The present disclosure generally relates to a vehicle roof support body structure.
Roof support pillars support the roof of a vehicle and are located between the windows and doors of a vehicle. Roof support pillars are frequently identified as A, B, C, and in some instances, D-pillars depending on the vehicle style. A B-pillar is generally located immediately behind the front door of a vehicle, and extends from a floor pan and rocker panel upward to a vehicle roof. The B-pillar is an element in determining roof strength and the degree of side impact intrusion. The B-pillar may also be subjected to loads exerted on the doors in a vehicle side impact scenario.
Passenger vehicle designs are tested for roof strength and side impact strength. Conventional B-pillars are fabricated as multiple stamped sheet metal parts that are generally spot welded together. It is possible to improve the strength of conventional B-pillars by forming the sheet metal parts from high grade material, such as dual phase and boron steels. B-pillars may also be made stronger by using thicker gauge sheet metal components. However, the use of high strength alloys and thicker sheet metal may increase the weight of a vehicle and also increase the cost to manufacture the B-pillar. Even with the use of thicker alloy components, B-pillars of conventional design may not always meet stringent test requirements for roof strength and side impact performance.
Although stamped members have been used in vehicle body structures for many years, hydroformed components or members may be used in vehicles. Hydroforming is a cost-effective way of shaping malleable metals into lightweight, structurally stiff and strong pieces. Non-limiting examples of non-malleable metals includes aluminum or steel. One of the largest applications of hydroforming is the automotive industry, which makes use of complex shapes possible by hydroforming to produce stronger, lighter and more rigid unibody structures for vehicles. This technique is also popular with the high-end sports car industry, and is also frequently used to shape aluminum tubes for bicycle frames.
Hydroforming allows complex shapes to be formed, which would be difficult to manufacture with standard solid die stamping. Furthermore, hydroformed parts can often be made with a higher stiffness to weight ratio and at a lower per unit cost than traditional stamped or stamped and welded parts.
Referring now to the drawings wherein like reference numerals are used to identify identical components in the various views,
The traditional hydroformed body structure design 100 of
A vehicle body structure having improved roof support is provided according to the embodiments disclosed herein. The structure includes a roof rail having an inner surface, an outer surface, and a wall therebetween. The roof rail extends downwardly at a front end of the roof rail and extends downwardly at a rear end of the roof rail. The roof rail is integral to a hollow A-pillar at the front end. The roof rail is also integral to a support pillar also having an inner surface, an outer surface, and a wall therebetween. The support pillar includes a tubular lower section that extends upwardly from a rocker. The support pillar is integral to the rear end of the roof rail at the upper portion of the support pillar.
Features and advantages of embodiments of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals or features having a previously described function may or may not be described in connection with other drawings in which they appear.
The present disclosure provides an improved vehicle body structure 10 which can withstand greater roof loads 13 with reduced displacement of the roof structure 12.
Referring to
Accordingly, the inventors of the present disclosure have discovered a new and useful hydroformed body structure 10 wherein the roof loads 13 are primarily supported at the B-Pillar 16. The body structure 10 of the present disclosure can withstand much higher loads with reduced roof displacement while maintaining the benefits of implementing hydroformed members—high stiffness to weight ratio, lower cost per unit. The vehicle body structure 10 disclosed herein substantially and advantageously overcomes at least the potential drawbacks noted above.
Referring now to
With reference to
The support pillar 34 may be welded to at least a portion of the cross member 30 along the length of the cross member 30 proximate to a first end 32 of the cross member 30. The welding of the support pillar 34 and the cross member 30 may also be along the length of the cross member 30 where the cross member 30 is adjacent to the support pillar 34. A non-limiting example for welding the cross member 30 and the support pillar 34 may be stitch welding. It is to be understood, however, that various joining methods may be used in addition to welding in general, such as, but not limited to, mechanical fasteners (not shown) and adhesives (not shown).
Referring now to
Referring to
The hollow first support pillar 34 includes an inner surface 48, an outer surface 50 and a wall 52 therebetween. The first support pillar 34 includes a tubular lower section 53 that extends upwardly from the first rocker 56. The first support pillar 34 also includes an upper section 62 which, as indicated, is integral to the rear end 40 of the first roof rail 20.
With reference to
As shown in
The cross member 30 extends upwardly from the first rocker 56 at a first end 32 of the cross member 30. The first end 32 of the cross member 30 may be adjacent to or proximate to the first support pillar 34. The cross member 30 further includes another end 32 wherein the end 32 of the cross member 30 is adjacent to or proximate to the second support pillar 34. The cross member 30 extends upwardly from the second rocker 58 at the end 32 of the cross member 30. As shown in
It is to be understood that the first support pillar 34 is welded to at least a portion of the cross member 30 along the length of the first support pillar 34 and the cross member 30 where the first support pillar 34 and the cross member 30 are adjacent to one another near the first end 32 of the cross member 30. A non-limiting example of a welding process may be stitch welding 60. However, other joining techniques may be used such as mechanical fasteners (not shown) or adhesives (not shown).
It is to be understood that the second support pillar 34 is welded to at least a portion of the cross member 30 along the length of the second support pillar 34 and the cross member 30 where the second support pillar 34 and the cross member 30 are adjacent to one another near the end 32 of the cross member 30. As indicated, a non-limiting example of a welding process may be stitch welding 60. However, as previously indicated, other joining techniques may be used such as mechanical fasteners (not shown) or adhesives (not shown).
In order to join a rocker 56, 58 to its corresponding support pillar 34 and cross member 30, a rocker flange 42 may be defined in the support pillar 34 and in the cross member 30. The rocker end 36 of the first support pillar 34 may be compressed together to define a first rocker flange 42. The rocker flange 42 further includes a spot weld flange 44 is operatively configured to join the first support pillar 34 and the first rocker 56.
Similar to the support pillar 34, the ends 32 of the cross member 30 may be compressed together to define a rocker flange 42. Like the rocker flange 42 of the support pillar 34, the rocker flange 42 of the cross member 30 may further includes a spot weld flange 44 being operatively configured to join the cross member 30 and the rocker 56.
As shown in
As shown as a non-limiting example data in the graph of
While multiple embodiments of the present disclosure have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.
Number | Name | Date | Kind |
---|---|---|---|
2071449 | Accardi | Feb 1937 | A |
4350367 | Kolb et al. | Sep 1982 | A |
5458393 | Benedyk | Oct 1995 | A |
6092865 | Jaekel et al. | Jul 2000 | A |
6241310 | Patelczyk | Jun 2001 | B1 |
6273498 | Hillman et al. | Aug 2001 | B1 |
6332643 | Sukegawa et al. | Dec 2001 | B1 |
6623067 | Gabbianelli et al. | Sep 2003 | B2 |
6957845 | Rager | Oct 2005 | B2 |
7121615 | Hoshino | Oct 2006 | B2 |
7152914 | Dingman et al. | Dec 2006 | B2 |
7251915 | Zimmerman et al. | Aug 2007 | B2 |
7357448 | Chen et al. | Apr 2008 | B2 |
7410210 | Park | Aug 2008 | B2 |
7585017 | Zimmerman et al. | Sep 2009 | B2 |
7765699 | Corcoran et al. | Aug 2010 | B2 |
20020185892 | Rima et al. | Dec 2002 | A1 |
20060255624 | Zimmerman et al. | Nov 2006 | A1 |
20060273630 | Chen et al. | Dec 2006 | A1 |
20070108803 | Chen et al. | May 2007 | A1 |
20070257517 | Day et al. | Nov 2007 | A1 |
20080111398 | Stojkovic et al. | May 2008 | A1 |
20090071737 | Leonard et al. | Mar 2009 | A1 |
20100194147 | Aul et al. | Aug 2010 | A1 |
20100263954 | Constans | Oct 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100237661 A1 | Sep 2010 | US |