The present disclosure relates to a vehicle brake device.
A vehicle brake device pump disclosed in Patent Literature 1, for example, is conventionally known. The conventional vehicle brake device includes an electric motor, an electrically powered cylinder device driven by the electric motor, a hydraulic block to which the electric motor and the electrically powered cylinder device are assembled, and a control device that controls the electric motor. In the conventional vehicle brake device, the control device is disposed with respect to the hydraulic block so as to be parallel to the axial direction of the cylinder configuring the electrically powered cylinder device.
In general, in a vehicle brake device, various electromagnetic valves for adjusting a braking fluid pressure generated by an electrically powered cylinder device with respect to a hydraulic block are provided, and the various electromagnetic valves are electrically connected to a circuit board configuring a control device. In this case, the various electromagnetic valves are arranged in the hydraulic block so as not to interfere with, for example, the rotating shaft of the electric motor or the electrically powered cylinder device, and are electrically connected to the circuit board of the control device.
In the conventional vehicle brake device, the electrically powered cylinder device becomes long along the axis. Thus, the projection area when the electrically powered cylinder device is projected with respect to the control device increases in the direction perpendicular to the axis of the electrically powered cylinder device. Therefore, when arranging the various electromagnetic valves, the electromagnetic valves need to be arranged so as not to interfere with the electrically powered cylinder device, that is, so as to avoid a portion where the electrically powered cylinder device is projected with respect to the control device. For this reason, the circuit board, that is, the control device increases in size, and as a result, the vehicle brake device may increase in size. In addition, in a case where the various electromagnetic valves are arranged between the rotating shaft of the electric motor or the cylinder and the control device in the direction perpendicular to the axis of the electrically powered cylinder device, the hydraulic block needs to be thickened although the circuit board of the control device can be reduced in size. As a result, in this case as well, the vehicle brake device may increase in size.
The present disclosure has been made to solve the above problems, and an object thereof is to provide a vehicle brake device that can be reduced in size.
A vehicle brake device according to the present disclosure includes an electric motor, a plurality of electrically powered cylinder devices driven by the electric motor and causes the fluid pressure chamber defined by the cylinder and the piston to generate a fluid pressure corresponding to a position of a piston sliding in the cylinder, and a circuit board on which an electric circuit that controls the electric motor is formed, where the plurality of electrically powered cylinder devices are arranged side by side in a radial direction with axes thereof being parallel to each other, and the circuit board is disposed perpendicular to the axis of the electrically powered cylinder device.
According to the vehicle brake device of the present disclosure, the circuit board is disposed perpendicular to the axis of the electrically powered cylinder device. As a result, in the direction of the axis of the electrically powered cylinder device, the projection area when the electrically powered cylinder device is projected with respect to the circuit board is smaller than the projection area of the electrically powered cylinder device in the conventional vehicle brake device described above. As a result, the degree of freedom in arrangement of components (e.g., various electromagnetic valves etc.) provided in the vehicle brake device is improved. As a result, the vehicle brake device can be reduced in size.
Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. Note that the drawings used in the following description of the embodiment are conceptual diagrams, and the shape of each part may not necessarily be exact in some cases.
A configuration of the vehicle brake device 10 of the present embodiment will be described in detail. As illustrated in
Here, as illustrated in
As illustrated in
The electric motor 11 generates a rotational driving force to drive the electrically powered cylinder device 12, and has a rotating shaft 111, as illustrated in
As illustrated in
As a result, in the fluid pressure chamber 123, the brake fluid is pressurized with the movement of the piston 122 in the compressing direction (left direction in
As illustrated in
In the hydraulic block 13, two cylinder accommodating portions 13B corresponding to the two electrically powered cylinder devices 12 (more specifically, the cylinder 121 of the first electrically powered cylinder device 12A and the cylinder 121 of the second electrically powered cylinder device 12B) on a one-to-one basis are formed. The cylinder accommodating portion 13B accommodates the corresponding electrically powered cylinder device 12. When the cylinder accommodating portion 13B is distinguished in the following description, the cylinder accommodating portion 13B accommodating the cylinder 121 of the first electrically powered cylinder device 12A is referred to as a “first cylinder accommodating portion 13B1”, and the cylinder accommodating portion 13B accommodating the cylinder 121 of the second electrically powered cylinder device 12B is referred to as a “second cylinder accommodating portion 13B2”.
Here, the rotating shaft accommodating portion 13A and the cylinder accommodating portion 13B are formed so as to be parallel to each other and not to be coaxial with each other. The first rotating shaft accommodating portion 13A1 and the second rotating shaft accommodating portion 13A2 are disposed apart from each other in the hydraulic block 13. Similarly, the first cylinder accommodating portion 13B1 and the second cylinder accommodating portion 13B2 are disposed apart from each other in the hydraulic block 13. That is, in the hydraulic block 13, as illustrated in
As a result, as illustrated in
That is, the master cylinder 17, the stroke simulator 18, the master cut valve V1, the simulator cut valve V2, the master pressure sensor S1, and the stroke sensor S2 assembled to the central portion of the hydraulic block 13 are arranged at a boundary (alternatively, a region between the first region R1 and the second region R2) between a first region R1 including a first sector K1 and a second region R2 including a second sector K2 in the control unit 16 to be described later.
Furthermore, as illustrated in
As will be described later, the master cut valve V1 switches communication or cut-off between the master cylinder 17 accommodated in the hydraulic block 13 and the first wheel (e.g., the left front wheel of the vehicle) and the second wheel (e.g., the right front wheel of the vehicle) of the vehicle according to the energization state from the control unit 16. The simulator cut valve V2 cuts off the master cylinder 17 and the stroke simulator 18 in a case where the master cut valve V1 is in the communicating state and communicates the master cylinder 17 and the stroke simulator 18 in a case where the master cut valve V1 is in the cutoff state according to the energization state from the control unit 16. Here, the master cut valve V1 and the simulator cut valve V2 are controlled by both the first ECU 16B and the second ECU 16C configuring the control unit 16 as will be described later. Therefore, the master cut valve V1 and the simulator cut valve V2 correspond to a “third element”.
The first electromagnetic valve V3 is disposed in a liquid path connecting the first electrically powered cylinder device 12A and a wheel cylinder provided on the first wheel (e.g., the left front wheel of the vehicle), and switches communication or cut-off between the first electrically powered cylinder device 12A and the wheel cylinder according to the energization state from the control unit 16. The second electromagnetic valve V4 is disposed in a liquid path connecting the second electrically powered cylinder device 12B and a wheel cylinder provided on the second wheel (e.g., the right front wheel of the vehicle), and switches communication or cut-off between the second electrically powered cylinder device 12B and the wheel cylinder according to an energization state from the control unit 16.
The master pressure sensors S1 and S2 detect the braking fluid pressure (master pressure) generated by the master cylinder 17 and output the braking fluid pressure to the control unit 16. A stroke sensor (not illustrated) detects a stroke amount that can be detected as an operation amount of a brake operation member (e.g., a brake pedal etc.) (not illustrated) operated by a driver, and outputs the detected stroke amount to the control unit 16. Here, the master pressure sensors S1 and S2 and the stroke sensor are electrically connected to each of the first ECU 16B and the second ECU 16C configuring the control unit 16. The first ECU 16B and the second ECU 16C acquire detection values from the master pressure sensors S1 and S2 and the stroke sensor. One master pressure sensor and one stroke sensor may be provided, and one master pressure sensor and one stroke sensor may be electrically connected to the first ECU 16B and the second ECU 16C. In this case, the master pressure sensor and the stroke sensor electrically connected to the first ECU 16B and the second ECU 16C correspond to the “third element”.
The first pressure sensor S3 detects a braking fluid pressure generated by the first electrically powered cylinder device 12A connected to the first wheel of the vehicle and outputs the braking fluid pressure to the control unit 16. The second pressure sensor S4 detects a braking fluid pressure generated by the second electrically powered cylinder device 12B connected to the second wheel of the vehicle and outputs the braking fluid pressure to the control unit 16.
As illustrated in
The ball screw 141 rotates with respect to the ball screw nut 142 by a rotational motion (rotational driving force) supplied from the electric motor 11, and relatively moves in the axial direction with respect to the ball screw nut 142. The ball screw nut 142 is supported so as to be relatively non-rotatable with respect to the hydraulic block 13. Thus, the ball screw 141 and the ball screw nut 142 convert the rotational motion of the electric motor 11, more specifically, the rotating shaft 111, into the linear motion of the ball screw 141. Therefore, the ball screw 141 serving as the linear moving portion performs linear motion together with the piston 122 of the electrically powered cylinder device 12.
As illustrated in
In the present embodiment, the first driven gear 152 is provided, and the power transmission unit 15 includes three gears. However, for example, the first driven gear 152 may be omitted, and the driving gear 151 and the second driven gear 153 may be directly engaged with each other.
As illustrated in
Each of the first ECU 16B and the second ECU 16C is a microcomputer including a CPU, a ROM, a RAM, and various interfaces as main configuring components. Then, as illustrated in
Note that the first circuit C1 includes a contact (indicated by a solid circle in
Here, the first sector K1 set on the circuit board 16A is included in the first region R1 set to be parallel to the axis J (i.e., the normal direction of the first sector K1) of the electrically powered cylinder device 12. The second sector K2 set on the circuit board 16A is included in the second region R2 set to be parallel to the axis J (i.e., the normal direction of the second sector K2) of the electrically powered cylinder device 12. That is, the first electrically powered cylinder device 12A which is the first element is disposed so as to face the first sector K1 in which the first circuit C1 is formed (on the normal line of the first sector K1). Furthermore, the second electrically powered cylinder device 12B which is the second element is disposed so as to face the second sector K2 in which the second circuit C2 is formed (on the normal line of the second sector K2).
The first ECU 16B and the first circuit C1 disposed in the first sector K1, that is, the first region R1 control the operations of the first electric motor 11A (i.e., the first electrically powered cylinder device 12A) and the first electromagnetic valve V3 disposed in the first region R1, and acquire the detection value of the braking fluid pressure detected by the first pressure sensor S3 disposed in the first region R1. On the other hand, the second ECU 16C and the second circuit C2 disposed in the second sector K2, that is, the second region R2 control the operations of the second electric motor 11B (i.e., the second electrically powered cylinder device 12B) and the second electromagnetic valve V4 disposed in the second region R2, and acquire the detection value of the braking fluid pressure detected by the second pressure sensor S4 disposed in the second region R2.
Furthermore, the master cut valve V1 and the simulator cut valve V2 (includes a master pressure sensor and a stroke sensor, as necessary) disposed at the boundary between the first sector K1 (first region R1) and the second sector K2 (second region R2) or in the region between the first sector K1 (first region R1) and the second sector K2 (second region R2), that is, the central portion of the hydraulic block 13 are electrically connected to both the first circuit C1 and the second circuit C2, and the operations thereof can be controlled by both the first ECU 16B and the second ECU 16C. In the present embodiment, the master cut valve V1 and the simulator cut valve V2 are arranged at the boundary between the first sector K1 (first region R1) and the second sector K2 (second region R2).
As a result, for example, when an abnormality occurs in the first ECU 16B that controls the operations of the master cut valve V1 and the simulator cut valve V2 at the normal time, the second ECU 16C can control the operations of the master cut valve V1 and the simulator cut valve V2 in place of the first ECU 16B. That is, in the vehicle brake device 10 of the present embodiment, the master cut valve V1 and the simulator cut valve V2 are not provided in correspondence with the first ECU 16B and the second ECU 16C, respectively, and the first ECU 16B and the second ECU 16C can control the operations of the common master cut valve V1 and the simulator cut valve V2.
Thus, in the vehicle brake device 10 of the present embodiment, the number of the electromagnetic valves and the like, specifically, the master cut valve V1 and the simulator cut valve V2 can be reduced while having redundancy. As a result, reduction in size of the vehicle brake device 10 can be achieved, and the manufacturing cost and the like of the vehicle brake device 10 can be reduced.
As illustrated in
As illustrated in
In the vehicle brake device 10 of the present embodiment, the circuit board 16A of the control unit 16, that is, the first ECU 16B and the second ECU 16C are arranged so as to be perpendicular to the axis J of the electrically powered cylinder device 12 (the rotating shaft 111 of the electric motor 11). In this case, as illustrated in
In particular, when the circuit board 16A (the control unit 16) is disposed so as to be perpendicular to the axis J of the electrically powered cylinder device 12 (the rotating shaft 111 of the electric motor 11), the projection area when the electric motor 11 and the electrically powered cylinder device 12 are projected is minimized in the first sector K1 and the second sector K2. When arranged (assembled) in the hydraulic block 13, the first electromagnetic valve V3 and the second electromagnetic valve V4 are generally arranged such that the projection with respect to the circuit board 16A does not overlap the projection of the electric motor 11 and the electrically powered cylinder device 12 with respect to the circuit board 16A. Therefore, when the projection areas of the electric motor 11 and the electrically powered cylinder device 12 in the first sector K1 and the second sector K2 are the minimum, it can be said that the arrangement range in which the first electromagnetic valve V3 and the second electromagnetic valve V4 can be arranged in the hydraulic block 13 is the maximum.
As a result, the degree of freedom in arranging (assembling) the first electromagnetic valve V3 and the second electromagnetic valve V4 in the hydraulic block 13 is improved.
Regarding the connection between the master cut valve V1, the simulator cut valve V2, the first electromagnetic valve V3, and the second electromagnetic valve V4 and the circuit board 16A, a hole needs to be formed as a contact in the circuit board 16A, and there exists an implementation restriction that arrangement of elements and wiring (copper foil pattern) of an electric circuit needs to be avoided around the provided hole (contact). If the master cut valve V1, the simulator cut valve V2, the first electromagnetic valve V3, and the second electromagnetic valve V4 are arranged at the central portion of the circuit board 16A, a hole (contact) is provided at the central part of the circuit board 16A. In this case, arrangement and wiring of elements in an electric circuit other than the drive circuit of the master cut valve V1, the simulator cut valve V2, the first electromagnetic valve V3, and the second electromagnetic valve V4 become complicated, and as a result, the circuit board 16A may be increased in size.
On the other hand, in the present example, the master cut valve V1 and the simulator cut valve V2 can be arranged at the boundary between the first sector K1 (first region R1) and the second sector K2 (second region R2). Furthermore, the first electromagnetic valve V3 can be arranged at the peripheral edge portion of the first sector K1, and the second electromagnetic valve V4 can be arranged at the peripheral edge portion of the second sector K2. That is, in the present example, as described above, the degree of freedom in the arrangement of the master cut valve V1, the simulator cut valve V2, the first electromagnetic valve V3, and the second electromagnetic valve V4 is high in the hydraulic block 13, and thus the arrangement described above can be realized.
In addition, for example, in a case where the circuit board 16A (the control unit 16) is arranged in parallel with the axis J of the electrically powered cylinder device 12 (the rotating shaft 111 of the electric motor 11), the projection area of the electrically powered cylinder device 12 to the circuit board 16A is larger than that in a case where the circuit board is arranged perpendicularly. In this case, when the first electromagnetic valve V3 and the second electromagnetic valve V4 are arranged so as to avoid projection of the electrically powered cylinder device 12 onto the circuit board 16A, the degree of freedom in the arrangement of the first electromagnetic valve V3 and the second electromagnetic valve V4 decreases. Alternatively, when the first electromagnetic valve V3 and the second electromagnetic valve V4 are arranged on the projection of the electrically powered cylinder device 12 onto the circuit board 16A, it is necessary to increase the thickness of the hydraulic block 13 between the circuit board 16A and the electrically powered cylinder device 12 to arrange the first electromagnetic valve V3 and the second electromagnetic valve V4. In these cases, the hydraulic block 13 increases in size.
On the other hand, in the vehicle brake device 10, the degree of freedom in the arrangement of the first electromagnetic valve V3 and the second electromagnetic valve V4 with respect to the hydraulic block 13 can be improved, as described above. As a result, in the vehicle brake device 10, the circuit board 16A can be arranged perpendicular to the axis J of the electrically powered cylinder device 12 (the rotating shaft 111 of the electric motor 11), and the first electromagnetic valve V3 and the second electromagnetic valve V4 can be arranged so as to be parallel to the rotating shaft 111 of the electric motor 11 and the axis J of the electrically powered cylinder device 12. Thus, a space for arranging the first electromagnetic valve V3 and the second electromagnetic valve V4 does not need to be separately secured, that is, the hydraulic block 13 does not need to be enlarged, reduction in size of the hydraulic block 13 can be achieved and reduction in size of the circuit board 16A (the control unit 16) also can be achieved. That is, reduction in size of the vehicle brake device 10 can be achieved.
In addition, since the first electromagnetic valve V3 and the second electromagnetic valve V4 are opening/closing means of the liquid path provided inside the hydraulic block 13, the arrangement of the first electromagnetic valve V3 and the second electromagnetic valve V4 in the hydraulic block 13 and the structure of the liquid path affect each other. Since the degree of freedom in arranging the first electromagnetic valve V3 and the second electromagnetic valve V4 in the hydraulic block 13 is improved, the configuration of the liquid path of the hydraulic block 13 can be simplified, and thus the hydraulic block 13 can be reduced in size.
The distance to the circuit board 16A (the control unit 16) facing each other on the axes of the first electromagnetic valve V3 and the second electromagnetic valve V4 can be shortened by arranging the first electromagnetic valve V3 and the second electromagnetic valve V4 so as to be parallel to the axis J of the electrically powered cylinder device 12 (the rotating shaft 111 of the electric motor 11). Thus, reduction in size of the vehicle brake device 10 can also be achieved.
In addition, in the vehicle brake device 10 of the present embodiment, the degree of freedom in arranging the first electromagnetic valve V3 and the second electromagnetic valve V4, and the first pressure sensor S3 and the second pressure sensor S4 can be improved, as described above. As a result, in the circuit board 16A, the first circuit C1 formed in the first sector K1 and the second circuit C2 formed in the second sector K2 can be made symmetrical with respect to, for example, the boundary between the first sector K1 (first region R1) and the second sector K2 (second region R2) as illustrated in
Thus, in the development of the vehicle brake device 10, for example, after the first circuit C1 on the first sector K1 (first region R1) side is designed, the second circuit C2 formed in the second sector K2 (second region R2) can be easily designed by being formed to be a symmetrical shape of the first circuit C1. In addition, since the first circuit C1 and the second circuit C2 are symmetric with each other in manufacturing the circuit board 16A, the circuit board can be easily manufactured. Therefore, the development cost and the manufacturing cost required for the development of the first circuit C1 and the second circuit C2 in the circuit board 16A can be reduced.
Furthermore, in the vehicle brake device 10 of the present embodiment, the master cylinder 17 and the stroke simulator 18, which are heavy objects, can be disposed at the central portion of the hydraulic block 13, that is, at the boundary between the first sector K1 (first region R1) and the second sector K2 (second region R2). Thus, the weight balance in the vehicle brake device 10 can be optimized.
As can be understood from the above description, the vehicle brake device 10 of the present embodiment includes the electric motor 11 (the first electric motor 11A and the second electric motor 11B), the plurality of electrically powered cylinder devices 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) that are driven by the electric motor 11 (each of the first electric motor 11A and the second electric motor 11B) and causes the fluid pressure chamber 123 defined by the cylinder 121 and the piston 122 to generate the fluid pressure corresponding to the position of the piston 122 sliding in the cylinder 121, and a circuit board 16A on which the electric circuit (the first circuit C1 and the second circuit C2) that controls the electric motor 11 (each of the first electric motor 11A and the second electric motor 11B) is formed, where the plurality of electrically powered cylinder devices 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) are arranged side by side in a radial direction with axes J thereof being parallel to each other, and the circuit board 16A is disposed perpendicular to the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B).
According to this, the circuit board 16A is disposed perpendicular to the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B). Thus, the projection area when the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) is projected onto the circuit board 16A in the direction of the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) is smaller than the projection area when projected in the direction perpendicular to the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B). As a result, a degree of freedom in the arrangement of components provided in the vehicle brake device 10, specifically, the master cut valve V1 and the simulator cut valve V2, the first electromagnetic valve V3 and the second electromagnetic valve V4, the master pressure sensors S1 and S2, the stroke sensor, the first pressure sensor S3, the second pressure sensor S4, and the like is improved. As a result, the vehicle brake device 10 can be reduced in size. Note that “perpendicular” includes substantially perpendicular, that is, that which is intended to be perpendicular but also includes that which is slightly deviated from perpendicular due to tolerance, arrangement error, or the like.
In this case, the rotating shaft 111 of the electric motor 11 (the first electric motor 11A and the second electric motor 11B) is parallel to the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) and is arranged side by side in the radial direction.
According to this, the rotating shaft 111 of the electric motor 11 (the first electric motor 11A and the second electric motor 11B) can be arranged side by side in the radial direction with the axis J of the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) parallel to each other. Therefore, for example, the electric motor 11 (the first electric motor 11A and the second electric motor 11B) and the electrically powered cylinder device 12 (the first electrically powered cylinder device 12A and the second electrically powered cylinder device 12B) can be disposed so as not to generate an empty space in the hydraulic block 13 and the circuit board 16A, as compared with a case where the rotating shaft 111 and the axis J are disposed so as not to be parallel to each other. As a result, the vehicle brake device 10 can be reduced in size.
The vehicle brake device 10 of the embodiment described above is assembled to the hydraulic block 13 such that the electric motor 11 is below the electrically powered cylinder device 12 in the vertical direction in the posture of being assembled to the vehicle. However, the arrangement of the electric motor 11 and the electrically powered cylinder device 12 assembled to the hydraulic block 13 is not limited. For example, in a posture in which the vehicle brake device 10 is assembled to the vehicle, the electrically powered cylinder device 12 can be assembled to the hydraulic block 13 so as to be below the electric motor 11 in the vertical direction.
In addition, in the vehicle brake device 10 according to the embodiment described above, the power transmission unit 15 is arranged between the hydraulic block 13 and the control unit 16. However, the arrangement of the power transmission unit 15 is not limited. For example, it is also possible to configure such that the power transmission unit 15 is assembled to the hydraulic block 13 on the side opposite to the control unit 16, and the rotational motion (rotational driving force) of the rotating shaft 111 of the electric motor 11 is transmitted to the linear motion conversion mechanism 14. Note that in this case, it goes without saying that the arrangement direction of the electric motor 11 and the arrangement direction of the electrically powered cylinder device 12 are changed in accordance with the arrangement of the power transmission unit 15.
In the embodiment described above, the ball screw 141 is used as the linear moving portion of the linear motion conversion mechanism 14, and the ball screw nut 142 screwed to the ball screw 141 is used so as to transmit the rotational motion to the ball screw 141. However, as the linear motion conversion mechanism, any configuration such as a combination of a roller screw and a roller screw nut, a combination of a trapezoidal screw or a sliding screw and a nut, or the like may be adopted as long as the rotational motion can be converted into the linear motion.
Furthermore, in the embodiment described above, in the circuit board 16A of the control unit 16, the first sector K1 and the second sector K2 are set, the first circuit C1 that controls the first electromagnetic valve V3 and the first pressure sensor S3 serving as the first elements is arranged so as to face the first sector K1, and the second circuit C2 that controls the second electromagnetic valve V4 and the second pressure sensor S4 serving as the second elements is arranged so as to face the second sector K2. In the embodiment described above, the first electromagnetic valve V3 and the first pressure sensor S3 controlled only by the first circuit C1 are disposed in the first region R1 including the first sector K1, and the second electromagnetic valve V4 and the second pressure sensor S4 controlled only by the second circuit C2 are disposed in the second region R2 including the second sector K2. However, it is of course possible to set the first region R1 and the second region R2 without setting the first sector K1 and the second sector K2 in the circuit board 16A.
In the embodiment described above, the first sector K1 (first region R1) and the second sector K2 (second region R2) are set for one circuit board 16A of the control unit 16. However, the circuit board 16A may be configured by a plurality of substrates, and the first sector K1 (first region R1) and the second sector K2 (second region R2) may be set.
Furthermore, in the embodiment described above, the circuit board 16A has a range wider than the total range of the first sector K1 and the second sector K2. However, the total range of the first sector K1 and the second sector K2 may coincide with the range of the circuit board 16A.
Number | Date | Country | Kind |
---|---|---|---|
2020-183194 | Oct 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/039533 | 10/26/2021 | WO |