VEHICLE BRAKING SYSTEM COMPRISING BRAKE RIGGING, AND VEHICLE EQUIPPED WITH SUCH A SYSTEM

Abstract
A braking system for a vehicle includes a brake rigging and a service and/or parking brake designed to act on at least one braking member of the vehicle via the brake rigging. The braking system has at least one device with at least one lining support and at least one lining that is mechanically attached to the at least one lining support. The device comprises at least two bearing zones in contact with the at least one braking member, and at least one recessed zone located between the two bearing zones.
Description
BACKGROUND
Technical Field

The inventive subject matter concerns the field of vehicle brakes. More particularly, the inventive subject matter concerns a braking system for a rail vehicle having brakes with at least one lining, provided with a braking linkage and with a service brake and/or parking brake configured to act on the braking members of the vehicle (for example, such as brake disks) via the braking linkage.


Discussion of Art

The vehicles referred to as having brakes with at least one lining are generally equipped with braking systems having service brake and/or parking brake cylinders, comprising a piston movable under the effect of a fluid under pressure. Movement of the piston actuates a braking linkage and drives a braking action (such as the clamping of a brake disk) by the lining of that linkage.


Such a braking system is mounted on the vehicle to be in contact with the brake disks or the wheels. In particular, the braking system may be mechanically connected to a bogie, to an axle fastened to the bogie, or to another device like the drive motor or the gearbox also mounted on the bogie.


The braking action gives rise to braking forces which may be transmitted to the mounting to which the braking system is mechanically connected via the braking linkage. These forces may generate deformations, or at least movements, of the braking linkage relative to the brake disk of the vehicle, thereby giving rise to irregular wear of the lining.


BRIEF DESCRIPTION

The inventive subject matter concerns a braking system for a vehicle having brakes with at least one lining. The braking system includes an improved braking linkage, while being simple, convenient and economical.


According to a first aspect, the inventive subject matter relates to a rail vehicle braking system, comprising a braking linkage and a service brake and/or parking brake configured to act on at least one braking member of the rail vehicle via the braking linkage. The linkage is provided with at least one device having at least one lining mounting and at least one lining mechanically connected to the at least one lining mounting. The device comprises at least two bearing regions for bearing on the at least one braking member and at least one set back region located between the two the bearing regions.


In other words, the device of the braking linkage (which contacts the braking member of the vehicle, for example in particular a brake disk) is provided with a bearing surface referred to as being discontinuous, with only the bearing regions which enable forces to be transmitted to the brake disk. This enables the transmission of the forces to the brake disk to be distributed. In particular, the bearing regions and the set back regions can be provided on the braking linkage device according to the type of braking system and/or the use of the rail vehicle. For example, the arrangement of the braking linkage of which the form, the arrangement and/or the materials of the lining mounting and/or of the linings, the fact of whether the braking linkage is a parking brake or else a service brake, the type of vehicle (tram, subway train, high-speed train, etc.) and/or the load of the vehicle, the journey made by the vehicle, and/or the type of braking member (diameter, thickness, material of the disk) may be parameters for determining the bearing and set back regions.


The placing of the bearing and set back regions may thus be predetermined, for example by trials in advance. Such bearing and set back regions are configured to distribute the transmission of the forces over the braking member. These regions are quite different from any regions for fastening the linings onto the lining mounting, these latter not being configured to distribute the transmission of the forces over the braking member.


Features according to the inventive subject matter that are preferred, simple, convenient and economical are presented below.


The system may comprise at least two linings mechanically connected to the lining mounting, at least one the bearing region being located facing opposite the respective lining. The at least two bearing regions and the at least one set back region may be provided on the at least one lining mounting. This, in particular, enables so-called standard linings to be used. The at least two bearing regions and the at least one set back region may be provided on the at least one lining.


The device may comprise a plurality of the bearing regions between which are formed the set back regions. The at least one lining mounting and/or the at least one lining may have a longitudinal general orientation and a transverse general orientation, with the bearing and set back regions succeeding each other in the longitudinal general orientation. At least one the bearing and/or set back region may extend fully or only partly along the transverse general orientation. The bearing and set back regions are provided substantially symmetrically relative to a transverse central axis of the device. This axis may for example constitute a median axis of the braking member of the rail vehicle.


The braking linkage may be provided with at least one lever extending from the service brake and/or parking brake to the device. The at least one lever to may be mechanically connected to the at least one lining mounting on an attachment region thereof which is located away from the at least one lining and which is at most 35 millimeters (mm) from a transverse central axis of the device.


The attachment region may be located between approximately 0 and 35 mm from the transverse central axis of the device. The attachment region may extend in a longitudinal general orientation of the device and over a length comprised between approximately 15 mm and approximately 75 mm. The attachment region may extend uninterruptedly on opposite sides of the transverse central axis of the device. The at least one attachment region may extend interruptedly on opposite sides of the transverse central axis of the device.


The system may comprise at least one force transmission link member mechanically connected at a first end to a mounting of the vehicle and at a second end, which is an opposite end to the first end, to the at least one lining mounting, in immediate proximity to the attachment region of the at least one lever. The at least one force transmission link member may be substantially L-shaped, or S-shaped. The at least one force transmission link member may extend substantially in a same plane as that in which extends the at least one lever. The at least one force transmission link member may be mechanically connected by pivotal connections respectively to the vehicle mounting and to the at least one lining mounting. The at least one force transmission link member may have an added functional clearance at its second end where it is connected to the at least one lining mounting. The at least one force transmission link member may be connected via a rotary joint to the at least one lining mounting. The at least one force transmission link member may be connected to the at least one lining mounting via a pivotal shaft pivoting in an aperture of considerably greater diameter than that of the pivotal shaft, or in an oblong aperture.


According to a second aspect, the inventive subject matter also relates to a rail vehicle comprising at least one braking member (for example in particular a brake disk) and at least one rail vehicle braking system as described above, which is configured to act on the at least one braking member.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure of the inventive subject matter will now be continued with the description of embodiments, given below by way of illustrative and non-limiting examples, with reference to the accompanying drawings.



FIG. 1 is a diagrammatic and partial illustration of a vehicle braking system provided in particular with a service brake, a parking brake, and with a control and actuation unit.



FIG. 2 is a partial and diagrammatic representation of the system illustrated in FIG. 1 mechanically connected to an axle for a bogie of a vehicle comprising such a vehicle braking system.



FIG. 3 is a diagrammatic representation of a lining mounting according to a first embodiment of the vehicle braking system of FIG. 1, which lining mounting is mounted facing opposite a first face of a brake disk also illustrated in FIG. 1.



FIG. 4 is a cross section view on IV-IV of FIG. 3;



FIG. 5 is a diagrammatic representation of a contact face of the lining mounting illustrated in FIG. 3.



FIG. 6 diagrammatically illustrates linings facing opposite the first face of the brake disk, which linings are provided to be carried by the lining mounting.



FIG. 7 is a similar view to that of FIG. 4, showing a first variant embodiment of the lining mounting.



FIG. 8 is a similar view to that of FIG. 5, showing the first variant embodiment of the lining mounting.



FIG. 9 is a similar view to that of FIG. 6, the linings being mounted on the first variant embodiment of the lining mounting.



FIG. 10 is a similar view to that of FIG. 8, showing a second variant embodiment of the lining mounting.



FIG. 11 is a similar view to that of FIG. 9, the linings being mounted on the second variant embodiment of the lining mounting.



FIG. 12 is a similar view to that of FIG. 10, showing a third variant embodiment of the lining mounting.



FIG. 13 is a similar view to that of FIG. 11, the linings being mounted on the third variant embodiment of the lining mounting.



FIG. 14 is a similar view to that of FIG. 3, showing a lining mounting according to a second embodiment of the rail vehicle braking system of FIG. 1.



FIG. 15 is a cross section view on XV-XV of FIG. 14;



FIG. 16 is a diagrammatic representation of a contact face of the lining mounting illustrated in FIG. 14.



FIG. 17 is a similar view to that of FIG. 6.



FIG. 18 is a similar view to that of FIG. 14, showing a force transmission link member mechanically connected to the lining mounting.



FIG. 19 is a similar view to that of FIG. 15, with addition of the force transmission link member.



FIG. 20 is a very diagrammatic view showing a lining mounting according to a third embodiment of the vehicle braking system.





DETAILED DESCRIPTION


FIG. 1 diagrammatically represents a vehicle braking system 1 for a vehicle having a brake with linings. This is a rail vehicle braking system structurally of the type described in European patent application EP 2 826 684. The vehicle braking system 1 comprises a body 2 forming a cylinder of both a service brake 6 and a parking brake 7, a control and actuation unit 3 configured to manage the operation of the service brake 6 and of the parking brake 7, a conveyance network of pneumatic pipes that is connected to the body 2 and to the control and actuation unit 3, and a braking linkage 4 mechanically linked to the body 2.


The body 2 has the form of a generally closed envelope. The service brake 6 comprises a service brake piston 8 movable relative to the body 2 in a first axial direction, and a thrust rod 9 also movable relative to the body 2 in a second axial direction perpendicular to the first axial direction. Together with the body 2 the braking piston 8 delimits a service brake pressure chamber 13.


The braking piston 8 has two sides including a first side 17 configured to act on the braking linkage 4 via the thrust rod 9 and a second side 18 which is an opposite side to the first side 17 and which is turned towards the service brake pressure chamber 13. The service brake 6 further comprises a notched rod 21 fastened to the second side 18 of the braking piston 8. This notched rod 21 extends longitudinally in the first axial direction. The braking piston 8 is configured to move in the body 2 while maintaining the service brake pressure chamber 13 relatively fluid-tight thanks to a membrane 14, for example formed by a seal, disposed between that braking piston 8 and inside edges of the body 2.


The service brake 6 may further comprise a wedge part 10 fastened to the first side 17 of the braking piston 8. This wedge part 10 may have a triangular section and be configured to cooperate with a set of rolling bearing stops 11, of which one of the rolling bearing stops may be linked to the body 2 while the other of the rolling bearing stops may be linked to the thrust rod 9. This thrust rod 9 may be provided with a wear adjuster configured to compensate for the wear of the linings of the brake 5 in order to avoid reduction of the braking force by excessive play (further to wear of the linings).


The service brake 6 may comprise a spring 12 disposed around the thrust rod 9, between the rolling bearing stop which is linked to the latter and an inside edge of the body 2. This spring 12 is configured to return the stop which is linked to the thrust rod 9 against the wedge part 10. The service brake 6 may comprise a first aperture 15 formed in the body 2 and configured to enable the movement of the thrust rod 9 through that first aperture 15. The service brake 6 may comprise a second aperture 16 formed in the body 2 and opening into the service brake pressure chamber 13. The service brake pressure chamber 13 is connected here by a first supply pipe 72 of the conveyance network of pneumatic pipes, more generally called brake pipe, which pipe is connected at the location of that second aperture 16, to a source of supply of pneumatic pressure agents (not shown).


The body 2 comprises a cavity 27 situated against the service brake pressure chamber 13 and in which is disposed the parking brake 7. The parking brake 7 comprises a blocking device formed by a blocking finger 20 movable relative to the body 2 and extending in the second axial direction. The parking brake 7 comprises a holding piston 23 movable relative to the body 2 and with the latter delimiting a parking brake pressure chamber 25. This holding piston 23 has two sides, respectively a first side 31 on which is attached the blocking finger 20 and which is turned towards the parking brake pressure chamber 25, and a second side 32 which is an opposite side to the first side.


The parking brake 7 comprises a spring member 24 disposed between the body 2 and the second side 32 of the holding piston 23. This spring member 24 is configured to act on that holding piston 23 and therefore on the blocking finger 20. The holding piston 23 and the spring member 24 may form a movable actuating device of the parking brake 7. The holding piston 23 is configured to move in the body 2 while maintaining the parking brake pressure chamber 25 relatively fluid-tight thanks to a membrane disposed between that holding piston 23 and the inside edges of the body 2. The parking brake 7 comprises a third aperture (not shown) formed in the body 2 and opening both into the parking brake pressure chamber 25 and into the service brake pressure chamber 13, which third aperture is configured to enable the movement of the blocking finger 20 through that third aperture. The relative sealing between the parking brake pressure chamber 25 and the service brake pressure chamber 13 is ensured by the presence of a seal 33 disposed at the interface between that third aperture and the blocking finger 20.


The parking brake 7 comprises a fourth aperture 28 formed in the body 2 and opening into the parking brake pressure chamber 25. The parking brake pressure chamber 25 may be connected here by a second supply pipe 71 of the conveyance network of pneumatic pipes, also called parking brake pipe, which is connected at the location of that fourth aperture 28, to the source of supply of pneumatic pressure agents 73 (visible in FIG. 2) via the unit 3.


The parking brake 7 comprises an unlocking part 29 to deactivate the parking brake 7. The unlocking part 29 may for example be attached on the second side 32 of the holding piston 23 and open to the outside of the body 2 through a fifth aperture (not shown) provided in that body 2 and opening into the cavity 27. The unlocking part 29 is accessible to be manipulated from outside the body 2 if required. The unlocking part 29 may be connected to an indicator device provided to indicate a state of the parking brake 7 and/or a state of the service brake 6. In particular, the unlocking part 29 may be coupled to a switch mechanically connected to that part 29 and having a first position and a second position selected according to the position of the unlocking part 29.


The service brake 6 is disposed in the body 2 and is configured to act on one or more braking members 35 of the rail vehicle via the braking linkage 4. The braking member 35 of the vehicle may comprise a brake disk (here viewed from above) mounted for example on a rail vehicle axle 36, or directly on the wheel to brake.


The braking linkage 4 is provided with a device 5 having linings which is provided to apply forces on the brake disk 35 when the linkage 4 is actuated. This device 5 here comprises two lining mountings 37 to each of which linings 38 are mechanically connected. In particular, two linings 38 may be mounted on each lining mounting 37. Each lining 38 is provided to be applied to contact the disk 35 to reduce its rotational speed and therefore that of the wheel to brake. The braking linkage 4 here comprises levers 40, for example that are substantially deformable. In the described example, each lever 40 is provided with an upper portion and with a lower portion which are joined and which extend from the service and parking brake to the device 5. Each portion of the levers 40 may be jointed to a central connector 41 via two pivots 42. The upper portion of each lever 40 may be linked by a first end to a respective joint 44, 45.


The braking linkage 4 may receive the body 2 between the upper portions of the deformable levers 40, at the location of the joints 44 and 45. The body 2 may be rotatably mounted on the joint 44 which is attached to an end of the thrust rod 9 whereas it may have a fixed mounting to the joint 45, which is directly attached to that body 2. The lower portion of each lever 40 may be linked, at a second end which is an opposite end to its first end, to one of the lining mountings 37 at the location of an attachment region 39 provided on the latter and which faces away from the linings 37. The braking linkage 4 may comprise a first fastening member 43 joined to the central connector 41 for the mounting of that braking linkage 4 on the rail vehicle; in order for the lining mountings 37 to be situated on respective opposite sides of the brake disk 35 (or of the wheel of the rail vehicle). The coming towards each other of the joints 44 and 45 may enable the lining mountings 37 to be moved apart from each other and that conversely, the separation of those joints 44 and 45 may enable the lining mountings 37 to be to clamped onto the brake disk 35 (or onto the rail vehicle wheel).


The control and actuation unit 3 is connected to the service brake pressure chamber 13 via the first supply pipe 72 to which it is connected. This unit 3 is connected to the parking brake pressure chamber 25 via the second supply pipe 71 to which it is connected. This unit 3 is supplied with pneumatic agents by a main pipe 70 which passes generally along the rail vehicle. The unit 3 comprises system members (not shown in FIG. 1) which are configured to receive and process representational information relative for example to operational settings of the rail vehicle, by a first electrical and/or pneumatic and/or manual type channel, denoted 50 in FIG. 1.


These system members are furthermore configured to receive and process representational information relating to parameters of use of the rail vehicle, by a second channel of electrical and/or pneumatic and/or manual type, which is denoted 60 in FIG. 1. These system members may for example be formed by pneumatic relays and/or solenoids and/or pressure switches and/or sensors and/or pressure reducing valves and/or electrical relays and/or electronic cards and/or central processing units or microprocessors, and/or random access memory components comprising registers adapted to record variables of the parameters created and modified during the execution of programs, and/or communication interfaces configured to send and receive data, and/or internal storage members, such as hard disks, able in particular to store the executable code of programs enabling the management of the service and parking brakes 6 and 7. The control and actuation unit 3 may be associated with one or more braking linkages of the vehicle.



FIG. 2 very diagrammatically shows the vehicle 48 provided with an axle forming a mounting 49 to which the system 1 is mechanically connected, via for example a second fastening member 47 which links the body 2 to the mounting 49. The system 1 may comprise at least one force transmission link member 50 also mechanically connected at a first end to the mounting 49 of the vehicle 48 and at a second end, which is an opposite end to said first end, to said to the lining mounting 37, in immediate proximity to said attachment region 39 of the lever 40. The lining mounting 37 here faces opposite a face of the disk 35 mounted on its axle shaft 36 of the vehicle 48.


A description will now be given in more detail, with reference to FIGS. 3 to 16, of the device 5 and of the arrangement of the levers 40 in relation to the device 5, in accordance with several embodiments. FIGS. 3 to 6 illustrate a first version of a first embodiment. The device 5 faces opposite the brake disk 35. The device 5, comprising a lining mounting 37 and lining 38, has a longitudinal general orientation and a transverse general orientation. A longitudinal central axis 52 and a transverse central axis 51 are illustrated. They correspond to the median axes of the brake disk 35 and, in the position illustrated in FIG. 3, respectively the transverse central axis 51 furthermore corresponds to a transverse central axis of the device 3.


The lever 40 is mechanically connected to the lining mounting 37 via the attachment regions 39. The attachment regions 39 are located at most at approximately 35 mm from the transverse central axis 51 of the device 5. This means that the distances E shown in FIG. 3 are each at most equal to 35 mm. Here, the attachment regions 39 are located on opposite sides of the transverse central axis 51 and thus, at most, extend over approximately 70 mm in the direction of the longitudinal general orientation. More generally, the attachment region or regions 39 may be located between approximately 0 and approximately 35 mm from the transverse central axis 51 and may extend in a longitudinal general orientation and over a length comprised between approximately 15 mm and approximately 70 mm.


In the described example, the attachment regions 39 extend interruptedly on opposite sides of the transverse central axis 51. In other words, the attachment regions 39 are distinct. As a variant, the attachment region may extend uninterruptedly on opposite sides of the transverse central axis 51. A longitudinal force application axis 53 is illustrated in fine chain line, while a longitudinal holding axis 54 is illustrated in thick chain line.


The longitudinal force application axis 53 is the one passing through the attachment regions 39 of the lining mounting 37, which regions enable the mechanical connection of the levers 40, while the longitudinal holding axis 54 is slightly offset relative to the longitudinal force application axis 53 and corresponds to the region for fastening the linings 53 onto the lining mounting 38.


The loads applied by the lever 40 of the braking linkage 4 on the device 5 of that linkage 4 to place it in contact with the brake disk 35 are thus substantially centered on the lining mounting 37. Since the attachment regions 39 of the lever 40 on the lining mounting 37 are close to the central transverse axis 51, this enables the lining mountings 37 to have a degree of freedom when it transmits forces to the brake disk 35. In the described example, the device 5 comprises at least two bearing regions 60 on the brake disk 35 and at least one set back region 61 located between the two bearing regions 60.


More generally, the device may comprise a plurality of bearing regions between which are formed set back regions. The bearing and set back regions 60, 61 succeed each other in the direction of the longitudinal general orientation of the device 5. The two bearing regions 60 and the set back region 61 are provided here on a face of the lining mounting 37, which is an opposite face to that on which are formed the attachment regions 39. Each of the two bearing regions 60 is provided here so as to be located facing opposite a respective lining 38.


This is shown in FIGS. 6 and 7 in which can be seen the bearing regions 60 provided on the lining mounting 37 and in which can also be seen favored contact regions 65 provided on the linings 38, which respectively correspond to the bearing regions 60. It will be noted that the bearing regions may be formed by protrusions on the lining mountings and/or that the set back region may be formed by recesses in the lining mountings. The bearing regions and the set back regions are thus located in planes that are offset. In the described example, the bearing regions 60 and the set back region 61 extend fully along the transverse general orientation of the device 5.


Furthermore, the bearing regions 60 and the set back region 61 are formed here substantially symmetrically relative to the transverse central axis 51. The device 5 and the braking linkage 4 which comes into contact with the brake disk 35 is thus provided with a bearing surface referred to as discontinuous, with only the bearing regions 60 enabling forces to be transmitted to the brake disk 35. This enables the transmission of the forces to the brake disk 35 to be distributed.



FIGS. 7 to 9 illustrate a second version. The difference compared with the preceding version is that the bearing regions 60 are closer to each other and to the transverse central axis 51, and the set back region 61 is more limited. This results in the favored contact regions 65 provided on the linings 38 and which respectively correspond to the bearing regions 60 are also closer to each other and to the transverse central axis 51. The attachment regions 39 are identical to those described above.



FIGS. 10 and 11 are similar views to those of FIGS. 8 and 9, except that the bearing regions 60 and the set back region 61 do not extend fully along the transverse general orientation of the device 5. On the contrary, the bearing regions 60 and the set back region 61 extend only partly along the transverse general orientation of the device 5. The same thus applies for the favored contact regions 65 provided on the linings 38 and which respectively correspond to the bearing regions 60. In the example described, the bearing regions 60 and thus the favored contact regions 65 are situated rather towards the outside of the brake disk 35.



FIGS. 12 and 13 are similar views to those of FIGS. 10 and 11, with the bearing regions 60 and the set back region 61 extending only partly along the transverse general orientation of the device 5, and rather towards the inside of the brake disk 35. The same thus applies for the favored contact regions 65 provided on the linings 38 and which respectively correspond to the bearing regions 60 and which are rather towards the inside of the brake disk 35. In the example described, the bearing regions 60 and thus the favored contact regions 65 are situated rather towards the outside of the brake disk 35.



FIGS. 14 to 17 illustrate a first version of a second embodiment. The device 5 differs from those described above in that the lever 40 is mechanically connected to the lining mounting 37 via a single attachment region 39. The attachment region 39 is at the location of the transverse central axis 51 of the device 5 and extends slightly on opposite sides of that axis 51. For example, the attachment region extends only approximately 10 mm to approximately 20 mm on opposite sides of the transverse central axis 51. This means that the distance E shown in FIG. 10 is at most equal to approximately 40 mm, in the direction of the longitudinal general orientation. More generally, such a single attachment region may extend in a longitudinal general orientation and over a length comprised between approximately 15 mm and approximately 70 mm. The single attachment region 39 here extends uninterruptedly on opposite sides of the transverse central axis 51.


The loads applied by the lever 40 of the braking linkage 4 on the device 5 of that linkage 4 to place it in contact with the brake disk 35 are thus substantially centered on the lining mounting 37. Since the attachment region 39 of the lever 40 on the lining mounting 37 is at the location of the central transverse axis 51, this enables the lining mountings 37 to have a degree of freedom when it transmits forces to the brake disk 35. In the described example, the device 5 comprises at least two bearing regions 60 on the brake disk 35 and at least one set back region 61 located between the two bearing regions 60. The bearing and set back regions 60, 61 succeed in the direction of the longitudinal general orientation of the device 5 and are identical to that of the device illustrated in FIGS. 3 to 6.


The two bearing regions 60 and the set back region 61 are provided here on a face of the lining mounting 37, which is an opposite face to that on which are formed the attachment regions 39, and each of the two bearing regions 60 is provided here so as to be located facing opposite a respective lining 38. Favored contact regions 65 are thus provided on the linings 38, which respectively correspond to the bearing regions 60. The bearing regions 60 and the set back region 61 extend fully along the transverse general orientation of the device 5, and are provided here substantially symmetrically relative to the transverse central axis 51.


The device 5 and the braking linkage 4 which comes into contact with the brake disk 35 is thus provided with a bearing surface referred to as discontinuous, with only the bearing regions 60 enabling forces to be transmitted to the brake disk 35. This enables the transmission of the forces to the brake disk 35 to be distributed.



FIG. 18 is a similar view to that of FIG. 14, with addition of the force transmission link member 50 visible very diagrammatically in FIG. 2. The force transmission link member 50 is mechanically connected at its first end to the mounting 49 of the vehicle and at a second end, which is an opposite end to its first end, to the lining mounting 37, and in immediate proximity to the single attachment region 39 of the lever 40 on that same lining mounting 37. The force transmission link member 50 may be mechanically connected by pivotal connections 70, 75 respectively to the mounting 49 of the vehicle and to the lining mounting 37. Since the attachment regions 39 of the lever 40 on the lining mounting 37 are close to and/or are centered on the transverse central axis 51 of the device 5, the pivotal connection 75 which connects the force transmission link member 50 to the lining mounting 37 is also at a location close to that same transverse central axis 51, thereby limiting the distance D shown in FIGS. 17 to 19. This in particular makes it possible to have an especially compact system 1.



FIG. 19 shows the same force transmission link member 50 mechanically connected to a lining mounting 37 of a device 5 similar to that described with reference to FIG. 15, with bearing regions 60 and a set back region 61 provided on the lining mounting 37, and with a single attachment region 39 of the lever 40 on the lining mounting 37.



FIG. 20 shows very diagrammatically the force transmission link member 50 mechanically connected to the lining mounting 37 of a device 5 quite close to those described above, but of which the bearing region 60 is formed here with steps. In other words, the bearing region 60 comprises different bearing portions 63 and 64 offset to a greater or lesser extent relative to the adjacent set back region 61. In particular, the bearing portion 63 forms what is designated an augmented-bearing region.


In variants not illustrated, the lining-mounting may comprise one or more set back regions extending for approximately 100 mm to approximately 300 mm from the transverse central axis of said device. The set back region or regions may be formed by cavities having a depth comprised for example between approximately 0.1 mm and approximately 0.5 mm.


According to a first example embodiment, the lining-mounting can comprise a single set back region extending for approximately 180 mm (or for 90 mm on opposite sides of the transverse axis), and having a cavity of approximately 0.2 mm; the rest of the lining-mounting overall forming one or more bearing regions.


According to a second example embodiment, the lining-mounting can comprise a first set back region extending for approximately 120 mm (or for 60 mm on opposite sides of the transverse axis), and having a cavity of approximately 0.3 mm, next the second set back regions either do or do not immediately succeed the first set back region, each extending for approximately 60 mm and having a cavity of approximately 0.15 mm; the rest of the lining-mounting overall forming one or more bearing regions.


According to a third example embodiment, the lining-mounting can comprise a first set back region extending for approximately 120 mm (or for 60 mm on opposite sides of the transverse axis), and having a cavity of approximately 0.35 mm, next the second set back regions either do or do not immediately succeed the first set back region, each extending for approximately 60 mm and having a cavity of approximately 0.2 mm; the rest of the lining-mounting overall forming one or more bearing regions.


Such arrangements of the set back regions make it possible to distribute the transmission of the forces over the braking member.


Other variants not illustrated are described below.


The force transmission link member may have an added functional clearance at least at its second end where it is connected to the lining mounting by its pivotal connection. In particular, the force transmission link member may be connected via a rotary joint to the lining mounting or instead via a pivotal shaft pivoting in an aperture of considerably greater diameter than that of the pivotal shaft, or in an oblong aperture. For example, an axis of the force transmission link member may be angularly offset to enable the device, including the lining mounting and the linings, to self-tilt to maintain optimum application of the braking force while making it possible to send the forces to the vehicle mounting. This in addition to makes it possible to limit the wear of the linings 38 obliquely, despite the deformations which for example the brake disk 35 may undergo.


The force transmission link member may be substantially L-shaped, or S-shaped, with the pivotal connections being respectively to the mounting of the vehicle and to the lining mounting 37. The force transmission link member may extend substantially in a same plane as that in which said lever extends. Such an arrangement is particularly compact and enables a maximum travel of the lining mounting relative to the mounting, thanks the L-shaped or S-shaped force transmission link member which does not cause hindrance by the movement of the lining mounting.


The bearing regions and/or the set back region may be provided in the linings rather than in the lining mountings. Some bearing and/or set back regions may extend fully along the transverse general orientation, while other of these regions may extend only partly. The bearing and set back regions are not provided substantially symmetrically relative to the transverse central axis. A single lining, rather than two linings, is mounted on each of the lining mountings, or, on the contrary, more than two linings are mounted on each of the lining mountings.


The force transmission link member may be mechanically connected to the vehicle mounting, directly or by an intermediate connecting part. The force transmission link member may be H-shaped, or Y-shaped, it being possible for this to be inverted, or for instance I-shaped, rather than L-shaped or S-shaped.


The rail vehicle braking system may be different from that described above in that it may concern only a service brake, or concern only a parking brake, and in that the mechanism may have springs as has for example been described in document EP 2 154 040.


More generally, the invention is not limited to the examples described and illustrated.

Claims
  • 1. A vehicle braking system, comprising: a braking linkage;one or more of a service brake or a parking brake configured to act on at least one braking member of a vehicle via the braking linkage, the braking linkage provided with at least one device having at least one lining mounting and at least one lining mechanically connected to the at least one lining mounting, the at least one device comprising plural bearing regions for bearing on the at least one braking member and at least one set back region located between the bearing regions.
  • 2. The vehicle braking system according to claim 1, further comprising at least two linings mechanically connected to the at least one lining mounting, at least one of the bearing regions located facing opposite a respective one of the at least one lining.
  • 3. The vehicle braking system according to claim 1, wherein the bearing regions and the at least one set back region are provided on the at least one lining mounting.
  • 4. The vehicle braking system according to claim 1, wherein the bearing regions and the at least one set back region are provided on the at least one lining.
  • 5. The vehicle braking system according to claim 1, wherein the at least one device comprises two or more of the bearing regions between which the at least one set back region is formed.
  • 6. The vehicle braking system according to claim 1, wherein one or more of the at least one lining mounting or the at least one lining have a longitudinal general orientation and a transverse general orientation, with the bearing regions and the at least one set back region succeed each other in the longitudinal general orientation.
  • 7. The vehicle braking system according to claim 6, wherein one or more of (a) at least one of the bearing regions or (b) the at least one set back region fully extends or only partly extends along the transverse general orientation.
  • 8. The vehicle braking system according to claim 1, wherein the bearing regions and the at least one set back region are provided substantially symmetrically relative to a transverse central axis of the at least one device.
  • 9. The vehicle braking system according to claim 1, wherein the braking linkage is provided with at least one lever extending from the one or more of the service brake or the parking brake to the at least one device, the at least one lever mechanically connected to the at least one lining mounting on an attachment region thereof that is located away from the at least one lining and which is at most 35 millimeters (mm) from a transverse central axis of the at least one device.
  • 10. The vehicle braking system according to claim 9, wherein the attachment region is located between approximately 0 and 35 mm from the transverse central axis of the at least one device.
  • 11. The vehicle braking system according to claim 9, wherein the attachment region extends in a longitudinal general orientation of the at least one device and over a length between approximately 15 mm and approximately 75 mm.
  • 12. The vehicle braking system according to claim 9, wherein the attachment region uninterruptedly extends on opposite sides of the transverse central axis of the at least one device.
  • 13. The vehicle braking system according to claim 9, wherein the attachment region interruptedly extends on opposite sides of the transverse central axis of the at least one device.
  • 14. The vehicle braking system according to claim 13, further comprising at least one force transmission link member mechanically connected at a first end to a mounting of the vehicle and at an opposite second end to the at least one lining mounting in immediate proximity to the attachment region of the at least one lever.
  • 15. A vehicle comprising at least one braking member and at least one vehicle braking system according to claim 1 which is configured to act on the at least one braking member.
Priority Claims (3)
Number Date Country Kind
1908510 Jul 2019 FR national
1908512 Jul 2019 FR national
1911666 Oct 2019 FR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage entry of International Patent Application No. PCT/EP2020/070888 (filed 23 Jul. 2020), which claims priority to French Patent Application No. 1908510 (filed 26 Jul. 2019), French Patent Application No. 1908512 (filed 26 Jul. 2019), and French Patent Application No. 1911666 (filed 18 Oct. 2019), the entire disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/070888 7/23/2020 WO