 Nishida et al. Oct 2017 B2
10059382 Nusier et al. Aug 2018 B2
20010046624 Goto et al. Nov 2001 A1
20010052433 Harris et al. Dec 2001 A1
20020066608 Guenard et al. Jun 2002 A1
20030089540 Koike et al. May 2003 A1
20030188417 McGlinchy et al. Oct 2003 A1
20030209375 Suzuki et al. Nov 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040142232 Risca et al. Jul 2004 A1
20040261377 Sung Dec 2004 A1
20050095500 Corless et al. May 2005 A1
20060001399 Salasoo et al. Jan 2006 A1
20060024566 Plummer Feb 2006 A1
20080179040 Rosenbaum Jul 2008 A1
20080199771 Chiu Aug 2008 A1
20080238152 Konishi et al. Oct 2008 A1
20080280192 Drozdz et al. Nov 2008 A1
20080311468 Hermann et al. Dec 2008 A1
20090014221 Kim et al. Jan 2009 A1
20090058355 Meyer Mar 2009 A1
20100025131 Gloceri et al. Feb 2010 A1
20100112419 Jang et al. May 2010 A1
20100159317 Taghikhani et al. Jun 2010 A1
20100173191 Meintschel et al. Jul 2010 A1
20100307848 Hashimoto et al. Dec 2010 A1
20110036657 Bland et al. Feb 2011 A1
20110070474 Lee et al. Mar 2011 A1
20110104530 Muller et al. May 2011 A1
20110123309 Berdelle-Hilge et al. May 2011 A1
20110132580 Herrmann et al. Jun 2011 A1
20110143179 Nakamori Jun 2011 A1
20110168461 Meyer-Ebeling Jul 2011 A1
20110240385 Farmer Oct 2011 A1
20120091955 Gao Apr 2012 A1
20120103714 Choi et al. May 2012 A1
20120118653 Ogihara et al. May 2012 A1
20120125702 Bergfjord May 2012 A1
20120129031 Kim May 2012 A1
20120160583 Rawlinson Jun 2012 A1
20120223113 Gaisne et al. Sep 2012 A1
20120298433 Ohkura Nov 2012 A1
20120301765 Loo et al. Nov 2012 A1
20120312610 Kim et al. Dec 2012 A1
20130020139 Kim et al. Jan 2013 A1
20130122337 Katayama et al. May 2013 A1
20130122338 Katayama et al. May 2013 A1
20130143081 Watanabe et al. Jun 2013 A1
20130164580 Au Jun 2013 A1
20130192908 Schlagheck Aug 2013 A1
20130230759 Jeong et al. Sep 2013 A1
20130270863 Young et al. Oct 2013 A1
20130273829 Obasih et al. Oct 2013 A1
20130284531 Oonuma et al. Oct 2013 A1
20130337297 Lee et al. Dec 2013 A1
20140017546 Yanagi Jan 2014 A1
20140045026 Fritz et al. Feb 2014 A1
20140072845 Oh et al. Mar 2014 A1
20140072856 Chung et al. Mar 2014 A1
20140087228 Fabian et al. Mar 2014 A1
20140120406 Kim May 2014 A1
20140141298 Michelitsch May 2014 A1
20140178721 Chung et al. Jun 2014 A1
20140193683 Mardall et al. Jul 2014 A1
20140202671 Yan Jul 2014 A1
20140212723 Lee et al. Jul 2014 A1
20140242429 Lee et al. Aug 2014 A1
20140246259 Yamamura et al. Sep 2014 A1
20140262573 Ito et al. Sep 2014 A1
20140272501 O'Brien et al. Sep 2014 A1
20140284125 Katayama et al. Sep 2014 A1
20140302360 Klammler et al. Oct 2014 A1
20140322583 Choi et al. Oct 2014 A1
20140338999 Fujii et al. Nov 2014 A1
20150004458 Lee Jan 2015 A1
20150010795 Tanigaki et al. Jan 2015 A1
20150053493 Kees et al. Feb 2015 A1
20150056481 Cohen et al. Feb 2015 A1
20150060164 Wang et al. Mar 2015 A1
20150061381 Biskup Mar 2015 A1
20150061413 Janarthanam et al. Mar 2015 A1
20150064535 Seong et al. Mar 2015 A1
20150104686 Brommer et al. Apr 2015 A1
20150136506 Quinn et al. May 2015 A1
20150188207 Son et al. Jul 2015 A1
20150204583 Stephan et al. Jul 2015 A1
20150207115 Wondraczek Jul 2015 A1
20150236326 Kim et al. Aug 2015 A1
20150243956 Loo et al. Aug 2015 A1
20150255764 Loo et al. Sep 2015 A1
20150259011 Deckard Sep 2015 A1
20150280188 Nozaki et al. Oct 2015 A1
20150291046 Kawabata Oct 2015 A1
20150298661 Zhang Oct 2015 A1
20150314830 Inoue Nov 2015 A1
20150329174 Inoue Nov 2015 A1
20150329175 Inoue Nov 2015 A1
20150329176 Inoue Nov 2015 A1
20150344081 Kor et al. Dec 2015 A1
20160023689 Berger et al. Jan 2016 A1
20160028056 Lee et al. Jan 2016 A1
20160068195 Hentrich et al. Mar 2016 A1
20160072108 Keller et al. Mar 2016 A1
20160087319 Roh et al. Mar 2016 A1
20160093856 DeKeuster et al. Mar 2016 A1
20160133899 Qiao et al. May 2016 A1
20160137046 Song May 2016 A1
20160141738 Kwag May 2016 A1
20160149177 Sugeno et al. May 2016 A1
20160156005 Elliot et al. Jun 2016 A1
20160159221 Chen et al. Jun 2016 A1
20160164053 Lee et al. Jun 2016 A1
20160167544 Barbat et al. Jun 2016 A1
20160176312 Duhaime et al. Jun 2016 A1
20160197332 Lee et al. Jul 2016 A1
20160197386 Moon et al. Jul 2016 A1
20160197387 Lee et al. Jul 2016 A1
20160204398 Moon et al. Jul 2016 A1
20160207418 Bergstrom et al. Jul 2016 A1
20160218335 Baek Jul 2016 A1
20160222631 Kohno et al. Aug 2016 A1
20160226040 Mongeau et al. Aug 2016 A1
20160226108 Kim et al. Aug 2016 A1
20160229309 Mitsutani Aug 2016 A1
20160233468 Nusier et al. Aug 2016 A1
20160236713 Sakaguchi et al. Aug 2016 A1
20160248060 Brambrink et al. Aug 2016 A1
20160248061 Brambrink et al. Aug 2016 A1
20160257219 Miller et al. Sep 2016 A1
20160280306 Miyashiro et al. Sep 2016 A1
20160308180 Kohda Oct 2016 A1
20160318579 Miyashiro Nov 2016 A1
20160339855 Chinavare et al. Nov 2016 A1
20160347161 Kusumi et al. Dec 2016 A1
20160361984 Manganaro Dec 2016 A1
20160368358 Nagaosa Dec 2016 A1
20160375750 Hokazono et al. Dec 2016 A1
20170001507 Ashraf et al. Jan 2017 A1
20170005303 Harris et al. Jan 2017 A1
20170005371 Chidester et al. Jan 2017 A1
20170005375 Walker Jan 2017 A1
20170029034 Faruque et al. Feb 2017 A1
20170047563 Lee et al. Feb 2017 A1
20170050533 Wei et al. Feb 2017 A1
20170054120 Templeman et al. Feb 2017 A1
20170062782 Cho et al. Mar 2017 A1
20170084890 Subramanian et al. Mar 2017 A1
20170088013 Shimizu et al. Mar 2017 A1
20170088178 Tsukada et al. Mar 2017 A1
20170106907 Gong et al. Apr 2017 A1
20170106908 Song Apr 2017 A1
20170144566 Aschwer et al. May 2017 A1
20170190243 Duan et al. Jul 2017 A1
20170194681 Kim et al. Jul 2017 A1
20170200925 Seo et al. Jul 2017 A1
20170214018 Sun et al. Jul 2017 A1
20170222199 Idikurt et al. Aug 2017 A1
20170232859 Li Aug 2017 A1
20170288185 Maguire Oct 2017 A1
20170331086 Frehn et al. Nov 2017 A1
20180050607 Matecki et al. Feb 2018 A1
20180062224 Drabon et al. Mar 2018 A1
20180154754 Rowley et al. Jun 2018 A1
20180186227 Stephens et al. Jul 2018 A1
20180229593 Hitz et al. Aug 2018 A1
20180233789 Iqbal et al. Aug 2018 A1
20180236863 Kawabe et al. Aug 2018 A1
20180237075 Kawabe et al. Aug 2018 A1
20180323409 Maier Nov 2018 A1
20180334022 Rawlinson et al. Nov 2018 A1
20180337374 Matecki et al. Nov 2018 A1
20180337377 Stephens et al. Nov 2018 A1
20180337378 Stephens et al. Nov 2018 A1
20190081298 Matecki et al. Mar 2019 A1
20190100090 Matecki et al. Apr 2019 A1
Foreign Referenced Citations (311)
Number Date Country
511428 Nov 2012 AT
511670 Jan 2013 AT
2008200543 Aug 2009 AU
100429805 Oct 2008 CN
100429806 Oct 2008 CN
102452293 May 2012 CN
102802983 Nov 2012 CN
103568820 Feb 2014 CN
104010884 Aug 2014 CN
106029407 Oct 2016 CN
205645923 Oct 2016 CN
106207029 Dec 2016 CN
106410077 Feb 2017 CN
4105246 Aug 1992 DE
4129351 May 1993 DE
4427322 Feb 1996 DE
19534427 Mar 1996 DE
4446257 Jun 1996 DE
202005018897 Feb 2006 DE
102004062932 Aug 2006 DE
102007012893 Mar 2008 DE
102007017019 Mar 2008 DE
102007030542 Mar 2008 DE
102006049269 Jun 2008 DE
202008006698 Jul 2008 DE
102007011026 Sep 2008 DE
102007021293 Nov 2008 DE
102007044526 Mar 2009 DE
102007050103 Apr 2009 DE
102007063187 Apr 2009 DE
102008051786 Apr 2009 DE
102007063194 Jun 2009 DE
102008034880 Jun 2009 DE
102007061562 Jul 2009 DE
102008010813 Aug 2009 DE
102008024007 Dec 2009 DE
102008034695 Jan 2010 DE
102008034700 Jan 2010 DE
102008034856 Jan 2010 DE
102008034860 Jan 2010 DE
102008034863 Jan 2010 DE
102008034873 Jan 2010 DE
102008034889 Jan 2010 DE
102008052284 Apr 2010 DE
102008059953 Jun 2010 DE
102008059964 Jun 2010 DE
102008059966 Jun 2010 DE
102008059967 Jun 2010 DE
102008059969 Jun 2010 DE
102008059971 Jun 2010 DE
102008054968 Jul 2010 DE
102010006514 Sep 2010 DE
102009019384 Nov 2010 DE
102009035488 Feb 2011 DE
102009040598 Mar 2011 DE
102010014484 Mar 2011 DE
102009043635 Apr 2011 DE
102010006514 Aug 2011 DE
102010007414 Aug 2011 DE
102010009063 Aug 2011 DE
102010012992 Sep 2011 DE
102010012996 Sep 2011 DE
102010013025 Sep 2011 DE
102010028728 Nov 2011 DE
102011011698 Aug 2012 DE
102011013182 Sep 2012 DE
102011016526 Oct 2012 DE
102011017459 Oct 2012 DE
102011075820 Nov 2012 DE
102011103990 Dec 2012 DE
102011080053 Jan 2013 DE
102011107007 Jan 2013 DE
102011109309 Feb 2013 DE
102011111537 Feb 2013 DE
102011112598 Mar 2013 DE
102011086049 May 2013 DE
102011109011 May 2013 DE
102011120010 Jun 2013 DE
102012000622 Jul 2013 DE
102012001596 Aug 2013 DE
102012102657 Oct 2013 DE
102012103149 Oct 2013 DE
102013205215 Oct 2013 DE
102013205323 Oct 2013 DE
202013104224 Oct 2013 DE
102012012897 Jan 2014 DE
102012107548 Feb 2014 DE
102012219301 Feb 2014 DE
202012104339 Feb 2014 DE
102012018057 Mar 2014 DE
102013200562 Jul 2014 DE
102013200726 Jul 2014 DE
102013200786 Jul 2014 DE
102013203102 Aug 2014 DE
102013102501 Sep 2014 DE
102013208996 Nov 2014 DE
102013215082 Feb 2015 DE
102013218674 Mar 2015 DE
102014011609 Mar 2015 DE
102014217188 Mar 2015 DE
102013016797 Apr 2015 DE
102013223357 May 2015 DE
102014100334 Jul 2015 DE
202015005208 Aug 2015 DE
102014203715 Sep 2015 DE
102014106949 Nov 2015 DE
202014008335 Jan 2016 DE
202014008336 Jan 2016 DE
102014011727 Feb 2016 DE
102014215164 Feb 2016 DE
102014112596 Mar 2016 DE
102014219644 Mar 2016 DE
102014115051 Apr 2016 DE
102014221167 Apr 2016 DE
102014019696 Jun 2016 DE
102014224545 Jun 2016 DE
102015015504 Jun 2016 DE
102015014337 Jul 2016 DE
102015200636 Jul 2016 DE
102015204216 Sep 2016 DE
202016005333 Sep 2016 DE
102015219558 Apr 2017 DE
102015222171 May 2017 DE
0705724 Apr 1996 EP
0779668 Jun 1997 EP
0780915 Jun 1997 EP
1939028 Jul 2008 EP
2298690 Mar 2011 EP
2374646 Oct 2011 EP
2388851 Nov 2011 EP
2456003 May 2012 EP
2467276 Jun 2012 EP
2554420 Feb 2013 EP
2562065 Feb 2013 EP
2565958 Mar 2013 EP
2581249 Apr 2013 EP
2620997 Jul 2013 EP
2626231 Aug 2013 EP
2626232 Aug 2013 EP
2626233 Aug 2013 EP
2741343 Jun 2014 EP
2758262 Jul 2014 EP
2833436 Feb 2015 EP
2913863 Sep 2015 EP
2944493 Nov 2015 EP
2990247 Mar 2016 EP
3379598 Sep 2018 EP
3382774 Oct 2018 EP
2661281 Oct 1991 FR
2705926 Dec 1994 FR
2774044 Jul 1998 FR
2774044 Jul 1999 FR
2782399 Feb 2000 FR
2861441 Apr 2005 FR
2948072 Jan 2011 FR
2949096 Feb 2011 FR
2959454 Nov 2011 FR
2961960 Dec 2011 FR
2962076 Jan 2012 FR
2975230 Nov 2012 FR
2976731 Dec 2012 FR
2982566 May 2013 FR
2986374 Aug 2013 FR
2986744 Aug 2013 FR
2986910 Aug 2013 FR
2986911 Aug 2013 FR
2987000 Aug 2013 FR
2987001 Aug 2013 FR
2988039 Sep 2013 FR
2990386 Nov 2013 FR
2993511 Jan 2014 FR
2994340 Feb 2014 FR
2996193 Apr 2014 FR
2998715 May 2014 FR
2999809 Jun 2014 FR
3000002 Jun 2014 FR
3002910 Sep 2014 FR
3007209 Dec 2014 FR
3014035 Jun 2015 FR
3019688 Oct 2015 FR
3022402 Dec 2015 FR
3028456 May 2016 FR
2081495 Feb 1982 GB
2353151 Feb 2001 GB
2443272 Apr 2008 GB
2483272 Mar 2012 GB
2516120 Jan 2015 GB
05193370 Mar 1993 JP
H05193366 Aug 1993 JP
H05201356 Aug 1993 JP
H08268083 Oct 1996 JP
H08276752 Oct 1996 JP
H1075504 Mar 1998 JP
H10109548 Apr 1998 JP
H10149805 Jun 1998 JP
2819927 Nov 1998 JP
H11178115 Jul 1999 JP
2967711 Oct 1999 JP
2000041303 Feb 2000 JP
3085346 Sep 2000 JP
3085346 Sep 2000 JP
3199296 Aug 2001 JP
3284850 May 2002 JP
3284878 May 2002 JP
3286634 May 2002 JP
3489186 Jan 2004 JP
2004142524 May 2004 JP
2007331669 Dec 2007 JP
2011006050 Jan 2011 JP
2011049151 Mar 2011 JP
2011152906 Aug 2011 JP
2013133044 Jul 2013 JP
20120030014 Mar 2012 KR
20140007063 Jan 2014 KR
101565980 Nov 2015 KR
101565981 Nov 2015 KR
20160001976 Jan 2016 KR
20160055712 May 2016 KR
20160087077 Jul 2016 KR
101647825 Aug 2016 KR
20160092902 Aug 2016 KR
20160104867 Sep 2016 KR
20160111231 Sep 2016 KR
20160116383 Oct 2016 KR
20170000325 Jan 2017 KR
101704496 Feb 2017 KR
20170052831 May 2017 KR
20170062845 Jun 2017 KR
20170065764 Jun 2017 KR
20170065771 Jun 2017 KR
20170065854 Jun 2017 KR
20170070080 Jun 2017 KR
1020170067240 Jun 2017 KR
507909 Jul 1998 SE
201425112 Jul 2014 TW
I467830 Jan 2015 TW
I482718 May 2015 TW
0074964 Dec 2000 WO
2006100005 Sep 2006 WO
2006100006 Sep 2006 WO
2008104356 Sep 2008 WO
2008104358 Sep 2008 WO
2008104376 Sep 2008 WO
2008131935 Nov 2008 WO
2009080151 Jul 2009 WO
2009080166 Jul 2009 WO
2009103462 Aug 2009 WO
2010004192 Jan 2010 WO
2010012337 Feb 2010 WO
2010012338 Feb 2010 WO
2010012342 Feb 2010 WO
2010040520 Apr 2010 WO
2010063365 Jun 2010 WO
2010069713 Jun 2010 WO
2010076053 Jul 2010 WO
2010076055 Jul 2010 WO
WO-2010076452 Jul 2010 WO
2011030041 Mar 2011 WO
2011083980 Jul 2011 WO
2011106851 Sep 2011 WO
2011116801 Sep 2011 WO
2011116959 Sep 2011 WO
2011121757 Oct 2011 WO
2011134815 Nov 2011 WO
2011134828 Nov 2011 WO
2012025710 Mar 2012 WO
2012063025 May 2012 WO
2012065853 May 2012 WO
2012065855 May 2012 WO
2012069349 May 2012 WO
2012084132 Jun 2012 WO
2012093233 Jul 2012 WO
2012097514 Jul 2012 WO
2012114040 Aug 2012 WO
2012116608 Sep 2012 WO
2012119424 Sep 2012 WO
2012163504 Dec 2012 WO
2013020707 Feb 2013 WO
2013027982 Feb 2013 WO
2013042628 Mar 2013 WO
2013080008 Jun 2013 WO
2013188680 Dec 2013 WO
2014114511 Jul 2014 WO
2014140412 Sep 2014 WO
2014140463 Sep 2014 WO
2014183995 Nov 2014 WO
2014191651 Dec 2014 WO
2015018658 Feb 2015 WO
2015043869 Apr 2015 WO
2015149660 Oct 2015 WO
2016029084 Feb 2016 WO
2016046144 Mar 2016 WO
2016046145 Mar 2016 WO
2016046146 Mar 2016 WO
2016046147 Mar 2016 WO
2016072822 May 2016 WO
2016086274 Jun 2016 WO
2016106658 Jul 2016 WO
2016132280 Aug 2016 WO
2016203130 Dec 2016 WO
2017025592 Feb 2017 WO
2017032571 Mar 2017 WO
2017060608 Apr 2017 WO
2017084938 May 2017 WO
2017103449 Jun 2017 WO
WO-2018033880 Feb 2018 WO
2018065554 Apr 2018 WO
2018149762 Aug 2018 WO
WO-2018213475 Nov 2018 WO
WO-2019055658 Mar 2019 WO
WO-2019-071013 Apr 2019 WO
Non-Patent Literature Citations (6)
Entry
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/050889, dated Mar. 21, 2019.
International Searching Authority (KR), International Search Report and Written Opinion for International Application No. PCT/IB2017/055002, dated Jul. 19, 2018.
International Searhcing Authority, International Search Report and Written Opinion for Application No. PCT/IB2018/050066, dated Apr. 26, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/033009, dated Sep. 11, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/032760, dated Sep. 11, 2018.
Korean Intellectual Propery Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/054423, dated Jan. 28, 2019.
Related Publications (1)
Number Date Country
20190081298 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62558100 Sep 2017 US