In any event, the present invention will become more clearly understood from the following description of preferred embodiments thereof, when taken in conjunction with the accompanying drawings. However, the embodiments and the drawings are given only for the purpose of illustration and explanation, and are not to be taken as limiting the scope of the present invention in any way whatsoever, which scope is to be determined by the appended claims. In the accompanying drawings, like reference numerals are used to denote like parts throughout the several views, and:
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
A motorcycle combustion engine E is mounted on a generally intermediate lower portion of the main frame 1 in a fashion tilted forwards and a radiator 21 is disposed forwards of the combustion engine E. The illustrated motorcycle is so designed that the rear drive wheel 11 can be driven by the combustion engine E by means of a substantially endless drive chain 14 and the front wheel 3 can be maneuvered through the handlebar 7. The seat rail assembly 12 in the rear frame portion of the motorcycle frame structure FR has a rider's seat 17 and a fellow passenger's seat 18 mounted thereon. A fuel tank 19 accommodating a quantity of fuel is mounted on the main frame 1 between the handlebar 7 and the rider's seat 17. Also, a fairing 20 made of a synthetic resin is fixedly mounted on a front portion of the motorcycle so as to cover a front to side region of the motorcycle frame structure FR, including a front area forwardly of the handlebar 7 and side areas generally laterally of and below the combustion engine E.
The combustion engine E so far shown is a four cylinder, four stroke combustion engine and has an engine casing EC including a crankcase CR, a cylinder block CY positioned atop the crankcase CR, and a gear casing GE positioned rearwardly of the crankcase CR. The combustion engine E also has a transmission accommodated within the gear casing GE as will be detailed later. A cylinder head 22 having a valve chamber defined therein is mounted atop the cylinder block CY and a cylinder head cover 23 is in turn mounted atop the cylinder head 22 so as to cover the valve chamber in the cylinder head 22.
As is well known to those skilled in the art, the engine casing EC, the cylinder head 22 and the cylinder head cover 23 altogether constitute an engine body 24.
The cylinder head 22 has a front surface area having a plurality of exhaust ports 25 defined therein and fluidly connected with exhaust tubes 28. The exhaust tubes 28 extends below the combustion engine E and are then communicated with a muffler 29 positioned at a rear portion of the motorcycle. An oil pan 27 accommodating a quantity of oil is provided below the crankcase CR.
Referring to
A combination filter and cooler unit 30, as will be described in detail later, is positioned outside the cylinder block CY and the crankcase CR and arranged at a location rearwardly of the cylinder block CY, but close to a bottom area of the cylinder block CY. This combination filter and cooler unit 30 is made up of an oil filter 31 operable to filter a lubricant oil supplied from an oil pump and an oil cooler 32 operable to cool such lubricant oil. The oil filter 31 and the oil cooler 32 are integrated together through a coupling bracket 33 interposed therebetween to define the combination filter and cooler unit 30.
Generally in the motorcycle combustion engine E, as shown in
However, in the present invention, the combination filter and cooler unit 30 is arranged at a location rearwardly of and in the vicinity of the bottom area of the cylinder block CY, where the center of gravity of the combustion engine E lies. Therefore, the mass of the combustion engine E is so centered in the vicinity of the center of gravity thereof as to render the weight of the combustion engine E kept in a well balanced condition and, hence, to allow the weight of the motorcycle to be balanced. This effect can be appreciated even when either one of the oil filter 31 and the oil cooler 32 is arranged at a location rearwardly of and in the vicinity of the bottom area of the cylinder block CY.
Also, in the combustion engine E shown in
A cooling recirculating circuit in a cooling system for the combustion engine E will now be described. A cooling water W, from which heat has been liberated in the radiator 21 shown in
On the other hand, the cooling water W used to cool the oil inside the oil cooler 32 flows through a cooler cooling water delivery passage 42 and then merges with the cooling water W within the cooling water return passage 37. In other words, the oil within the oil cooler 32 is cooled by the cooling water W which circulates in a short time within a short recirculating channel extending from the water pump 34 back to the water pump 34 through the cooling water supply passage 38, then through the branched passage 39, further through the oil cooler 32, yet further through the cooler cooling water delivery passage 42 and finally through the cooling water return passage 37. Because of this, the cooling water W flowing through this short recirculating channel permits the oil cooler 32 to exhibit an increased cooling performance since thanks to reduction in flow resistance the cooling water W can flow at an increased velocity. Thus, it has been found that the temperature of the oil within the oil cooler 32 could be reduced by about 5° C. than that hitherto experienced with the conventional combustion engine.
Also, since the water pump 34 is generally arranged laterally of the transmission 50, the distance from the water pump 34 to the oil cooler 32 can be reduced to a value smaller than that in the conventional case, in which the oil cooler is arranged forwardly of the combustion engine, and, correspondingly, the pipe line used to define the cooling water passage extending from the water pump 34 to the oil cooler 32 can have a reduced length. Yet, since the pipe line from the water pump 34 to the oil cooler 32 and the pipe line used to define the cooling water return passage 37 are positioned at a backside (rearwardly) of the cylinder block CY and do not exist forwardly of the combustion engine E, they will not interfere with the exhaust tubes 28 and the cooling water piping in the oil cooler 32 can terminate at a backside of the cylinder block CY and, therefore, maintenance and servicing inspection thereof will not be disturbed by the presence of the exhaust tubes 28 and can be accomplished easily.
The recirculating path for the lubricant oil will now be described with particular reference to
Referring particularly to
The coupling bracket 33 has a filter cover 85 fitted thereto by means of cover mounting bolts 86 and positioned below the oil filter 31. This filter cover 85 is effective to avoid an undesirable fall of drops of the oil OL onto the engine body 24, which would otherwise occur when the oil filter 31 is removed for maintenance from the coupling bracket 33 in the absence of the filter cover.
The oil OL pumped up by the oil pump 47 is supplied through an oil supply passage 33a, defined in the coupling bracket 33 of the combination filter and cooler unit 30, to the oil filter 31 at which foreign matter such as, for example, metallic particles and/or dust is removed from the oil OL. The oil OL, substantially purified by the oil filter 31, subsequently flow into the oil cooler 32 through an oil communicating passage 33b, defined in part in the hollow stud bolt 77 and in part in the coupling bracket 33. The oil OL is, after having been cooled by the cooling water W introduced into the oil cooler 32 through the branched passage 39, delivered from an oil delivery port 33c, defined in the coupling bracket 33, into a main delivery passageway 49 of a branched supply passage 48. The oil pump 47 is provided on the same pump shaft 35 of the water pump 34, which is drivingly coupled with the crankshaft 59 (
Referring again to
It is to be noted that the transmission 50 so far shown in connection with the preferred embodiment of the present invention is of a type, in which a clutch gear 80 on the input shaft 51 is meshed with a crank gear (not shown) so that the drive force can be transmitted to the input shaft 51 through a clutch 79. Also, the drive force transmitted to the input shaft 51 is in turn transmitted from the output shaft 52 to the motorcycle drive chain 14, shown in
The branched supply passage 48 shown in
The oil OL flowing into the main gallery 57 is supplied to various portions of the combustion engine E, including, for example, the crankshaft 59 and a big end 60 of a connecting rod, to lubricate them and, at the same time, to the cylinder head 22 through a fourth branched passageway 65 to lubricate a camshaft (not shown).
It is to be noted that although not shown, the oil OL may be supplied through a passageway, branched off from the first branched passageway 53, to an oil pressure tensioner or an oil control valve for driving a variable valve timing mechanism in the camshaft.
As shown in
Also, in the oil recirculating path for the oil OL described hereinabove, the oil OL, cooled as it flows through the oil cooler 32 in
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings which are used only for the purpose of illustration, those skilled in the art will readily conceive numerous changes and modifications within the framework of obviousness upon the reading of the specification herein presented of the present invention. For example, the present invention can be equally applied to a vehicle combustion engine having a different number of cylinders than that shown and described hereinbefore. In particular, the present invention can be equally applied to any other vehicle than the motorcycle, such as, for example, a three-wheeled vehicle or a four-wheeled off-road vehicle.
Accordingly, such changes and modifications are, unless they depart from the scope of the present invention as delivered from the claims annexed hereto, to be construed as included therein.
Number | Date | Country | Kind |
---|---|---|---|
2006-256346 | Sep 2006 | JP | national |
2006-256347 | Sep 2006 | JP | national |