This invention relates in general to vehicle braking systems. Vehicles are commonly slowed and stopped with hydraulic brake systems. These systems vary in complexity but a base brake system typically includes a brake pedal, a tandem master cylinder, fluid conduits arranged in two similar but separate brake circuits, and wheel brakes in each circuit. The driver of the vehicle operates a brake pedal which is connected to the master cylinder. When the brake pedal is depressed, the master cylinder generates hydraulic forces in both brake circuits by pressurizing brake fluid. The pressurized fluid travels through the fluid conduit in both circuits to actuate brake cylinders at the wheels to slow the vehicle.
Base brake systems typically use a brake booster which provides a force to the master cylinder which assists the pedal force created by the driver. The booster can be vacuum or hydraulically operated. A typical hydraulic booster senses the movement of the brake pedal and generates pressurized fluid which is introduced into the master cylinder. The fluid from the booster assists the pedal force acting on the pistons of the master cylinder which generate pressurized fluid in the conduit in fluid communication with the wheel brakes. Thus, the pressures generated by the master cylinder are increased. Hydraulic boosters are commonly located adjacent the master cylinder piston and use a boost valve to control the pressurized fluid applied to the booster.
Braking a vehicle in a controlled manner under adverse conditions requires precise application of the brakes by the driver. Under these conditions, a driver can easily apply excessive braking pressure thus causing one or more wheels to lock, resulting in excessive slippage between the wheel and road surface. Such wheel lock-up conditions can lead to greater stopping distances and possible loss of directional control.
Advances in braking technology have led to the introduction of Anti-lock Braking Systems (ABS). An ABS system monitors wheel rotational behavior and selectively applies and relieves brake pressure in the corresponding wheel brakes in order to maintain the wheel speed within a selected slip range to achieve maximum braking force. While such systems are typically adapted to control the braking of each braked wheel of the vehicle, some systems have been developed for controlling the braking of only a portion of the plurality of braked wheels.
Electronically controlled ABS valves, comprising apply valves and dump valves, are located between the master cylinder and the wheel brakes. The ABS valves regulate the pressure between the master cylinder and the wheel brakes. Typically, when activated, these ABS valves operate in three pressure control modes: pressure apply, pressure dump and pressure hold. The apply valves allow pressurized brake fluid into respective ones of the wheel brakes to increase pressure during the apply mode, and the dump valves relieve brake fluid from their associated wheel brakes during the dump mode. Wheel brake pressure is held constant during the hold mode by closing both the apply valves and the dump valves.
To achieve maximum braking forces while maintaining vehicle stability, it is desirable to achieve optimum slip levels at the wheels of both the front and rear axles. During vehicle deceleration different braking forces are required at the front and rear axles to reach the desired slip levels. Therefore, the brake pressures should be proportioned between the front and rear brakes to achieve the highest braking forces at each axle. ABS systems with such ability, known as Dynamic Rear Proportioning (DRP) systems, use the ABS valves to separately control the braking pressures on the front and rear wheels to dynamically achieve optimum braking performance at the front and rear axles under the then current conditions.
A further development in braking technology has led to the introduction of Traction Control (TC) systems. Typically, valves have been added to existing ABS systems to provide a brake system which controls wheel speed during acceleration. Excessive wheel speed during vehicle acceleration leads to wheel slippage and a loss of traction. An electronic control system senses this condition and automatically applies braking pressure to the wheel cylinders of the slipping wheel to reduce the slippage and increase the traction available. In order to achieve optimal vehicle acceleration, pressurized brake fluid is made available to the wheel cylinders even if the master cylinder is not actuated by the driver.
During vehicle motion such as cornering, dynamic forces are generated which can reduce vehicle stability. A Vehicle Stability Control (VSC) brake system improves the stability of the vehicle by counteracting these forces through selective brake actuation. These forces and other vehicle parameters are detected by sensors which signal an electronic control unit. The electronic control unit automatically operates pressure control devices to regulate the amount of hydraulic pressure applied to specific individual wheel brakes. In order to achieve optimal vehicle stability, braking pressures greater than the master cylinder pressure must quickly be available at all times.
Brake systems may also be used for regenerative braking to recapture energy. An electromagnetic force of an electric motor/generator is used in regenerative braking for providing a portion of the braking torque to the vehicle to meet the braking needs of the vehicle. A control module in the brake system communicates with a powertrain control module to provide coordinated braking during regenerative braking as well as braking for wheel lock and skid conditions. For example, as the operator of the vehicle begins to brake during regenerative braking, electromagnet energy of the motor/generator will be used to apply braking torque (i.e., electromagnetic resistance for providing torque to the powertrain) to the vehicle. If it is determined that there is no longer a sufficient amount of storage means to store energy recovered from the regenerative braking or if the regenerative braking cannot meet the demands of the operator, hydraulic braking will be activated to complete all or part of the braking action demanded by the operator. Preferably, the hydraulic braking operates in a regenerative brake blending manner so that the blending is effectively and unnoticeably picked up where the electromagnetic braking left off. It is desired that the vehicle movement should have a smooth transitional change to the hydraulic braking such that the changeover goes unnoticed by the driver of the vehicle.
Brake systems may also include autonomous braking capabilities such as adaptive cruise control (ACC). During an autonomous braking event, various sensors and systems monitor the traffic conditions ahead of the vehicle and automatically activate the brake system to decelerate the vehicle as needed. Autonomous braking may be configured to respond rapidly in order to avoid an emergency situation. The brake system may be activated without the driver depressing the brake pedal or even if the driver fails to apply adequate pressure to the brake pedal. Advanced autonomous braking systems are configured to operate the vehicle without any driver input and rely solely on the various sensors and systems that monitor the traffic conditions surrounding the vehicle.
This invention relates to a method of conducting a diagnostic test to determine leakage within a brake system includes first pressurizing the brake system. The pressure within the brake system is held for a predetermined length of time. The method further includes determining whether a leakage within the brake system has occurred.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Referring now to the drawings, there is schematically illustrated in
The brake system 10 includes a brake pedal unit, indicated generally at 14, a pedal simulator 16, a plunger assembly, indicated generally at 18, and a reservoir 20. The reservoir 20 stores and holds hydraulic fluid for the brake system 10. The fluid within the reservoir 20 is preferably held at or about atmospheric pressure but may store the fluid at other pressures if so desired. The brake system 10 may include a fluid level sensor (not shown) for detecting the fluid level of the reservoir 20. Note that in the schematic illustration of
The brake system 10 includes an electronic control unit (ECU) 22. The ECU 22 may include microprocessors. The ECU 22 receives various signals, processes signals, and controls the operation of various electrical components of the brake system 10 in response to the received signals. The ECU 22 can be connected to various sensors such as pressure sensors, travel sensors, switches, wheel speed sensors, and steering angle sensors. The ECU 22 may also be connected to an external module (not shown) for receiving information related to yaw rate, lateral acceleration, longitudinal acceleration of the vehicle such as for controlling the brake system 10 during vehicle stability operation. Additionally, the ECU 22 may be connected to the instrument cluster for collecting and supplying information related to warning indicators such as an ABS warning light, a brake fluid level warning light, and a traction control/vehicle stability control indicator light.
The brake system 10 further includes first and second isolation valves 30 and 32. The isolation valves 30 and 32 may be solenoid actuated three way valves. The isolation valves 30 and 32 are generally operable to two positions, as schematically shown in
In a preferred embodiment, the first and/or second isolation valves 30 and 32 may be mechanically designed such that flow is permitted to flow in the reverse direction (from conduit 34 to the conduits 36 and 38, respectively) when in their de-energized positions and can bypass the normally closed seat of the valves 30 and 32. Thus, although the 3-way valves 30 and 32 are not shown schematically to indicate this fluid flow position, it is noted that that the valve design may permit such fluid flow. This may be helpful in performing self-diagnostic tests of the brake system 10.
The system 10 further includes various solenoid actuated valves (slip control valve arrangement) for permitting controlled braking operations, such as ABS, traction control, vehicle stability control, and regenerative braking blending. A first set of valves includes a first apply valve 50 and a first dump valve 52 in fluid communication with the conduit 40 for cooperatively supplying fluid received from the first isolation valve 30 to the wheel brake 12a, and for cooperatively relieving pressurized fluid from the wheel brake 12a to a reservoir conduit 53 in fluid communication with the reservoir 20. A second set of valves includes a second apply valve 54 and a second dump valve 56 in fluid communication with the conduit 40 for cooperatively supplying fluid received from the first isolation valve 30 to the wheel brake 12b, and for cooperatively relieving pressurized fluid from the wheel brake 12b to the reservoir conduit 53. A third set of valves includes a third apply valve 58 and a third dump valve 60 in fluid communication with the conduit 42 for cooperatively supplying fluid received from the second isolation valve 32 to the wheel brake 12c, and for cooperatively relieving pressurized fluid from the wheel brake 12c to the reservoir conduit 53. A fourth set of valves includes a fourth apply valve 62 and a fourth dump valve 64 in fluid communication with the conduit 42 for cooperatively supplying fluid received from the second isolation valve 32 to the wheel brake 12d, and for cooperatively relieving pressurized fluid from the wheel brake 12d to the reservoir conduit 53. Note that in a normal braking event, fluid flows through the non-energized open apply valves 50, 54, 58, and 62. Additionally, the dump valves 52, 56, 60, and 64 are preferably in their non-energized closed positions to prevent the flow of fluid to the reservoir 20.
The brake pedal unit 14 is connected to a brake pedal 70 and is actuated by the driver of the vehicle as the driver presses on the brake pedal 70. A brake sensor or switch 72 may be connected to the ECU 22 to provide a signal indicating a depression of the brake pedal 70. As will be discussed below, the brake pedal unit 14 may be used as a back-up source of pressurized fluid to essentially replace the normally supplied source of pressurized fluid from the plunger assembly 18 under certain failed conditions of the brake system 10. The brake pedal unit 14 can supply pressurized fluid in the conduits 36 and 38 (that are normally closed off at the first and second isolation valves 30 and 32 during a normal brake apply) to the wheel brake 12a, 12b, 12c, and 12d as required.
The brake pedal unit 14 includes a housing having a multi-stepped bore 80 formed therein for slidably receiving various cylindrical pistons and other components therein. The housing may be formed as a single unit or include two or more separately formed portions coupled together. An input piston 82, a primary piston 84, and a secondary piston 86 are slidably disposed within the bore 80. The input piston 82 is connected with the brake pedal 70 via a linkage arm 76. Leftward movement of the input piston 82, the primary piston 84, and the secondary piston 86 may cause, under certain conditions, a pressure increase within an input chamber 92, a primary chamber 94, and a secondary chamber 96, respectively. Various seals of the brake pedal unit 14 as well as the structure of the housing and the pistons 82, 84, and 86 define the chambers 92, 94, and 96. For example, the input chamber 92 is generally defined between the input piston 82 and the primary piston 84. The primary chamber 94 is generally defined between the primary piston 84 and the secondary piston 86. The secondary chamber 96 is generally defined between the secondary piston 86 and an end wall of the housing formed by the bore 80.
The input chamber 92 is in fluid communication with the pedal simulator 16 via a conduit 100, the reason for which will be explained below. The input piston 82 is slidably disposed in the bore 80 of the housing of the brake pedal unit 14. An outer wall of the input piston 82 is engaged with a lip seal 102 and a seal 104 mounted in grooves formed in the housing. A passageway 106 (or multiple passageways) is formed through a wall of the piston 82. As shown in
The simulation chamber 110 of the pedal simulator 16 is in fluid communication with the conduit 100 which is in fluid communication with the input chamber 92. A normally closed solenoid actuated simulator valve 116 is positioned within the conduit 100 to selectively prevent the flow of fluid from the input chamber 92 to the simulation chamber 110, such as during a failed condition in which the brake pedal unit 14 is utilized to provide a source of pressurized fluid to the wheel brakes. In its energized open position, the simulator valve 116 permits fluid communication between the input chamber 92 of the brake pedal unit 14 and the simulation chamber 110 of the pedal simulator 16. The brake system 10 may further include a check valve 118 which is in a parallel path arrangement with a restricted orifice 120 in the conduit 100. The check valve 118 and the restricted orifice 120 could be integrally built or formed in the simulator valve 116 or may be formed separately therefrom. The restricted orifice 120 provides damping during a spike apply in which the driver depresses the brake pedal 70 rapidly and forcefully. This damping provides a force feedback making depression of the brake pedal 70 feel more like a traditional vacuum booster, which may be a desirable characteristic of the brake system 10. The damping may also provide a more accurate relationship between brake pedal travel and vehicle deceleration by generally avoiding too much brake pedal travel for the vehicle deceleration that can be delivered by the brake system 10. The check valve 118 provides an easy flow path and allows the brake pedal 70 to return quickly, which allows the associated brake pressure to decrease quickly per the driver's intent.
As discussed above, the input chamber 92 of the brake pedal unit 14 is selectively in fluid communication with the reservoir 20 via a conduit 108 and the passageway 106 formed in the input piston 82. The brake system 10 may include an optional simulator test valve 130 located within the conduit 108. The simulator test valve 130 may be electronically controlled between an open position, as shown in
The primary chamber 94 of the brake pedal unit 14 is in fluid communication with the second isolation valve 32 via the conduit 38. The primary piston 84 is slidably disposed in the bore 80 of the housing of the brake pedal unit 14. An outer wall of the primary piston 84 is engaged with a lip seal 132 and a seal 134 mounted in grooves formed in the housing. One or more passageways 136 are formed through a wall of the primary piston 84. The passageway 136 is located between the lip seal 132 and the seal 134 when the primary piston 84 is in its rest position, as shown in
The secondary chamber 96 of the brake pedal unit 14 is in fluid communication with the first isolation valve 30 via the conduit 36. The secondary piston 86 is slidably disposed in the bore 80 of the housing of the brake pedal unit 14. An outer wall of the secondary piston 86 is engaged with a lip seal 140 and a seal 142 mounted in grooves formed in the housing. One or more passageways 144 are formed through a wall of the secondary piston 86. As shown in
If desired, the primary and secondary pistons 84 and 86 may be mechanically connected with limited movement therebetween. The mechanical connection of the primary and secondary pistons 84 and 86 prevents a large gap or distance between the primary and secondary pistons 84 and 86 and prevents having to advance the primary and secondary pistons 84 and 86 over a relatively large distance without any increase in pressure in the non-failed circuit. For example, if the brake system 10 is under a manual push through mode and fluid pressure is lost in the output circuit relative to the secondary piston 86, such as for example in the conduit 36, the secondary piston 86 will be forced or biased in the leftward direction due to the pressure within the primary chamber 94. If the primary and secondary pistons 84 and 86 were not connected together, the secondary piston 86 would freely travel to its further most left-hand position, as viewing
The brake pedal unit 14 may include an input spring 150 generally disposed between the input piston 82 and the primary piston 84. Additionally, the brake pedal unit 14 may include a primary spring (not shown) disposed between the primary piston 84 and the secondary piston 86. A secondary spring 152 may be included and disposed between the secondary piston 86 and a bottom wall of the bore 80. The input, primary and secondary springs may have any suitable configuration, such as a caged spring assembly, for biasing the pistons in a direction away from each other and also to properly position the pistons within the housing of the brake pedal unit 14.
The brake system 10 may further include a pressure sensor 156 in fluid communication with the conduit 36 to detect the pressure within the secondary pressure chamber 96 and for transmitting the signal indicative of the pressure to the ECU 22. Additionally, the brake system 10 may further include a pressure sensor 158 in fluid communication with the conduit 34 for transmitting a signal indicative of the pressure at the output of the plunger assembly 18.
As shown schematically in
Although a ball screw mechanism 212 is shown and described with respect to the plunger assembly 18, it should be understood that other suitable mechanical linear actuators may be used for imparting movement of the piston 206. It should also be understood that although the piston 206 functions as the nut of the ball screw mechanism 212, the piston 206 could be configured to function as a screw shaft of the ball screw mechanism 212. Of course, under this circumstance, the screw shaft 216 would be configured to function as a nut having internal helical raceways formed therein. The piston 206 may include structures (not shown) engaged with cooperating structures formed in the housing of the plunger assembly 18 to prevent rotation of the piston 206 as the screw shaft 216 rotates around the piston 206. For example, the piston 206 may include outwardly extending splines or tabs (not shown) that are disposed within longitudinally extending grooves (not shown) formed in the housing of the plunger assembly 18 such that the tabs slide along within the grooves as the piston 206 travels in the bore 200.
As will be discussed below, the plunger assembly 18 is preferably configured to provide pressure to the conduit 34 when the piston 206 is moved in both the forward and rearward directions. The plunger assembly 18 includes a seal 230 mounted on the enlarged end portion 208 of the piston 206. The seal 230 slidably engages with the inner cylindrical surface of the first portion 202 of the bore 200 as the piston 206 moves within the bore 200. A seal 234 and a seal 236 are mounted in grooves formed in the second portion 204 of the bore 200. The seals 234 and 236 slidably engage with the outer cylindrical surface of the central portion 210 of the piston 206. A first pressure chamber 240 is generally defined by the first portion 202 of the bore 200, the enlarged end portion 208 of the piston 206, and the seal 230. An annular shaped second pressure chamber 242, located generally behind the enlarged end portion 208 of the piston 206, is generally defined by the first and second portions 202 and 204 of the bore 200, the seals 230 and 234, and the central portion 210 of the piston 206. The seals 230, 234, and 236 can have any suitable seal structure.
Although the plunger assembly 18 may be configured to any suitable size and arrangement, in one embodiment, the effective hydraulic area of the first pressure chamber 240 is greater than the effective hydraulic area of the annular shaped second pressure chamber 242. The first pressure chamber 240 generally has an effective hydraulic area corresponding to the diameter of the central portion 210 of the piston 206 (the inner diameter of the seal 234) since fluid is diverted through the conduits 254, 34, and 243 as the piston 206 is advanced in the forward direction. The second pressure chamber 242 generally has an effective hydraulic area corresponding to the diameter of the first portion 202 of the bore 200 minus the diameter of the central portion 210 of the piston 206. This configuration provides that on the back stroke in which the piston 206 is moving rearwardly, less torque (or power) is required by the motor 214 to maintain the same pressure as in its forward stroke. Besides using less power, the motor 214 may also generate less heat during the rearward stroke of piston 206. Under circumstances when high brake pressure is desired, the plunger assembly 34 could be operated from a forward stroke to a rearward stroke. So while a forward stroke is used in most brake applications, a rearward pressure stroke can be utilized. Also, under circumstances in which the driver presses on the pedal 90 for long durations, the brake system 10 could be operated to maintain brake pressure (instead of continuously energizing the plunger assembly 34) by controlling the first and second plunger valves 250 and 252 (as will be discussed below) to closed positions and then turn off the motor or the plunger assembly 34.
The plunger assembly 18 preferably includes a sensor, schematically shown as 218, for indirectly detecting the position of the piston 206 within the bore 200. The sensor 218 is in communication with the ECU 22. In one embodiment, the sensor 218 detects the rotational position of the rotor 217 which may have metallic or magnetic elements embedded therein. Since the rotor 217 is integrally formed with the shaft 216, the rotational position of the shaft 216 corresponds to the linear position of the piston 206. Thus, the position of the piston 206 can be determined by sensing the rotational position of the rotor 217 via the sensor 218.
The piston 206 of the plunger assembly 18 includes a passageway 244 formed therein. The passageway 244 defines a first port 246 extending through the outer cylindrical wall of the piston 206 and is in fluid communication with the secondary chamber 242. The passageway 244 also defines a second port 248 extending through the outer cylindrical wall of the piston 206 and is in fluid communication with a portion of the bore 200 located between the seals 234 and 236. The second port 248 is in fluid communication with a conduit 249 which is in fluid communication with the reservoir 20 (T3). When in the rest position, as shown in
Referring back to
Generally, the first and second plunger valves 250 and 252 are controlled to permit fluid flow at the outputs of the plunger assembly 18 and to permit venting to the reservoir 20 (T3) through the plunger assembly 18 when so desired. For example, the first plunger valve 250 may be energized to its open position during a normal braking event so that both of the first and second plunger valves 250 and 252 are open (which may reduce noise during operation). Preferably, the first plunger valve 250 is almost always energized during an ignition cycle when the engine is running. Of course, the first plunger valve 250 may be purposely moved to its closed position such as during a pressure generating rearward stroke of the plunger assembly 18. The first and second plunger valves 250 and 252 are preferably in their open positions when the piston 206 of the plunger assembly 18 is operated in its forward stroke to maximize flow. When the driver releases the brake pedal 70, the first and second plunger valves 250 and 252 preferably remain in their open positions. Note that fluid can flow through the check valve within the closed second plunger valve 252, as well as through a check valve 258 from the reservoir 20 depending on the travel direction of the piston 206 of the plunger assembly 18.
It may be desirable to configure the first plunger valve 250 with a relatively large orifice therethrough when in its open position. A relatively large orifice of the first plunger assembly 250 helps to provide an easy flow path therethrough. The second plunger valve 252 may be provided with a much smaller orifice in its open position as compared to the first plunger valve 250. One reason for this is to help prevent the piston 206 of the plunger assembly 18 from rapidly being back driven upon a failed event due to the rushing of fluid through the first output conduit 254 into the first pressure chamber 240 of the plunger assembly 18, thereby preventing damage to the plunger assembly 18. As fluid is restricted in its flow through the relatively small orifice, dissipation will occur as some of the energy is transferred into heat. Thus, the orifice should be of a sufficiently small size so as to help prevent a sudden catastrophic back drive of the piston 206 of the plunger assembly 18 upon failure of the brake system 10, such as for example, when power is lost to the motor 214 and the pressure within the conduit 34 is relatively high. As shown in
The first and second plunger valves 250 and 252 provide for an open parallel path between the pressure chambers 240 and 242 of the plunger assembly 18 during a normal braking operation. Although a single open path may be sufficient, the advantage of having both the first and second plunger valves 250 and 252 is that the first plunger valve 250 may provide for an easy flow path through the relatively large orifice thereof, while the second plunger valve 252 may provide for a restricted orifice path during certain failed conditions (when the first plunger valve 250 is de-energized to its closed position.
During a typical or normal braking operation, the brake pedal 70 is depressed by the driver of the vehicle. In a preferred embodiment of the brake system 10, the brake pedal unit 14 includes one or more travel sensors 270 (for redundancy) for producing signals transmitted to the ECU 22 that are indicative of the length of travel of the input piston 82 of the brake pedal unit 14.
During normal braking operations, the plunger assembly 18 is operated to provide pressure to the conduit 34 for actuation of the wheel brakes 12a, 12b, 12c, and 12d. Under certain driving conditions, the ECU 22 communicates with a powertrain control module (not shown) and other additional braking controllers of the vehicle to provide coordinated braking during advanced braking control schemes (e.g., anti-lock braking (AB), traction control (TC), vehicle stability control (VSC), and regenerative brake blending). During a normal brake apply, the flow of pressurized fluid from the brake pedal unit 14, generated by depression of the brake pedal 70, is diverted into the pedal simulator 16. The simulator valve 116 is actuated to divert fluid through the simulator valve 116 from the input chamber 92. Note that the simulator valve 116 is shown in its energized state in
During the duration of a normal braking event, the simulator valve 116 remains open, preferably. Also during the normal braking operation, the isolation valves 30 and 32 are energized to secondary positions to prevent the flow of fluid from the conduits 36 and 38 through the isolation valves 30 and 32, respectively. Preferably, the isolation valves 30 and 32 are energized throughout the duration of an ignition cycle such as when the engine is running instead of being energized on and off to help minimize noise. Note that the primary and secondary pistons 84 and 86 are not in fluid communication with the reservoir 20 due to their passageways 136 and 144, respectively, being positioned past the lip seals 132 and 140, respectively. Prevention of fluid flow through the isolation valves 30 and 32 hydraulically locks the primary and secondary chambers 94 and 96 of the brake pedal unit 14 preventing further movement of the primary and secondary pistons 84 and 86.
It is generally desirable to maintain the isolation valves 30 and 32 energized during the normal braking mode to ensure venting of fluid to the reservoir 20 through the plunger assembly 18 such as during a release of the brake pedal 70 by the driver. As best shown in
During normal braking operations, while the pedal simulator 16 is being actuated by depression of the brake pedal 70, the plunger assembly 18 can be actuated by the ECU 22 to provide actuation of the wheel brakes 12a, 12b, 12c, and 12d. The plunger assembly 18 is operated to provide desired pressure levels to the wheel brakes 12a, 12b, 12c, and 12d compared to the pressure generated by the brake pedal unit 14 by the driver depressing the brake pedal 70. The electronic control unit 22 actuates the motor 214 to rotate the screw shaft 216 in the first rotational direction. Rotation of the screw shaft 216 in the first rotational direction causes the piston 206 to advance in the forward direction (leftward as viewing
In some situations, the piston 206 of the plunger assembly 18 may reach its full stroke length within the bore 200 of the housing and additional boosted pressure is still desired to be delivered to the wheel brakes 12a, 12b, 12c, and 12d. The plunger assembly 18 is a dual acting plunger assembly such that it is configured to also provide boosted pressure to the conduit 34 when the piston 206 is stroked rearwardly (rightward) or in a reverse direction. This has the advantage over a conventional plunger assembly that first requires its piston to be brought back to its rest or retracted position before it can again advance the piston to create pressure within a single pressure chamber. If the piston 206 has reached its full stroke, for example, and additional boosted pressure is still desired, the second plunger valve 252 is energized to its closed check valve position. The first plunger valve 250 is de-energized to its closed position. The electronic control unit 22 actuates the motor 214 in a second rotational direction opposite the first rotational direction to rotate the screw shaft 216 in the second rotational direction. Rotation of the screw shaft 216 in the second rotational direction causes the piston 206 to retract or move in the rearward direction (rightward as viewing
During a braking event, the ECU 22 can selectively actuate the apply valves 50, 54, 58, and 62 and the dump valves 52, 56, 60, and 64 to provide a desired pressure level to the wheel brakes, respectively. The ECU 22 can also control the brake system 10 during ABS, DRP, TC, VSC, regenerative braking, and autonomous braking events by general operation of the plunger assembly 18 in conjunction with the apply valves and the dump valves. Even if the driver of the vehicle is not depressing the brake pedal 70, the ECU 22 can operate the plunger assembly 18 to provide a source of pressurized fluid directed to the wheel brakes, such as during an autonomous vehicle braking event.
In the event of a loss of electrical power to portions of the brake system 10, the brake system 10 provides for manual push through or manual apply such that the brake pedal unit 14 can supply relatively high pressure fluid to the conduits 36 and 38. During an electrical failure, the motor 214 of the plunger assembly 18 might cease to operate, thereby failing to produce pressurized hydraulic brake fluid from the plunger assembly 18. The isolation valves 30 and 32 will shuttle (or remain) in their positions to permit fluid flow from the conduits 36 and 38 to the wheel brakes 12a, 12b, 12c, and 12d. The simulator valve 116 is shuttled to its closed position to prevent fluid from flowing out of the input chamber 92 to the pedal simulator 16. During the manual push-through apply, the input piston 82, the primary piston 84, and the secondary piston 86 will advance leftwardly such that the passageways 106, 136, 144 will move past the seals 102, 132, and 140, respectively, to prevent fluid flow from their respective fluid chambers 92, 94, and 96 to the reservoir 20, thereby pressurizing the chambers 92, 94, and 96. Fluid flows from the chambers 94 and 96 into the conduits 38 and 36, respectively, to actuate the wheel brakes 12a, 12b, 12c, and 12d.
It may be desirable to run checks or tests, such as self-diagnostic tests, to determine if a leakage may have occurred somewhere within the brake system 10. It may also be desirable to run self-diagnostic tests to determine whether the brake system 10 is operating properly. These self-diagnostic tests may be run at any suitable time. For example, these tests may be run at vehicle shut down such as at the end of an ignition cycle when the driver turns off the engine. The tests may also be run after a delay of time such as, for example, 90 seconds or for several minutes after an end of an ignition cycle. This delay would assist in not disturbing the driver for tests that may generate some noise since it is likely that the driver and/or passengers will distance themselves from the vehicle after several minutes of time.
One such self-diagnostic test involves the detection of a possible leak within portions of the brake system 10, such as for example, at the wheel brakes 12a, 12b, 12c, and/or 12d. This test may also help in determining proper operation of the brake system 10. For simplicity, this test will be referred to herein as “the system leakage test”.
In furtherance of the system leakage test, the ECU 22 then preferably operates the plunger assembly 18 to pressurize the conduit 34 (output of the plunger assembly 18) to a first predetermined pressure level, such as about 30 bar, for example. Preferably, the ECU 22 initiates a control command to the plunger assembly 18 starting from an at rest position or homing position and then relatively rapidly advances the piston 206 of the plunger assembly 18 towards a predetermined distance, such as 30 mm for example. The plunger assembly 18 is stopped when the pressure within the conduit 34 reaches the first predetermined pressure level as measured by the pressure sensor 156. The piston 206 of the plunger assembly 18 is then held in a fixed position for a set duration of time, such as one second, for example. The ECU 22 will then monitor the pressure and/or the rate of change in pressure in the conduit 34 from information from the pressure sensor 156. The pressure within the conduit 34 generally represents the stable pressure throughout the portion of the brake system 10 associated with the wheel brakes 12a, 12b, 12c, and 12d. Generally, the pressure within the first pressure chamber 240 of the plunger assembly 18, the conduit 34, and the wheel brakes 12a, 12b, 12c, and 12d will be about the same.
If the ECU 22 detects that the pressure within the conduit 34 remains at a relatively high second predetermined pressure within the set duration of time, of about one second for example, the system leakage test is considered passed and an assumption can be made that there is no leakage in the portion of the brake system 10 generally associated with the wheel brakes 12a, 12b, 12c, and 12d. For example, if the pressure level stays above 16 bar, for example, from the initial 30 bar pressure level, the system leakage test is considered passed. It is noted that even during normal operating conditions that portions of the brake system 10 may have some tolerances such that it is normal for the pressure within the conduit 34 to decrease and for the system to have a certain amount of leak rate. During normal boosted braking conditions, the plunger assembly 18 is typically operated in a closed loop control to maintain the desired pressure level.
If the ECU 22 detects that the pressure within the conduit 34 falls to a relatively very low third predetermined pressure, such as for example less than 2 bar, during the set duration of time of about one second, it can be assumed that a relatively large leak has been detected. In this situation, the ECU 22 preferably immediately proceeds to undertake individual circuit tests, as will be explained in detail later below.
If the ECU 22 detects that the pressure within the conduit 34 drops to between relatively intermediate pressure levels of fourth and fifth predetermined pressures, the system leakage test can be considered failed but not as severely as if it fell to the very low pressure level, as discussed in the preceding paragraph. An example of intermediate pressure levels would be if the pressure within the conduit 34 stays between 2 bar and 16 bar after the set duration of time of about one second. In this situation, the ECU 22 may proceed with alternate testing or procedures, such as a flush routine. As will be explained in further detail later below, a flush routine forces a flow of fluid across valve seats and structures in a valve to help move or flush away any potential contaminate on the valve seats as the fluid travels through valve. For example, if the ECU 22 detects a pressure of between 2 bar and 16 bar, the ECU 22 may proceed with a flush routine. If desired, the ECU 22 may then do this multiple times in a row and if the ECU 22 detects too many readings between 2 bar and 16 bar, then an assumption of a leak exists and the ECU 22 may then proceed with individual circuit tests. Preferably though, instead of all in a row, the ECU 22 may wait after a select number of drive cycles or ignition off events and if the ECU 22 detects too many readings between 2 bar and 16 bar, such as for example three out of five times, then an assumption of a leak may be made and the ECU 22 may then proceed with individual circuit tests, as will be discussed below. In a preferred embodiment, five runs of the system leakage test are performed after each ignition off with the results written into NVRAM.
Additionally, the ECU 22 may also monitor the operation of the plunger assembly 18 to determine whether the system leakage test passes or fails. For example, if it is known (predetermined) that the piston 206 of the plunger assembly 18 should move no more than a given distance, for example 28 mm, corresponding to a 30 bar pressure increase in a worst case, but normal scenario, then any movement of the piston 206 greater than 28 mm (as indirectly sensed by the sensor 218) could be interpreted as failing this system leakage test. The ECU 22 may monitor this piston 206 movement, and if after a select number of times, such as five for example, the ECU 22 may proceed with individual circuit tests.
As explained above, under certain circumstances the system leakage test could be considered failed and the ECU 22 may proceed with individual circuit tests. The individual circuit tests are implemented in an attempt to discover in which of the two brake circuits of the brake system 10 the leak has occurred so as to then possibly isolate that brake circuit to help prevent loss of fluid from the brake system 10. The brake system 10, as illustrated in the Figures, generally includes a primary brake circuit and a secondary brake circuit. The primary brake circuit generally corresponds to the wheel brakes 12c and 12d that can be supplied with pressurized fluid from the primary pressure chamber 94 of the brake pedal unit 14 via the conduit 38. The primary brake circuit also generally includes the conduits and connections associated with the second isolation valve 32, the apply valves 58 and 62, and the dump valves 60 and 64. The secondary brake circuit corresponds to the wheel brakes 12a and 12b that can be supplied with pressurized fluid from the secondary pressure chamber 96 of the brake pedal unit 14 via the conduit 36. The secondary brake circuit also generally includes the conduits and connections associated with the first isolation valve 30, the apply valves 50 and 54, and the dump valves 52 and 56. The brake system 10 also includes a second brake circuit.
To determine in which of the two brake circuits the leak may be occurring, the brake system 10 enters into individual circuit tests. As an example, the ECU 22 may first enter into a test to help determine if a leak has occurred in the primary brake circuit. For simplicity, this test will be referred to herein as “the primary circuit test”.
If the pressure within the output of the plunger assembly 18, as measured by the pressure sensor 156 in the conduit 34, drops below a seventh predetermined pressure level, such as for example 16 bar, for a predetermined length of time, such as for example one second, then the primary circuit test is considered failed with the assumption that a leak exists in the primary circuit. If the pressure within the conduit 34 is above the seventh predetermined pressure level, such as for example 16 bar, for a predetermined length of time of one second, then the primary circuit test is considered passed with the assumption that no leak exists in the primary circuit.
Preferably, the ECU 22 then enters into a test to help determine if a leak has occurred in the secondary brake circuit. For simplicity, this test will be referred to herein as “the secondary circuit test”. The secondary circuit test is preferably performed immediately after the primary circuit test.
If the pressure within the output of the plunger assembly 18, as measured by the pressure sensor 156 in the conduit 34, drops below a ninth predetermined pressure level, such as for example 16 bar, for a predetermined length of time, such as for example one second, then the secondary circuit test is considered failed with the assumption that there exists a leak in the secondary circuit. If the pressure within the conduit 34 is above the ninth predetermined pressure level, such as for example 16 bar, for a predetermined length of time of one second, then the secondary circuit test is considered passed with the assumption that no leak exists in the secondary circuit.
If it is determined from the above primary circuit test and the secondary circuit test that one of or both of the primary and secondary brake circuits contain a leak, that leaking brake circuit can be isolated to prevent loss of fluid to the brake system 10. For example, if it was determined that a leakage has occurred in the secondary brake circuit associated with the wheel brakes 12a and 12b, the brake system 10 may enter into a half system mode such that the apply valves 50 and 54 of the leaking circuit are energized to prevent the flow of fluid therethrough. In this situation, a warning indicator is given to the driver of the vehicle that the brake system 10 requires maintenance, and the brake system 10 may function with only applying pressure to the wheel brakes 12c and 12d via the plunger assembly 18 until the brake system 10 is repaired. If a leakage is detected in both of the brake circuits, a warning can be issued to the driver (a light and an audible warning, for example) and the brake system 10 can enter into a four wheel manual push through mode to further alert the driver of a problem since the pedal feel of a manual push through event may be significantly different than under a normal boost event using the plunger assembly 18 to provide the source of pressurized fluid to the brake system 10. Additionally, any of the above described tests can be run again in the next ignition cycle to confirm operation of the brake system 10.
As discussed above, if the ECU 22 detects that the pressure within the conduit 34 drops to between relatively intermediate pressure levels of fourth and fifth predetermined pressures, the ECU 22 may proceed with a flush routine. The ECU 22 may also perform a flush routine as a regularly scheduled diagnostic test procedure. The details of the flush routine will now be explained. A flush routine forces a flow of fluid across valve seats and structures in a valve to help move or flush away any potential contaminate on the valve seats.
To initiate the flush routine, various components of the brake system 10 are controlled by the ECU 22. For example, the first and second isolation valves 30 and 32 are energized to their positions, as shown in
The ECU 22 then actuates the plunger assembly 18 such that the screw shaft 216 is rotated at a relatively high rotationally speed, such as about 1700 rpm, and the piston 206 is accordingly advanced rapidly forward to a predetermined distance such as about 45 mm. This predetermined distance may be associated with the full stroke length of plunger assembly 18. The rapid movement of the piston 206 of the plunger assembly 18 generates relatively high pressure, such as above 40 bar, and a generally rapid fluid flow through the now open first and second plunger valves 250 and 252 into the conduit 34. This fluid is forced through the second isolation valve 32 to help lift and flush away potential contaminates resting on the valve seat of the second isolation valve 32. This flush routine helps move the potential contaminates stuck at the second isolation valve 32 downstream. Preferably, there are filters located at the apply valves 50, 54, 58, and 62 to catch the dislodged contaminates. Note that contaminates stuck at the isolation valves 30 and 32 could prevent proper seating within the valves such that fluid can inadvertently flow from the conduit 34 to the brake pedal unit 14 when the isolation valves 30 and 32 are energized. Thus, the flushing routine helps prevent this issue.
The flush routine works by moving the motor very fast, and build ˜40 bar to move the potential contaminants stuck at the three way valve downstream. Because there is filters at the wheel ABS ISO valve, so it will catch the contaminants to prevent leakage. If there is contaminant stuck at three way valve, when the valve supposed to be energized to build pressure in boost and wheels, the contaminant will prevent the valve seat to seal properly, so fluid can flow from boost back to the master cylinder and cause leak
If desired, a second flush across the second isolation valve 32 can be performed almost immediately after this first flushing. Preferably, the ECU 22 waits for a short time period, such as about 500 msec, then energizes the second plunger valve 252, and de-energizes the first plunger valve 250 to permit a rearward pressure stroke of the plunger assembly 18 as described above. The plunger assembly 18 is then operated to rotate the screw shaft 216 at a relatively high rotational speed, such as about 2000 rpm, and the piston 206 is preferably retracted back to its at rest or home position. Similar to the forward pressure stroke, the rapid movement of the piston 206 of the plunger assembly 18 in a rearward pressure stroke generates relatively high pressure and a generally rapid fluid flow through the second isolation valve 32 to help lift and flush away potential contaminates resting on the valve seat of the second isolation valve 32.
The flush routine can be performed again across the second isolation valve 32, or more preferably, the flush routine is repeated but instead forcing rapid fluid flow through the first isolation valve 30. For this second flush routine, the first plunger valve 250 is energized to its open position, and the second plunger valve is de-energized to its open position. The apply valves 58 and 62 associated with the primary brake circuit are energized to their closed positions, thereby restricting fluid flow therethrough. The dump valves 52 and 56 associated with the secondary brake circuit are energized to their open positions. The remaining slip control valves such as the apply valves 50 and 54, and the dump valves 60 and 64, remain de-energized. The plunger assembly 18 is operated in the same manner as described above with respect to the first flush routine.
As stated above, the self-diagnostic tests can be run after each ignition cycle at vehicle shut down or at some delay of time thereafter. However, instead of after every ignition cycle or drive cycle it may be desirable to limit the testing if certain vehicle conditions or trigger conditions are met. One such condition may be that the self-diagnostic tests will not run if the vehicle has not driven more than a predetermined distance, such as 800 meters, for example, in an ignition cycle. Another condition may be that the vehicle should complete a drive cycle after ignition. A drive cycle can be defined as when the vehicle speed is kept above a certain speed, such as 14.4 m/s, for example, for a predetermined length of time, such as 30 seconds, for example, during an ignition cycle. Another condition may be that the vehicle standstill or idle time during the ignition cycle is less than a predetermined length of time, such as 270 seconds, for example. If the above conditions prevent the self-diagnostic tests from running for a number of times, such as 10 times in a row for example, the ECU 22 may still force the run of one or more of the self-diagnostic tests regardless of the driving distance conditions and the waiting time conditions.
Other conditions may also prevent the start of the self-diagnostic tests. One condition may be that the plunger assembly 18 must be operating normally without fault. It may also be desirable to monitor application of the brake pedal 70 and not to conduct the self-diagnostic tests if the driver is depressing the brake pedal. The tests may be aborted if it is determined that the driver has depressed the brake pedal 70 during the tests. In this situation, the test will be aborted and the ECU 22 will operate the brake system 10 accordingly to provide the desired boost pressure such as under a normal braking event. The ECU 22 may then wait for the release of the brake pedal 70 and start the test again. This may be done for a number of tries, such as twice in total, before aborting the tests. The self-diagnostic tests may also not be conducted if it is determined that the parking brake has not been set. If for example, an electric parking brake is detected to be applied before the tests starts, the tests will run normally. Preferably, the ECU 22 will also abort testing if the ignition has been turned on and will not re-try during that ignition cycle.
With respect to the various valves of the brake system 10, the terms “operate” or “operating” (or “actuate”, “moving”, “positioning”) used herein (including the claims) may not necessarily refer to energizing the solenoid of the valve, but rather refers to placing or permitting the valve to be in a desired position or valve state. For example, a solenoid actuated normally open valve can be operated into an open position by simply permitting the valve to remain in its non-energized normally open state. Operating the normally open valve to a closed position may include energizing the solenoid to move internal structures of the valve to block or prevent the flow of fluid therethrough. Thus, the term “operating” should not be construed as meaning moving the valve to a different position nor should it mean to always energizing an associated solenoid of the valve.
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims the benefit of U.S. Provisional Application No. 62/612,492, filed Dec. 31, 2017, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/068122 | 12/31/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62612492 | Dec 2017 | US |