The present inventions relate generally to the field of components such as panels or other structures for use in vehicles (e.g., automobiles such as cars, trucks, and the like; airplanes, boats, etc.). More specifically, the present inventions relate to methods for making interior panels or structures for vehicles or other applications.
Interior vehicle components such as panels (e.g., instrument panels, door panels, etc.) conventionally include a substrate made of a relatively rigid material and an outer surface or skin. The outer surface or skin is sometimes referred to as “cover stock.” For example, the surface of a door panel facing the passenger compartment (sometimes referred to as the “A” surface of the panel) may include a fabric, leather, polymeric, or other type of material provided thereon. Such surface material may be provided in any of a wide variety of colors, textures, and/or designs.
In certain applications (e.g., door panel applications), it may be desirable to have an extension in the form of a flange or overhang for enabling coupling of the component to other vehicle components. For example, it may be desirable to mold a flange as part of a door panel along a top or upper portion thereof to allow the top or upper portion of the door panel to engage a feature provided in a door assembly. In this manner, the interior door panel may be relatively securely coupled to the door assembly.
In conventional applications, the flange or overhang is formed in a secondary operation subsequent to molding the component. That is, a component is made (e.g., by injection molding) after which a flange is attached to the component in a secondary operation or, e.g., by cutting and bending a portion of the component to form the flange.
There is a need to provide a method for making or producing components such as panels or other structures for use in vehicles that include one or more extensions in the form of flanges or overhangs. There is also a need to provide a method for making or producing such components in a relatively quick and efficient manner. There is also a need to provide a method for making or producing such components such that the extension includes a cover stock provided thereon such that the extension is covered by the cover stock at the “A” surface of the component and the substrate forming the flange is not visible to passengers in a passenger compartment or through a window adjacent the flange. It would be desirable to provide a method for making or producing a vehicle component including one or more of these or other advantageous features.
An exemplary embodiment of the invention relates to a method of forming a component for a vehicle. The method includes providing a cover stock material in a mold having a first mold section, a second mold section, and a third mold section, and moving the first mold section and the third mold section toward the second mold section. The third mold section moves in a direction substantially transverse to the movement of the first mold section such that the third mold section engages and directs an end portion of the cover stock material to bend inward toward a first surface of the cover stock material. The method further includes forming a substrate by injecting a resin into the mold adjacent to the first surface of the cover stock material. A molded-in extension is formed comprising the substrate and the end portion of the cover stock.
Another exemplary embodiment of the invention relates to a trim panel for use in a vehicle. The trim panel includes a one-piece molded member having a body portion and an extension. The extension is provided at a periphery of the body portion for securing the trim panel to the vehicle. The extension is formed of a cover stock material and a substrate. The body portion and the extension are formed during the same molding operation wherein the cover stock material is positioned into a mold, the mold is reconfigured to bend an edge of the cover stock material inward, and a resin is injected into the mold to form the substrate.
Another exemplary embodiment of the invention relates to a method of forming a component for a vehicle. The method includes forming a substrate by injecting a resin into a mold having a first mold section and a second mold section. The substrate has an extension in an extended position. The method further includes providing a boundary between the extension and a body portion of the substrate for assisting in moving the extension between the extended position and a retracted position, subjecting the substrate to localized heating and bending the extension about the boundary until the retracted position is achieved. The extension provides a mechanism for securing the component to the vehicle.
a is a cross-sectional view of a portion of the vehicle component shown in
a is a cross-sectional view of a portion of the vehicle component shown in
Referring to
Referring to
Referring to
As illustrated in
As shown in
As movable portion 204 of mold 200 continues to move toward stationary portion 202 of mold 200, a cavity or space 214 between material 210 and stationary portion 202 decreases in size, while end portion 212 of material 210 continues to bend or flex. During the closure of mold 200, slide 206 moves to assist material 210 in pending or flexing. Thus, as shown in
The result of this injection molding process is the formation of a component such as a panel (e.g., a door panel) that includes an extension in the form of a flange or overhang such as that shown in
One advantageous feature of producing a vehicle component using a method such as that shown in
While
As shown in
Component 300 includes a portion 304 that extends away from a body 306 of component 300 and which is separated from body 306 by a boundary 308 such as an indentation or channel molded into component 300. Boundary 308 is intended to provide a location about which portion 304 may rotate during the formation of an extension in the form of a flange or overhang. Component 300 is formed in an injection molding process according to an exemplary embodiment. The mold used for the injection molding process includes a feature which forms boundary 308. While boundary 308 is shown as a continuous channel formed along the edge of portion 304, in a variety of other configurations for boundary 308 may be used. For example, a discontinuous channel may be formed along and edge of portion 304 between end portion 304 and body 306. A number of different configurations which may be used to form a boundary between a portion of the component and the body of the component. For example, according to an exemplary embodiment, a combination of ribs and channels may be used for the boundary.
According to an exemplary embodiment, a heating device (not shown) is configured to direct infrared radiation toward component 300 to heat boundary 308. According to an exemplary embodiment, the heating device is an Infrastake device available from Extol, Inc. of Zeeland, Mich. According to other exemplary embodiments, other types of heating devices may be used to heat the material adjacent the boundary (e.g., a heated rod or device may be provided adjacent boundary 308 to heat the material in the region of boundary 308 to allow bending/flexure of the component about the boundary; such heated rods act to heat the component using convection or radiation due to the proximity of the rods to the component). According to other exemplary embodiments, the boundary may be heated using other types of radiation (e.g., microwave radiation.
Heating the material in the region of boundary 308 changes the rigidity of the material and allows the relatively easy flexure or bending of portion 304 to form an extension in the form of a flange or overhang. For example, at least a portion of the material in the region of the boundary may melt to allow relatively easy flexure of the material about the boundary. The temperature utilized may depend on a variety of factors, such as the type of polymer utilized. Such temperature should be selected such that it heats the material to a sufficient degree so as to allow for relatively easy flexibility of the portion about the boundary.
During operation of the heating device, the material of boundary 308 and regions adjacent boundary 308 are heated. According to an exemplary embodiment, the distance between the lamp of the heating device and the surface of the component is approximately 11 millimeters (mm) and the component is heated for a period of between approximately 10 and 20 seconds, followed by a hold time of approximately 20 seconds (i.e., portion 304 is rotated about boundary 308 and held in the desired position for approximately 20 seconds subsequent to removal of the heating device) such that the portion 304 remains in the rotated position.
By directing the infrared radiation at the boundary (which is provided in the form of an indentation or channel such that the material is thinner in the boundary than in the surrounding material), the effects of the heating on the substrate are localized such that only the immediate area is affected.
One advantageous feature of utilizing a post-molding process such as that described with respect to
As one of skill in the art will appreciate from the foregoing disclosure, the present application relates to a number of ways of forming a component for a vehicle such as a panel (e.g., a door panel) that includes an extension in the form of a flange or overhang (e.g., a downturn flange). One nonexclusive exemplary embodiment includes providing a cover stock material (e.g., leather, cloth, fabric, a polymeric material, etc.) in a mold (e.g., an injection mold) and closing the mold such that a portion of the cover stock material is bent or flexed to form an exterior portion of the extension. The mold includes a stationary portion or surface, a moving portion or surface, and a slide. The moving portion of the mold moves toward the stationary portion while the slide moves in a direction transverse to that of the movement of the moving portion of the mold such that it engages and directs a portion of the cover stock material to bend in the direction of the motion of the slide. After the mold is closed to its final position, a polymeric material is injected into the mold adjacent the cover stock material (e.g., in a cavity or space between the cover stock material and the stationary portion of the mold) to form a substrate for the component. In this manner, a molded-in flange or overhang is formed in the component having a cover stock material applied to the flange or overhang.
According to another nonexclusive exemplary embodiment, a post-molding operation in utilized in which a substrate (either by itself or having a cover stock material bonded or coupled thereto) is subjected to localized heating (e.g., using an infrared radiation heating device). The substrate (and any attached cover stock material) is bent around the heated region due to melting of the substrate material in this region. To assist in the bending process, the region to be heated may include a molded in or post-molded feature such as a boundary in the form of an indentation or channel. In this manner, the physical dimensions of the region to be heated by the heating device is different from the surrounding material (e.g., it is thinner due to the formation of a channel at the boundary region) such that the heating may be accomplished more quickly and/or may be accomplished in a manner that does not substantially affect regions of the component away from the boundary. After the portion of the substrate is heated, a portion of the substrate is bent or flexed to form an extension such as a flange or overhang. Such bending may utilize automated equipment that moves or forces a portion of the substrate to rotate about the heated region or may be accomplished manually.
The construction and arrangement of the elements of the vehicle component as shown in the preferred and other exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied (e.g., more than one flange may be created in a single component (e.g., a door panel may include multiple flanges formed by the methods described herein). It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, including any of a wide variety of moldable plastic materials (such as high-impact plastic) in any of a wide variety of colors, textures and combinations. Components such as those shown herein may be used in non-vehicle applications as well, including but not limited to furniture such as chairs, desks, benches, and other furniture items. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the scope of the present inventions.
The present application claims priority to U.S. Provisional Patent Application No. 60/579,734, filed on Jun. 15, 2004 and titled METHOD FOR MAKING A VEHICLE COMPONENT, the full disclosure of which is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/020715 | 6/14/2005 | WO | 00 | 12/14/2007 |
Number | Date | Country | |
---|---|---|---|
60579734 | Jun 2004 | US |