This application claims priority to Japanese Patent Application No. 2021-174555 filed on Oct. 26, 2021, incorporated herein by reference in its entirety.
The present disclosure relates to a vehicle control device, a system, a method, and a non-transitory storage medium.
Japanese Unexamined Patent Application Publication No. 2019-505059 (JP 2019-505059 A) discloses an autonomous vehicle service platform communicatively connected to a plurality of autonomous vehicles that autonomously drives on a road network via a network. The autonomous vehicle service platform remotely controls the autonomous vehicles and provides users with various services using the autonomous vehicles.
In addition, Japanese Unexamined Patent Application Publication No. 2020-013557 (JP 2020-013557 A) discloses a system for evaluating risks associated with vehicle traveling by using a digital twin formed on a cloud based on data collected from a plurality of vehicles via a network.
In a system in which a vehicle and a control device provided on the cloud are connected via a network, a communication delay occurs between the vehicle and the cloud. Therefore, when the vehicle is controlled by the control device, it is desired to reduce the influence of the communication delay that occurs between the vehicle and the cloud.
The disclosure provides a vehicle control device capable of reducing the influence of a communication delay that occurs between a vehicle and a cloud when the vehicle is remotely controlled by using a control device provided on the cloud, and the like.
A first aspect of the disclosure relates to a vehicle control device. The vehicle control device includes one or more processors. The processors are configured to perform communication with a plurality of vehicles, transmit and receive data to and from the vehicles, acquire a communication delay time between the vehicle control device and a controlled vehicle that is a target of remote control among the vehicles, based on the transmitted and received data, and generate a control signal to be transmitted to the controlled vehicle for remote control based on the acquired communication delay time.
A second aspect of the disclosure relates to a system. The system includes a plurality of vehicles and a vehicle control device. The vehicle control device includes one or more processors. The processors are configured to perform communication with the vehicles, transmit and receive data to and from the vehicles, acquire a communication delay time between the vehicle control device and a controlled vehicle that is a target of remote control among the vehicles, based on the transmitted and received data, and generate a control signal to be transmitted to the controlled vehicle for the remote control based on the acquired communication delay time.
A third aspect of the disclosure relates to a method that is executable by a computer of a vehicle control device including one or more processors and one or more memories and configured to perform communication with a plurality of vehicles. The method includes transmitting and receiving data to and from the vehicles, acquiring a communication delay time between the vehicle control device and a controlled vehicle that is a target of remote control among the vehicles, based on the transmitted and received data, and generating a control signal to be transmitted to the controlled vehicle for the remote control based on the communication delay time.
A fourth aspect of the disclosure relates to a non-transitory storage medium storing instructions that are executable by a computer of a vehicle control device including one or more processors and one or more memories and configured to perform communication with a plurality of vehicles and that cause the computer to perform the following functions. The functions include transmitting and receiving data to and from the vehicles, acquiring a communication delay time between the vehicle control device and a controlled vehicle that is a target of remote control among the vehicles based on the transmitted and received data, and generating a control signal to be transmitted to the controlled vehicle for the remote control based on the communication delay time.
According to the above aspects, when the vehicle is remotely controlled by using the control device provided on the cloud, the influence of the communication delay that occurs between the vehicle and the cloud can be reduced.
Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like signs denote like elements, and wherein:
When a vehicle control device of the disclosure remotely controls a vehicle, which is a control target, the vehicle control device predicts a communication delay time at a future vehicle position where a remote control is performed by using a database that stores past statistical communication quality data corresponding to a road map, and generates and transmits a control signal suitable for a vehicle that ensures time synchronization between a virtual space formed on a cloud and a real space, based on the predicted communication delay time and a digital twin. In this way, the influence of the communication delay that occur between the vehicle and the cloud is reduced.
Hereinafter, an embodiment of the disclosure will be described in detail with reference to the drawings.
The communication device group 200 constituting the digital twin system 10 includes a control target vehicle 210, an information providing vehicle 220, and an information terminal 230. The control target vehicle 210 is a controlled vehicle that is subject to remote control which the vehicle control device 100 executes utilizing a large amount of data collected by the vehicle control device 100. The control target vehicle 210 provides at least data regarding a vehicle state, which will be described later, to the vehicle control device 100. The information providing vehicle 220 is a vehicle that is not subject to remote control and merely provides data related to communication quality, which will be described later, to the vehicle control device 100. The information terminal 230 is, for example, a smartphone or a tablet terminal, and is a communication device that provides data related to communication quality to the vehicle control device 100, similar to the information providing vehicle 220.
As information included in data related to the communication quality (or radio wave quality) provided by the information providing vehicle 220 or the information terminal 230 to the vehicle control device 100, “time and position information” including the time (time stamp) when the information is measured, detected, or acquired, and the latitude and longitude of a global positioning system (GPS) that specifies the position of the vehicle, “communication information” including the name of a service provider that provides the communication line 500, a cell identification (ID) that is information that can specify a wireless base station, or the like, and “communication quality information” including execution speed (vertical average and peak throughput), communication delay time, packet loss, radio field strength RSSI, or the like may be exemplified. The time and position information can be acquired by using the clock function, the GPS reception function, or the like, implemented in the information providing vehicle 220 and the information terminal 230. The communication information can be acquired by using a communication function implemented in the information providing vehicle 220 or the information terminal 230. As an example, the communication quality information can be calculated from a result obtained by executing an information measurement tool or information measurement application software, or the like, implemented or installed in advance in the information providing vehicle 220 and the information terminal 230, and transmitting a predetermined test signal to the vehicle control device 100 (measurement server, or the like) at a predetermined cycle. In addition to the above method, highly precise communication quality information can be provided to the control target vehicle 210 for reducing the processing load based on a Ping value by basic software to measure communication reachability and network round-trip time, a response speed obtained by transmitting and receiving data via the communication line 500 using actual control signals, or the like.
As information included in the data regarding the vehicle state provided by the control target vehicle 210 to the vehicle control device 100, in addition to the time and position information described above, “trajectory information” including at least the vehicle speed (time series history) and the vehicle orientation (current state), which are information on the traveling trajectory of the vehicle, can be exemplified. The trajectory information may further include navigation (setting route) information, direction indicator operation information (current state), accelerator operation amount and braking amount information (time series history), acceleration and deceleration information (time series history), shift range (D/B/R) information (current state), steering angle information (time series history), traveling lane information (current state), information on traffic lights in the oncoming lane (current state), road information including traffic congestion information (current state), or the like. The trajectory information can be acquired via an electronic control unit (ECU) that controls a sensor device or the like mounted on the control target vehicle 210.
When prediction of the communication delay time, which will be described later, in the vehicle control device 100 is possible just by data related to the communication quality provided by the information providing vehicle 220 or the information terminal 230, the control target vehicle 210 does not have to provide data related to the communication quality to is the vehicle control device 100. Further, since the information providing vehicle 220 and the information terminal 230 are communication devices that participate in the system for the purpose of making communication delay time prediction with high precision and high efficiency, the information providing vehicle 220 and the information terminal 230 do not have to be indispensable for the digital twin system 10. However, in order to predict the communication delay time with high precision and high efficiency, it is considered that data related to communication quality is provided from a large number of control target vehicles 210, information providing vehicles 220, and information terminals 230.
The vehicle control device 100 is configured to communicate with communication devices (not shown) mounted on the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230 via the communication line 500. Then, the vehicle control device 100 may suitably execute the remote control of the control target vehicle 210 by receiving (collecting) data on communication quality and data on the vehicle state from the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230, or transmitting a predetermined control signal to the control target vehicle 210. The vehicle control device 100 is provided, for example, on the cloud (for example, a cloud server).
The communication unit 110 performs communication with the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230 to receive predetermined data (data on the vehicle state, data on communication quality, or the like), transmit and receive predetermined test signals (signals for checking the communication quality, or the like), transmit predetermined control signals (signals for remote control, or the like), and so on.
The collection unit 120 collects the data on the vehicle state and the data on communication quality provided from the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230 from time to time via the communication unit 110. The collection unit 120 utilizes the data on the vehicle state for the generation of the digital twin 160 and utilizes the data on the communication quality for the formation of the communication quality map database 150.
The estimation and prediction unit 130 estimates a future position (position in the future) in which the control target vehicle 210 will travel next after a predetermined time by using the data on the vehicle state provided from the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230, and data stored in the digital twin 160. More specifically, the estimation and prediction unit 130 estimates the future position of the control target vehicle 210 based on the traveling information (vehicle speed, traveling direction, navigation setting route, or the like) received from the control target vehicle 210 via the communication unit 110. The estimated future position of the control target vehicle 210 is used to generate the digital twin 160.
Further, the estimation and prediction unit 130 predicts a communication delay time (or communication delay amount) at the future position where the control target vehicle 210 is estimated to travel next by using the data related to communication quality stored in the communication quality map database 150. More specifically, the estimation and prediction unit 130 predicts the communication delay time at the future position of the control target vehicle 210 from the communication quality (execution speed, communication delay time, packet loss, radio field strength RSSI, or the like) obtained from the communication quality map database 150 based on course information (measurement time, GPS latitude and longitude, communication line service provider name, or the like) provided from the control target vehicle 210 via the communication unit 110. The execution speed includes a vertical average or peak throughput, which is the amount of information that can be received per unit time needed to calculate the time taken to complete the reception of information. The packet loss or radio field strength RSSI indicating the possibility that information does not reach is used when the retransmission time of the information is considered.
In this way, the collection unit 120 and the estimation and prediction unit 130 can function as an acquisition unit capable of estimating the future position in which the control target vehicle 210 travels and acquiring the communication delay time that occurs between the control target vehicle 210 and the vehicle control device 100 at the estimated future position.
The generation unit 140 generates a control signal for remote control of the vehicle to be transmitted to the control target vehicle 210 based on the communication delay time at the future position of the control target vehicle 210 predicted by the estimation and prediction unit 130. A method for generating a control signal based on the communication delay time will be described later.
The communication quality map database 150 is a storage unit that stores a plurality of pieces of data related to communication quality provided from the control target vehicle 210 and the information providing vehicle 220, and the information terminal 230 via the communication unit 110. The communication quality map database 150 statistically stores past communication quality data needed to predict the communication delay time at the future position where the vehicle is estimated to travel in the estimation and prediction unit 130, in a map format where the past communication quality data corresponds to map information for the road. Examples of information included in the data related to communication quality stored in the communication quality map database 150 include the data measurement time, the GPS latitude and longitude, the communication line service provider name, the wireless base station cell ID, the execution speed (vertical average or peak throughput), the communication delay time, the packet loss, and the radio field strength RSSI.
The digital twin 160 is a storage function unit for reproducing a virtual world time-synchronized with the real world on a cloud computer by updating and storing data on the current and past vehicle states (vehicle position, traveling time, or the like) collected for the control target vehicle 210 in real time. Further, the digital twin 160 can generate future prediction data regarding the control target vehicle 210 from current and past data and information, based on a request. Examples of information included in the data stored in the digital twin 160 include vehicle information (VIN, or the like), information on traffic of other vehicles (including bicycles, pedestrians, or the like), map information, time information, position information (GPS latitude and longitude), and trajectory information (vehicle speed, or the like) that is a traveling trajectory.
As shown in
Next, processes executed by the vehicle control device 100 according to the present embodiment will be described with reference to
The vehicle control device 100 determines whether or not data on the vehicle state has been received from the control target vehicle 210. The data on the vehicle state, which has been received from the control target vehicle 210, includes information on the position of the vehicle, time information (time stamp), and information on the traveling trajectory of the vehicle (trajectory information) at the time of data transmission (or data creation). The trajectory information includes at least the speed of the vehicle and the orientation of the vehicle. The trajectory information may also include navigation information, information from the direction indicator, accelerator operation amount and braking amount information, acceleration and deceleration information, shift range (D/B/R) information, steering angle information, road information, traffic light information for traveling and oncoming lanes, traffic congestion information, and the like.
In step S401, when data on the vehicle state is received from the control target vehicle 210 (yes in S401), the process proceeds to step S402.
The vehicle control device 100 calculates the delay time (actual communication delay time) actually occurring in the communication between the control target vehicle 210 and the vehicle control device 100. This actual communication delay time may be calculated by the difference between the time information (time stamp) included in the data on the vehicle state received from the control target vehicle 210 and the time when the vehicle control device 100 receives the data.
When the actual communication delay time is calculated in step S402, the process proceeds to step S403.
The vehicle control device 100 derives a probability of occurrence of a vehicle speed at a vehicle position of the control target vehicle 210 at the time when the control target vehicle 210 transmits the data on the vehicle state (or the time when the data is created). The probability of occurrence of the vehicle speed at the vehicle position can be derived based on the road information, traffic congestion information, past vehicle speed information, or the like, included in the data on the vehicle state received from the control target vehicle 210 or possessed by the digital twin 160. The probability of occurrence of the vehicle speed at the vehicle position is stored in a database in, for example, a map format.
In step S403, when the probability of occurrence of the vehicle speed at the vehicle position of the control target vehicle 210 at the data transmission time is derived, the process proceeds to step S404.
The vehicle control device 100 derives the probability of occurrence of the position of the control target vehicle 210, which is estimated at the time when the vehicle control device 100 receives the data on the vehicle state. More specifically, the vehicle control device 100 derives the probability of occurrence of the vehicle position, which is estimated as a position where the control target vehicle 210 is moving at the time when the vehicle control device 100 receives the data transmitted from the control target vehicle 210 after the actual communication delay time has elapsed, based on the actual communication delay time that occurs between the vehicle control device 100 and the control target vehicle 210, the probability of occurrence of the vehicle speed at the vehicle position of the control target vehicle 210 at the data transmission time, and the trajectory information included in the data on the vehicle state received from the control target vehicle 210. The probability of occurrence of the vehicle position can be derived, for example, as follows.
The vehicle control device 100 may derive the probability of occurrence of the vehicle position of the control target vehicle 210 every certain time (for example, one second) from the time when the vehicle control device 100 receives the current data until the next time new data is received from the control target vehicle 210. The certain time is set to an optimum value depending on the planned use of the control signal, the demand for precision for the vehicle position, and the like.
In step S404, when the probability of occurrence of the vehicle position of the control target vehicle 210 estimated at a data reception time is derived, the process proceeds to step S405.
The vehicle control device 100 generates (updates) the digital twin 160 based on the derived probability of occurrence of the vehicle position of the control target vehicle 210. In this way, it is possible to obtain the digital twin 160 in which the data communication delay and the transmission cycle are corrected.
As in the above example, when the vehicle control device 100 derives the probability of occurrence of the vehicle position of the control target vehicle 210 every certain time (for example, one second) from the time when the data on the vehicle state is received, the digital twin 160 is generated every time corresponding to the deriving of the probability of occurrence in synchronization with the current time.
When the digital twin 160 is generated in step S405, the process proceeds to step S401, and the data correction control is repeated.
The vehicle control device 100 determines whether or not the communication delay time is needed to be predicted. The determination is made, for example, when there is an explicit request for remote control from the control target vehicle 210, or when a response to a test signal for confirming communication quality is received from the control target vehicle 210.
When the communication delay time is needed to be predicted in step S501 (Yes in S501), the process proceeds to step S502.
The vehicle control device 100 acquires the communication quality at the future position of the control target vehicle 210. More specifically, the vehicle control device 100 acquires (extracts) the most promising communication quality information on the future position of the control target vehicle 210 from the communication quality map database 150 based on course information (measurement time, GPS latitude and longitude, communication line service provider name, or the like) provided by the control target vehicle 210. The determination as to whether or not the communication quality information is most promising can be made based on conditions such as whether the information is strict information, high-probability information, latest actual performance information, and so on.
In step S502, when the communication quality at the future position of the control target vehicle 210 is acquired, the process proceeds to step S503.
The vehicle control device 100 calculates a delay time (predicted communication delay time) predicted to occur in communication at the future position of the control target vehicle 210 based on the communication quality information acquired in step S502. As an example, when the communication quality is good, a relatively short time is calculated as the predicted communication delay time, and when the communication quality is poor, a relatively long time is calculated as the predicted communication delay time.
When the predicted communication delay time at the future position of the control target vehicle 210 is calculated in step S503, the process proceeds to step S501, and the communication delay time prediction is repeated.
The vehicle control device 100 determines whether or not a control signal for the control target vehicle 210 is needed to be generated. The determination is made, for example, when there is an explicit request for remote control from the control target vehicle 210, or when the vehicle control device 100 detects a situation in which remote control of the control target vehicle 210 is needed.
When the control signal is needed to be generated in step S601 (Yes in S601), the process proceeds to step S602.
The vehicle control device 100 acquires a predicted communication delay time that occurs in communication at the future position of the control target vehicle 210. The predicted communication delay time is a value calculated in the operation of step S503 in the above-mentioned communication delay time prediction.
In step S602, when the predicted communication delay time generated in the communication at the future position of the control target vehicle 210 is acquired, the process proceeds to step S603.
The vehicle control device 100 generates and transmits a control signal for the control target vehicle 210 at the future position, in other words, a control signal according to content of control synchronized with a time when the control signal is expected to be received by the control target vehicle 210 at the future position. More specifically, the control signal needed to remotely control the control target vehicle 210 that has traveled to the future position in the real time in a real space is generated with the synchronized time in a virtual space. Then, the generated control signal is transmitted to the control target vehicle 210 at a timing when the time control in the virtual space and the time control in the real space are synchronized, based on the predicted communication delay time acquired in step S602 above.
For example, a situation is considered in which a vehicle X traveling straight in the south direction may collide with a vehicle Y traveling straight in the east direction at an intersection 40 seconds later (time T). In the situation, as remote control of the vehicle X, there is a method of decelerating the speed of the vehicle X such that the vehicle Y passes through the intersection first. Here, it is assumed that a predicted communication delay time of the vehicle X in the area near the intersection is ten seconds. In this case, even if the operation of “passing through the intersection after ten seconds” is transmitted to the vehicle X as a control signal twenty seconds before time T, the vehicle X receives the control signal with a delay of ten seconds from the real time in the real space, and thus, actually, the operation refer to an operation of “passing through the intersection after twenty seconds (= indication of ten seconds plus delay of ten seconds)”, and the collision between the vehicle X and the vehicle Y cannot be avoided.
Therefore, in the method of the present embodiment, the control signal is transmitted to the vehicle X with a time traced back (making earlier) by the predicted communication delay time such that the time when the content of control is considered in the virtual space is synchronized with the time when the vehicle receives the control signal in the real space. Specifically, in the above-mentioned situation, considering that the predicted communication delay time is ten seconds, a control signal intended to transmit the indication “passing through the intersection after twenty seconds” to the vehicle X twenty seconds before time T is not generated, and instead, a control signal intended to transmit the indication “passing through the intersection after twenty seconds” to the vehicle X thirty seconds before time T, which is a time traced back (making earlier) by ten seconds, is generated.
In step S603, when the control signal for the control target vehicle 210 at the future position is generated and transmitted, the process proceeds to step S601, and the control signal generation is repeated.
Further using
As shown in
On the other hand, in processing by the vehicle control device 100 according to the present embodiment illustrated in
Further, as in processing by the vehicle control device 100 according to the present embodiment illustrated in
As described above, with the vehicle control device 100 according to the embodiment of the present disclosure, past statistical communication quality data is stored in the storage unit (communication quality map database 150), where the past statistical communication quality data corresponds to the road map based on the data related to the communication quality transmitted and received to and from the communication device group 200 (control target vehicle 210, information providing vehicle 220, information terminal 230). With the communication quality data, the vehicle control device 100 can predict the communication delay time at the future vehicle position where the remote control is to be performed when the vehicle control device 100 instructs the control target vehicle 210 to execute remote control, and can generate and transmit a control signal suitable for performing remote control using the digital twin 160 based on the predicted communication delay time.
By the processing, the control signal that is corrected based on the predicted communication delay time, and that synchronizes the time in the virtual space formed on the cloud using the digital twin 160 with the real time in the real space (ensuring time synchronization) can instruct the control target vehicle 210 by remote control. Therefore, it is possible to reduce the influence of the communication delay that occurs between the vehicle and the cloud.
Although one embodiment of the disclosure has been described above, the disclosure can be regarded as a vehicle control device, a method that is executable by the vehicle control device including one or more processors and one or more memories, a control program for executing the method, a computer-readable non-transitory storage medium that stores the control program, and a system including the vehicle control device and vehicles.
The disclosure is useful in the case where it is desired to reduce the influence of communication delay that occurs between a vehicle and a cloud when the vehicle is remotely controlled by using the vehicle control device provided on the cloud, or the like.
Number | Date | Country | Kind |
---|---|---|---|
2021-174555 | Oct 2021 | JP | national |