The present invention relates to a vehicle control device, a vehicle control method, and a vehicle control system that control a vehicle speed and an inter-vehicle interval in response to operation of an adjusting unit by a vehicle passenger and information relating to following of a preceding vehicle.
Conventionally, there is known Adaptive Cruise Control (hereinafter abbreviated as ACC) which acts as follows: the presence/absence of a preceding vehicle is detected by radar, camera, or the like; if a preceding vehicle is detected, speed control is performed so as to maintain a predetermined inter-vehicle distance below a predetermined upper limit speed set in advance; and if no preceding vehicle is detected, the speed control is performed so as to maintain the predetermined upper limit speed set in advance (see, for example, Patent Document 1).
Patent Document 1: JP 2002-178787 A
In this kind of ACC, in addition to the main switch for switching on/off of the system, a plurality of manually operable switches are generally used to set targets of the vehicle speed and the inter-vehicle interval. Examples are a set switch that sets the current traveling speed of the vehicle to a predetermined upper limit speed, an acceleration switch that increases the currently set predetermined upper limit speed, a deceleration switch that decreases the currently set predetermined upper limit speed, and an inter-vehicle interval setting switch that sets the inter-vehicle distance.
However, since it is necessary to operate a large number of switches many times at the time of setting the vehicle speed and the inter-vehicle interval, the switch operation of a passenger of the vehicle is complicated and difficult to understand. In addition, even if an attempt is made to quickly cause the vehicle behavior to react after merging or lane change, it is difficult to directly convey the intention of the passenger, such as acceleration, deceleration, and decrease and increase of inter-vehicle interval, to the vehicle, which may create discomfort.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle control device, a vehicle control method, and a vehicle control system capable of making a switch operation by a vehicle passenger intuitive and readily understandable, and capable of directly conveying the intention of the passenger to suppress discomfort.
According to one aspect of the present invention, there is provided a vehicle control device, comprising a control unit that performs a calculation, based on input information, for changing at least one of a target vehicle speed of a vehicle and a target inter-vehicle interval between the vehicle and a preceding vehicle traveling in front of the vehicle, wherein the control unit: changes at least one of the target vehicle speed and the target inter-vehicle interval depending on input follow-up information relating to following of the preceding vehicle and input operation information relating to a way of operating an adjusting unit by a passenger of the vehicle; and outputs a control command for controlling a braking/driving device to achieve the changed target vehicle speed or the changed target inter-vehicle interval, the braking/driving device breaking or driving the vehicle.
In addition, according to another aspect of the present invention, there is provided a vehicle control method for changing at least one of a target vehicle speed of a vehicle and a target inter-vehicle interval between a vehicle and a preceding vehicle traveling in front of the vehicle based on input information, the method comprising: changing at least one of the target vehicle speed and the target inter-vehicle interval depending on obtained information relating to following of the preceding vehicle and obtained information relating to a way of operating an adjusting unit by a passenger of the vehicle; and outputting a control command for controlling a braking/driving device to achieve the changed target vehicle speed or the changed target inter-vehicle interval, the braking/driving device breaking or driving the vehicle.
Furthermore, according to another aspect of the present invention, there is provided a vehicle control system comprising: an adjusting unit with which a passenger adjusts at least one of a target vehicle speed of a vehicle and a target inter-vehicle interval between the vehicle and a preceding vehicle traveling in front of the vehicle; a control unit that changes at least one of the target vehicle speed and the target inter-vehicle interval depending on input information relating to following of the preceding vehicle and input information relating to a way of operating the adjusting unit by the passenger of the vehicle and outputs a control command for achieving the changed target vehicle speed or the changed target inter-vehicle interval; and a braking/driving device that obtains the control command output from the control unit, and breaks or drives the vehicle based on the control command.
In the present invention, at least one of the target vehicle speed and the target inter-vehicle interval is changed depending on the information relating to the way of operating the adjusting unit by the passenger of the vehicle and the information relating to following of the preceding vehicle. The passenger of the vehicle can control the vehicle speed and the inter-vehicle interval depending on the way of operating the adjusting unit, so that the switch operation can be intuitive and readily understandable. In addition, the intention of the passenger such as acceleration, deceleration, and decrease and increase of the inter-vehicle interval can be directly conveyed to the vehicle depending on the way of operating the adjusting unit, so that the vehicle can quickly react. Thus, it is possible to suppress discomfort for the passenger.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In this example, adjusting unit 10 is installed on a steering wheel 150 and is adjusted by the operation of the driver's hand, for example, the thumb or the index finger. (It would be the driver who operates in this description, but it is not limited to the driver, and a passenger of a vehicle may operate.) Adjusting unit 10 includes: a system switch that acts as a main switch for switching ACC on/off; an up button that acts as an acceleration adjusting unit (for example, a push button type up switch); and a down button that acts as a deceleration adjusting unit (for example, a push button type down switch). A support request signal SS generated by the system switch, an acceleration command SU generated by the up button, and a deceleration command SD generated by the down button each are supplied to control unit 20.
Vehicle speed sensor 30 obtains the traveling speed of vehicle 100 from the rotation of the tires and outputs a vehicle speed signal SP to control unit 20. Preceding vehicle sensor 40 recognizes the situation of the outside by image recognition, to detect the distance and the relative speed to the preceding vehicle (or the vehicle traveling in front, which is referred to as the preceding vehicle in the present embodiment) in the own vehicle lane. Then, preceding vehicle sensor 40 outputs signal SE indicating the presence/absence of the preceding vehicle of vehicle 100 and the inter-vehicle interval to the preceding vehicle (follow-up information relating to following of the preceding vehicle), to control unit 20.
Accelerator pedal sensor 50 detects the opening degree of the accelerator pedal with which the driver accelerates the own vehicle in normal traveling, and outputs a detection signal SA to an engine controller 130. Brake pedal sensor 60 detects the brake pedal position/pressure for decelerating the own vehicle, and outputs a detection signal SB to a brake controller 140. Detection signal SA is input to control unit 20 via engine controller 130, and detection signal SB is input to control unit 20 via brake controller 140.
Control unit 20 controls a braking/driving device that breaks or drives vehicle 100, and performs a calculation, based on the various input information, for changing at least one of a target vehicle speed of vehicle 100 and a target inter-vehicle interval to the preceding vehicle traveling in front of vehicle 100. Specifically, control unit 20 changes the target vehicle speed and the target inter-vehicle interval depending on follow-up information SE relating to following of the preceding vehicle input from preceding vehicle sensor 40, and operation information relating to the way in which adjusting unit 10 is operated by the passenger of vehicle 100 (acceleration command SU, deceleration command SD). Then, control unit 20 outputs a control command (braking/driving command SF) for controlling the braking/driving device so as to achieve the changed target vehicle speed or the target inter-vehicle interval.
Here, the braking/driving device means a device that combines a braking function and a driving function, such as a braking device (including a brake 110 or a motor regeneration) and a driving device (including an engine 120, or a motor). That is, control unit 20 outputs braking/driving command SF (driving command SFa, and braking command SFb) respectively to engine controller 130 that controls engine 120 and brake controller 140 that controls brake 110, to support the driver in driving vehicle 100 to achieve the target vehicle speed or the target inter-vehicle interval.
Calculation unit 23 of travel support controller 21 receives each input of: vehicle speed signal SP from vehicle speed sensor 30; signal SE, from preceding vehicle sensor 40, indicating the presence/absence of the preceding vehicle and the inter-vehicle interval to the preceding vehicle; ACC on/off signal (support request signal SS) from the system switch 11 of adjusting unit 10; the information relating to the way of operating, from up button 12 (acceleration command SU); the information relating to the way of operating, from down button 13 (deceleration command S); detection signal SA of the opening degree of the accelerator pedal, from accelerator pedal sensor 50; and detection signal SB of the brake pedal position/pressure, from the brake pedal, to calculate the target inter-vehicle interval and the target vehicle speed.
In addition, processing unit 24 receives the inputs of: vehicle speed signal SP from vehicle speed sensor 30; and signal SE, from preceding vehicle sensor 40, indicating the presence/absence of the preceding vehicle and the inter-vehicle interval to the preceding vehicle, to calculate an acceleration command for inter-vehicle interval control and vehicle speed control based on the target inter-vehicle interval and target vehicle speed calculated by calculation unit 23 and the information detected by vehicle speed sensor 30 and preceding vehicle sensor 40.
Then, arbitration unit 25 arbitrates the control amount as the final travel support system and outputs the target acceleration to VMC 22. VMC 22 calculates the command values of an engine system 160 and a brake system 170 from the input control amount and the vehicle state, and outputs a driving command SFa and a braking command SFb respectively to engine controller 130 and brake controller 140 so as to achieve the target acceleration, to control the actuators of engine system 160 and brake system 170.
Alternatively, as illustrated in
System switch 11 of adjusting unit 10 instructs the start and end of operation of the travel support, and generates a support request signal SS to output the signal to travel support controller 21. System switch 11 determines on/off of what is called “automatic driving level 2” function. Travel support controller 21 acquires operation information, for example, information relating to time from adjusting unit 10, and performs control to change the target vehicle speed and the target inter-vehicle interval.
Up button 12 outputs operation information (acceleration command SU) relating to the way of operating to travel support controller 21 of control unit 20, and sets the control target of the travel support system on the acceleration side. Up button 12 changes the control of the braking/driving device by control unit 20, for example, depending on the length of the pressing time and the presence/absence of the preceding vehicle. In addition, similarly to up button 12, down button 13 also outputs operation information (deceleration command SD) relating to the way of operating to travel support controller 21 of control unit 20, and sets the control target of the travel support system on the deceleration side. Down button 13 also changes the control of the braking/driving device by control unit 20, depending on, for example, the length of the pressing time and the presence/absence of the preceding vehicle.
In this way, the buttons at positions that can be operated with the thumb or index finger can be seen in the normal steering holding state, so that they are readily understandable. In addition, the buttons, which mean the operations on the acceleration side and the deceleration side, are arranged across or adjacent to the main switch that switches the system on/off. This makes them readily understandable and allows eliminating mistakes since the vehicle behaviors have no difference between the acceleration side and the deceleration side though the action of the button differs depending on the control state.
When it is detected that the inter-vehicle time or inter-vehicle distance is greater than a predetermined threshold value and the preceding vehicle is absent or far away based on the follow-up information which relates to following of the preceding vehicle, pressing up button 12 for a short time (short pressing) increases the target vehicle speed by a predetermined vehicle speed (for example, +5 km/h). On the other hand, when it is detected that the inter-vehicle time or the inter-vehicle distance is equal to or smaller than the predetermined threshold value and the vehicle is following the preceding vehicle based on the follow-up information, pressing the button for a short time decreases the target inter-vehicle time or the target inter-vehicle distance by a predetermined inter-vehicle interval (for example, −0.1 s).
On the other hand, when it is detected that the inter-vehicle interval between vehicle 100 and the preceding vehicle is greater than a predetermined threshold value based on the follow-up information, pressing up button 12 for a time equal to or longer than a predetermined time (long pressing) outputs a command for acceleration by a predetermined amount (0.15 G acceleration) to the braking/driving device, and changes the target vehicle speed to the vehicle speed at the end of the operation of adjusting unit 10.
In contrast, when it is detected that the inter-vehicle interval between vehicle 100 and the preceding vehicle is equal to or smaller than the predetermined threshold value based on the follow-up information, the long pressing outputs a command for acceleration by the predetermined amount (0.15 G acceleration) to the braking/driving device, and changes the target inter-vehicle interval to the vehicle speed at the end of the operation of adjusting unit 10.
When it is detected that the inter-vehicle time or inter-vehicle distance is greater than the predetermined threshold value and the preceding vehicle is absent or far away based on the follow-up information which relates to following of the preceding vehicle, down button 13 decreases the target vehicle speed by a predetermined vehicle speed (for example, -5 km/h). On the other hand, when it is detected that the inter-vehicle time or the inter-vehicle distance is equal to or smaller than the predetermined threshold value and the vehicle is following the preceding vehicle based on the follow-up information, down button 13 increases the target inter-vehicle time or the target inter-vehicle distance by a predetermined inter-vehicle interval (for example, +0.1 s).
On the other hand, when it is detected that the inter-vehicle interval between vehicle 100 and the preceding vehicle is greater than the predetermined threshold value based on the follow-up information, pressing down button 13 for a time equal to or longer than the predetermined time (long pressing) outputs a command for deceleration by a predetermined amount (0.15 G deceleration) to the braking/driving device, and changes the target vehicle speed to the vehicle speed at the end of the operation of adjusting unit 10.
In contrast, when it is detected that the inter-vehicle interval between vehicle 100 and the preceding vehicle is equal to or smaller than the predetermined threshold value based on the follow-up information, the long pressing outputs a command for deceleration by the predetermined amount (0.15 G deceleration) to the braking/driving device, and changes the target inter-vehicle interval to the inter-vehicle interval at the end of the operation of adjusting unit 10.
As described above, the target vehicle speed and the target inter-vehicle interval are controlled depending on the presence/absence of the preceding vehicle (or the length of the inter-vehicle distance) and the length of the pressing time of up button 12 and down button 13. This can reduce the number of buttons requiring operation to two: acceleration and deceleration, and allows them to be intuitive and readily understandable. In addition, when a quick reaction is required, it is easy to directly convey the intention of the passenger such as acceleration and deceleration, and decrease and increase of the inter-vehicle interval. Thus, it is possible to suppress discomfort for the driver. Furthermore, repeated short pressing of up button 12 and down button 13 allows the target vehicle speed to be set in units of 5 km, or allows the target inter-vehicle interval to be set in units of 0.1 s, which also allows fine target setting to be readily performed.
Note that, in
When the driver releases up button 12 at the timing t3, the preceding vehicle is absent in the example of
At timing t4, when down button 13 is pressed down for a short time for a little deceleration to keep the legal speed, the deviation from the target vehicle speed is small, so that a small deceleration command is issued (timing t5). Therefore, the acceleration/deceleration is gentle in consideration of the ride quality, and the vehicle speed can be controlled with priority to the ride quality.
Note that the target vehicle speed is set in 5 km/h increments for pressing up button 12 and down button 13 for a short time, but, at the time of the first pressing, the acceleration/deceleration is not performed by 5 km/h but by the speed that is insufficient in 5 km/h increments. For example, if up button 12 is pressed for a short time to accelerate during travel at 49 km per hour, the vehicle is accelerated to 50 km per hour, and thereafter to 55 km/h and 60 km/h. On the other hand, similarly, when down button 13 is pressed for a short time to decelerate during travel at 49 km per hour, the vehicle is decelerated to 45 km per hour, and thereafter, to 40 km/h and 35 km/h. Since the legal speed is usually set in units of 10 km/h, the target vehicle speed can be readily set to the legal speed.
When the vehicle catches up with a distant preceding vehicle at timing t6, the inter-vehicle interval is controlled to the initial set value of the target inter-vehicle interval. When the up button 12 is pressed for a short time at the timing t7 in order to narrow the initial inter-vehicle interval setting (to prevent another vehicle from cutting in front), an acceleration command, issued at timing t8, increases the vehicle speed so that the vehicle is controlled to a narrowed target inter-vehicle interval.
On the other hand, when long pressing of down button 13 is performed at timing t9 to widen the inter-vehicle interval, a deceleration command is issued through the timing t10-t11 when down button 13 is held pressed, so that the vehicle speed is reduced, and the vehicle is controlled to maintain the inter-vehicle interval at the timing tll when down button 13 is released. When increase of the inter-vehicle interval is desired, long pressing of down button 13 generates a constant deceleration just that long, so that the inter-vehicle interval can be increased fast, and can be set according to the driver's preference. In this way, the inter-vehicle interval can be set according to the driver's preference in response to the pressing time of down button 13.
Next, the vehicle control method according to a first embodiment of the present invention will be described in detail with reference to the flowcharts of
The first embodiment is an example of a traveling control method of vehicle 100 based on vehicle speed control and inter-vehicle time control (which may be inter-vehicle distance control) in a general cruise control system. Setting the target values for the vehicle speed control and the inter-vehicle time control in the following steps S101 to S135 improves usability and suppress discomfort. The processes of steps S101 to S135 are executed, for example, in a cycle of 50 ms. And compared to a cruise control system with a large number of buttons and complicated button operation, the method is capable of suppressing discomfort and fine control set of the driver with understandability of the button operation.
First, step S101 is executed for reading the behavior (vehicle information) such as the vehicle speed, which is the traveling speed of the own vehicle, and the acceleration, which is the change thereof.
Step S102 is executed for reading the distance, relative speed, and the like to the preceding vehicle traveling in the own vehicle lane, from the camera mounted on the own vehicle.
The next step S103 is executed for reading the driver's operation information of the own vehicle including: the operation state of up button 12 or down button 13 installed on steering wheel 150; the operation state of system switch (on/off button) 11 of the travel support control; and the operation state of the accelerator pedal or the brake pedal taken by accelerator pedal sensor 50 or brake pedal sensor 60.
In step S104, if it is detected that the button operation is pressing up button 12 for a short time, for example, less than 0.3 s, based on the driver's operation information read in step S103, the process proceeds to step S105, and if not, the process proceeds to step S109.
In the following step S105, the following variable is set and the process proceeds to step S106.
Long pressing acceleration=0 G
Here, the long pressing acceleration is an acceleration command value for achieving a strong demand for acceleration/deceleration, which is expressed by the driver's long pressing up button 12 or down button 13 at steering wheel 150, and the method of use thereof will be described in step S132.
In step S106, if it is detected that the vehicle is not currently following the preceding vehicle, that is, the preceding vehicle is absent or the inter-vehicle distance to the preceding vehicle is equal to or longer than the predetermined distance, based on the preceding vehicle information read in step S102, the process proceeds to step S107, and if not, the process proceeds to step S108.
Here, the distance equal to or longer than the predetermined distance is a distance corresponding to, for example, an inter-vehicle time of 2.5 to 3 s with the preceding vehicle at the vehicle speed of the own vehicle read in step S101.
In the next step S107, the following variable is set, and the process proceeds to step S128.
Target vehicle speed=target vehicle speed+5 km/h
Here, the target vehicle speed is the target value of the traveling speed of the own vehicle, and it is set to addition (=target for accelerating the own vehicle), for example, when the restriction in which it is within 0 to 120 km/h is satisfied.
In the next step S108, the following variable is set, and the process proceeds to step S128.
Target inter-vehicle interval=target inter-vehicle interval−0.1 s
Here, the target inter-vehicle interval is “the target value of inter-vehicle time=inter-vehicle distance/vehicle speed” with the preceding vehicle, and it is set to subtraction (=target for approaching the preceding vehicle), in other words, the target for acceleration, for example, when the restriction in which it is within 1.0 to 2.5 s is satisfied.
In step S109, if it is detected that the button operation keeps pressing up button 12 for a long time, for example, 0.3 s or longer, based on the driver's operation information read in step S103, the process proceeds to step S110, and if not, the process proceeds to step S111.
In the next step S110, the following variable is set and the process proceeds to step S128.
Long pressing acceleration=+0.15 G
Here, the command value for acceleration is set to 0.15 G, which means the value is set so that the driver can predict the vehicle behavior. For example, the value is set to a constant value or it is set so that it brings a constant acceleration feeling (for example, the higher the speed is, the more the value is lowered down to about +0.07 G from +0.15 G).
However, using a setting mode or the like that reflects the driver's preference, the acceleration feeling may be changed to a preferable value instead of permanently constant value of +0.15 G if the vehicle is stopped.
In this way, setting the command value to a value greater than the normal control command allows the driver's intention of acceleration/deceleration to be firmly reflected.
In step S111, if it is detected that there is no button operation this time and the button operation up to the last time is pressing up button 12 for a long time based on the driver's operation information read in step S103, the process proceeds to step S112.
In step S112, the following variable is set and the process proceeds to step S113.
Long pressing acceleration=0 G
In step S113, the same processing as in step S106 is performed. That is, if the preceding vehicle information read in step S102 indicates that the vehicle is not currently following the preceding vehicle, that is, that the preceding vehicle is absent or the inter-vehicle distance to the preceding vehicle is equal to or longer than the predetermined distance, the process proceeds to step S114, and if not, the process proceeds to step S115.
In step S114, the following variable is set, and the process proceeds to step S128.
Target vehicle speed=current traveling vehicle speed
In step S115, the following variable is set, and the process proceeds to step S128.
Target inter-vehicle interval=current inter-vehicle time with the preceding vehicle
In step S116, if it is detected that the button operation is pressing down button 13 for a short time, for example, less than 0.3 s, based on the driver's operation information read in step S103, the process proceeds to step S117, and if not, the process proceeds to step S121.
In step S117, the following variable is set and the process proceeds to step S118.
Long pressing acceleration=0 G
In the next step S118, if the preceding vehicle information read in step S102 indicates that the vehicle is not currently following the preceding vehicle, that is, that preceding vehicle is absent or the inter-vehicle distance to the preceding vehicle is equal to or longer than the predetermined distance, the process proceeds to step S119, and if not, the process proceeds to step S120.
In step S119, the following variable is set, and the process proceeds to step S128.
Target vehicle speed=target vehicle speed−5 km/h
In step S120, the following variable is set, and the process proceeds to step S128.
Target inter-vehicle interval=target inter-vehicle interval+0.1 s
In step S121, if it is detected that the button operation keeps pressing up button 12 for a long time, for example, 0.3 s or longer, based on the driver's operation information read in step S103, the process proceeds to step S122, and if not, the process proceeds to step S123.
In step S122, the following variable is set and the process proceeds to step S128 in the same manner as in step S110.
Long pressing acceleration=−0.15 G
In this way, issuing a constant command through the long pressing enables the driver to easily understand the future situation.
In the next step S123, if it is detected that there is no button operation this time and the button operation up to the last time is pressing down button 13 for a long time based on the driver's operation information read in step S103, the process proceeds to step S124.
In step S124, the following variable is set and the process proceeds to step S125.
Long pressing acceleration=0 G
In step S125, in the same manner as in step S106, if the preceding vehicle information read in step S102 indicates that the vehicle is not currently following the preceding vehicle, that is, that preceding vehicle is absent or the inter-vehicle distance to the preceding vehicle is equal to or longer than the predetermined distance, the process proceeds to step S126, and if not, the process proceeds to step S127.
In step S126, the following variable is set, and the process proceeds to step S128.
Target vehicle speed=current traveling vehicle speed
In step S127, the following variable is set, and the process proceeds to step S128.
Target inter-vehicle interval=current inter-vehicle time with the preceding vehicle
In step S128, if the driver's operation information read in step S103 indicates a state in which the current travel support control is turned off, the process proceeds to step S129, and if not, the process proceeds to step S130.
In step S129, the following variable is set to the acceleration command corresponding to the control command calculated by the travel support control, and the process proceeds to step S133.
Acceleration command=0 G
In step S130, if the preceding vehicle information read in step S102 indicates that the vehicle is not currently following the preceding vehicle, that is, that preceding vehicle is absent or the inter-vehicle distance to the preceding vehicle is equal to or longer than the predetermined distance, the process proceeds to step S131, and if not, the process proceeds to step S132.
In step S131, using the target vehicle speed obtained before this step, a calculation is executed to obtain an acceleration command for bringing the traveling speed of the own vehicle closer to the target vehicle speed, and the process proceeds to step S133.
In step S132, using the target inter-vehicle interval obtained before this step, a calculation is executed to obtain an acceleration command for bringing the inter-vehicle interval between the vehicle and the preceding vehicle closer to the target inter-vehicle interval, and the process proceeds to step S133.
In step S133, the target acceleration, which is the final output of the travel support control system, is calculated by arbitration the acceleration command and the long pressing acceleration obtained before this step.
Then, the target acceleration is calculated by the following expression.
if (button operation=long pressing of up button) then {target acceleration=long pressing acceleration}
if (button operation=long pressing of down button) then {target acceleration=long pressing acceleration}
if (button operation=other than long pressing) then {target acceleration=acceleration command}
Here, if (condition) then (expression) is a function that implements the expression if the condition is satisfied.
In such a control method, during the implementation of inter-vehicle interval control and vehicle speed control, priority is given to the acceleration command (long pressing acceleration) set by the driver's button operation, which is a value greater than the normal acceleration command obtained by those control calculations. This can directly reflect the intention of the driver, and it is possible to suppress discomfort of the operation.
Alternatively, the target acceleration is calculated by the following expression.
if (button operation=long pressing of up button) then {target acceleration=select_H (acceleration command, long pressing acceleration)}
if (button operation=long pressing of down button) then {target acceleration=select_L (acceleration command, long pressing acceleration)}
if (button operation=other than long pressing) then {target acceleration=acceleration command}
Here, select_H (variable 1, variable 2) is a function that selects the greater of variable 1 and variable 2.
Similarly, select_L (variable 1, variable 2) is a function that selects the smaller of variable 1 and variable 2.
In such a control method, during the implementation of inter-vehicle interval control or vehicle speed control, a comparison is performed between the acceleration command obtained by the control calculation and the acceleration command (long pressing acceleration) set by the driver's button operation, for a selection of the command that can more strongly implement the driver's desire about acceleration/deceleration, and thus, it is possible to suppress discomfort in the operation.
In the next step S134, the target acceleration is output to VMC 22 in the subsequent stage.
In the following step S135, the past value is updated and the process ends. For example, the button operation this time is stored in a static memory or the like so that it can be used as a past value in the next 50 ms process.
Next, the vehicle control method according to a second embodiment of the present invention will be described in detail with reference to the flowcharts of
The second embodiment is executed in the following steps S201 to S241, and is an example in which a target value setting by pedal operation is combined with the first embodiment.
Since steps S201 to S227 are the same as steps S101 to S127 in the first embodiment, detailed description thereof is omitted.
In step S228, if it is detected that there is no pedal operation this time but the pedal operation up to the last time is [accelerator] based on the state of the accelerator pedal operation, which is included in the driver's operation information read in step S203, the process proceeds to step S230, and if not, the process proceeds to step S229.
In step S229, if it is detected that there is no pedal operation this time but the pedal operation up to the last time is [brake] based on the state of the brake pedal operation, which is included in the driver's operation information read in step S203, the process proceeds to step S230, and if not, the process proceeds to step S234.
In the next step S230, the following variable is set and the process proceeds to step S231.
Long pressing acceleration=0 G
In this way, considering the pedal operation can eliminate the operation of the control system and can give priority to the driver operation. Thus, it is possible to suppress discomfort for the driver.
Since subsequent steps S231 to S233 are the same as steps S113 to S115 in the first embodiment, detailed description thereof is omitted.
In addition, since steps S234 to S238 are the same as steps S128 to S132 in the first embodiment, detailed description thereof is also omitted.
In the next step S239, the target acceleration, which is the final output of the travel support control system, is calculated by arbitration between the acceleration command and the long pressing acceleration obtained before this step.
Then, the target acceleration is calculated by the following expression.
if (pedal operation this time=yes) then {target acceleration=zero}
else if (button operation=long pressing of up button) then {target acceleration=long pressing acceleration}
else if (button operation=long pressing of down button) then {target acceleration =long pressing acceleration)}
else {target acceleration=acceleration command}
Here, if (condition 1) then (expression 1) else if (condition 2) then (expression 2) else (expression 3) is a function where: expression 1 is implemented if condition 1 is satisfied, otherwise expression 2 is implemented if condition 2 is satisfied, and expression 3 is implemented if neither of these conditions correspond.
In such a control method, with step S239, the target setting of the travel support control can be implemented not only by the button but also by the pedal. This allows the way of use such that: the target of the control system is set by the pedals in areas where the driver mainly frequently drives, such as narrow streets like alleys; and the target of the control system is set by the buttons when the system mainly frequently drives as on highways. This enables an easy-to-use operation system (HMI: Human Machine Interface) that is suitable for the road conditions and driving style and has less sense of discomfort.
Moreover, since the order of if-else determines the pedal to be at the higher level, the pedal operation is prioritized when the button operation and the pedal operation are performed at the same time, and thus, it is possible to suppress discomfort. This is because the driving operation by the pedal is the same operation as the manual driving by the normal driver himself/herself, and prioritizing the same operation as the manual driving leads to more ease.
In addition, although a plurality of buttons are installed at adjacent positions, the pedals are designed to have a step in front and rear between the accelerator and the brake, thereby preventing mistakes in operation. This also contributes to suppressing discomfort of simultaneous operation.
Subsequent steps S240 to S241 are the same as steps S134 to S135 in the first embodiment, and thus detailed description thereof is omitted.
As described above, according to the present invention, the inter-vehicle interval and the vehicle speed can be changed with two switches for acceleration and deceleration (the up button and down button) through the way of operating switches, specifically a single shot or a long pressing, depending on the presence/absence of the preceding vehicle, and the distance thereto. This configuration leads to easy understanding with the only two buttons, and allows quick reactions also in acceleration or deceleration. This can make operation of the switches intuitive and readily understandable, and can directly convey the intention of the passenger, such as acceleration and deceleration, and decrease and increase of the inter-vehicle interval, to the vehicle depending on the way of operating two switches, which enables the vehicle to react quickly, and thus, it is possible to suppress discomfort.
The configurations, control methods, and the like described in each of the above embodiments are merely schematically illustrated to the extent that the present invention can be understood and implemented. Therefore, the present invention is not limited to each of the described embodiments, and can be changed to various forms as long as it does not deviate from the scope of the technical idea indicated in the claims.
For example, various switches that are rotated or pulled can be applied to the system switch, the up button, and the down button of the adjusting unit, instead of the push button type switch. In addition, although the adjusting unit is installed at the steering wheel, it is of course possible to install it at another place such as a steering column or a dashboard.
Furthermore, the adjusting unit may be of a type in which an external terminal (smartphone or the like) is connected instead of the switch mounted on the vehicle. In the case of a smartphone, the “way” of operation can be using the pressing pressure.
Furthermore, gesture control, voice control, joystick, line-of-sight guidance, and the like can be applied to the adjusting unit. In the case of gesture control and voice control, a sensor for detecting movement and a voice input microphone act as adjusting units. In the case of joystick, the operation handle is used as the adjusting unit. In the case of line-of-sight guidance, a sensor (camera) or the like that detects the line of sight corresponds to the adjusting unit.
What can be considered as the “way” of operation are: the speed of movement in the case of gesture control; the vocalization time, volume, words, and the like in the case of voice control; the operation amount and operation time of the operation handle in the case of joystick; and the time spent on eye movement and the like in the case of line-of-sight guidance.
Number | Date | Country | Kind |
---|---|---|---|
2019-097299 | May 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/019582 | 5/18/2020 | WO | 00 |