The present invention generally relates to a remote control system of a vehicle, and more particularly, to a vehicle-based remote control system for controlling one or more smart devices located remotely from the vehicle.
According to one aspect of the present disclosure, a control module for a vehicle is disclosed. The control module comprises a wireless communication circuit in communication with a smart home device and a remote server. The control module further comprises a control circuit in communication with the wireless communication circuit and a controller of the vehicle via a bus interface. The control circuit is configured to receive a status request from the smart home device via the wireless communication circuit. Based on the status request, the control circuit requests a status identification from the controller according to the status request. The control circuit receives the status identification from the controller and communicates the status identification to the smart device via the wireless communication circuit. The status identification is announced by the smart home device.
According to another aspect of the disclosure, a method for communicating a status inquiry of a vehicle is disclosed. The method comprises receiving a status request from the smart home device via the wireless communication circuit and requesting a status identification from a controller of the vehicle according to the status request. The method further comprises receiving the status identification from the controller and communicating the status identification to the smart device via the wireless communication circuit. The status identification may then be indicated by the smart home device.
According to yet another aspect of the disclosure, a control system for a vehicle is disclosed. The system comprises a wireless communication circuit in communication with a smart home device and a remote server and a control circuit in communication with the wireless communication circuit and a controller of the vehicle. The control circuit is in communication with the controller of the vehicle via a bus interface. The control circuit is configured to receive a control request from the smart home device via the wireless communication circuit, the control request comprises an authentication indication and requests an update of a state of at least one system of the vehicle according to the control request. The controller is further configured to receive an identification of the state from the controller in response to the request of the update, and communicate the identification of the state to the smart device via the wireless communication circuit.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. In the drawings, the depicted structural elements are not to scale and certain components are enlarged relative to the other components for purposes of emphasis and understanding.
The terms “including,” “comprises,” “comprising,” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
The disclosure provides for a vehicle-based remote control system configured to control various devices. In various embodiments, the vehicle-based remote control system may be configured to communicate with one or more remote control devices or smart devices. In this way, the remote control system may be configured to communicate with the smart devices to supply vehicle information to the smart devices and/or receive control instructions from the smart devices. For example, the vehicle-based remote control system may be configured to receive a control instruction based on a voice command of a smart device. In response to the instruction, the vehicle-based remote control system may be configured to communicate information to the smart device or control one or more vehicle systems (e.g., an alarm, ignition, door lock, door latch, widow controller, etc.). As an introduction, smart devices that may be utilized to operate with the vehicle-based remote control system are discussed in reference to
Referring to
Once the user says the wake word, the device 10 recognizes that the wake word has been said and begins recording a user voice command. Once the user has finished speaking, device 10 sends the recording over the internet 14 to a server 16, such as Google Services or Alexa Voice Services (AVS). The server 16 may correspond to a cloud-based service operated by Google, Amazon, or other providers. The server 16 processes the recording and generates a command sent over the internet 14 to device 10. The device 10 receives the command and implements a task consistent with the user voice command originally spoken by the user. For example, if the user said “Alexa, what is the weather today?”, Alexa may respond via the speaker in the smart device 10 with a general forecast related to the geographical area of the user.
In other instances, device 10 may be linked to one or more compatible smart devices 18, such as any of those produced by Samsung SmartThings®, Wink, Insteon®, Nest®, Philips Hue, Wemo®, Ecobee®, for example. Once the devices 18 are linked to device 10, the server 16 may be able to generate commands for controlling one or more of the devices 18 in response to a complimentary user voice command recording(s). For example, when server 16 receives a user voice command related to the control of a linked device, such as one of devices 18, the server 16 may parse the user voice command before sending it to another server 19 in charge of the linked device. That server 19 would, in turn, generate a command in accordance with the user voice command. Alternatively, it is contemplated that server 16 may generate a command for directly controlling the linked device, if such functionality permits.
Accordingly, the smart device 10 may enable a user to not only request information on demand, but also automate various home features in response to a user voice command. Such features may include lights, thermostats, speakers, sprinklers, fans, and televisions, for example. In addition, device 10 may be configured such that a user voice command results in the server 16 generating a command that is transmitted over the internet 14 to a web-based service provider 20 for prompting the same to render a service. For example, the smart device 10 may be operable to generate computerized orders for a user to order food from restaurants or items through online shopping providers (e.g., pizza from Domino's pizza, merchandise from Amazon, or a shuttle vehicle from Uber).
Referring now to
As further discussed in reference to
The control module 24 may include a user-input mechanism 32, an interface 34 configured to communicate with the mobile electronic device 28, and a controller 36 coupled to the user-input mechanism 32 and the interface 34. The user-input mechanism 32 may include one or more actuatable members, exemplarily shown as buttons A, B, and C. While three buttons are shown, it is to be understood that more or less buttons may be provided, if desired. Alternatively, the actuatable members may be embodied as toggle switches, capacitive sensors, optical sensors, or any other component capable of registering user actuation. The user-input mechanism 32 may be associated with a user interface 38 that also includes one or more visual indicators 40 for providing feedback in response to actuation of the user-input mechanism 32.
The interface 34 may include a wireless communication transceiver 42 for enabling the controller 36 to wirelessly communicate with the mobile electronic device 28. For example, the wireless communication transceiver 42 may be configured such that communication between the controller 36 and the mobile electronic device 28 occurs via Bluetooth®, Bluetooth® Low Energy, Wi-Fi®, or any other known wireless communication protocol. Additionally or alternatively, the interface 34 may include a vehicle bus interface 44 connected to a vehicle bus 44 for enabling the controller 36 to communicate with the mobile electronic device 28 via a USB connection or other known wired connection. The vehicle bus 44 may also connect to various vehicle equipment including, for example, a vehicle navigation system 48 (e.g. GPS Navigation), a light sensor 49, and a vehicle sound system 50. The vehicle bus 44 may further be in communication with additional vehicle control systems including, but not limited to, a security system, ignition system, fuel level indicator, door lock, door latch, widow controller, etc.
In some embodiments, the control module 24 may be in communication with a vehicle controller via the vehicle bus 46. In this configuration, the control module 24 may be configured to communicate with the control module 24 to identify various status conditions of the vehicle 26. In this configuration, the control module 24 may be configured to identify one or more vehicle status conditions (e.g., an engine warning, oil warning, maintenance schedule, tire pressure indication, airbag operation warning, or any other status indications identifiable by the vehicle controller). In such configurations, a user may request a status update via the voice-controlled smart device 10 by stating, “OK Google, provide a status for vehicle 1.” In response to the request, the smart device 10 may transmit the instruction to the server 16, which may identify an instruction and communicate with the control module 24 of the vehicle via a wireless communication interface 30. The wireless communication interface 30 may include various communication protocols compatible with a wireless transceiver of the remote control system 22 which may include but are not limited to WiFi (802.11 series—802.11g, 802.11b, 802.11a, 802.11n, etc.), Bluetooth®, Ultra-wideband (UWB), ZigBee®, cellular communications (3G, 4G, LTE), etc.
In response to the request for the status of the vehicle 26, the control module 24 may communicate with the vehicle controller via a communication bus to identify whether a status indication (e.g., maintenance, low fuel, tire pressure, check engine, active, inactive, etc.) exists for the vehicle 26. The control module 24 may then communicate the status of the vehicle 26 to the voice-controlled smart device 10 via the communication interface 30. Based on the status communicated by the control module 24, the voice-controlled smart device 10 may announce the status of vehicle 1. For example, the smart device 10 may output an audible indication announcing the vehicle status or warning status for the vehicle 26. For example, a preconfigured or computer generated voice may announce via the speakers of the smart device 10: “Vehicle 1 is inactive and does not have any status indications,” “vehicle is inactive and indicates that the fuel level is low,” “vehicle is active and requires an oil change,” etc. In this way, the remote control system 22 may be configured to communicate a condition of the vehicle 26 to the voice-controlled smart device 10 in response to a user request.
In some embodiments, the control module 24 may further be configured to provide an identification of a heading and/or location of the vehicle 26. For example, a user of the smart device 10 may request a location update for the vehicle 26 by saying, “smart device, wherein is vehicle 1?” In response to the request, the smart device 10 may communicate the request to the control module 24. In response to the request, the control module 24 may communicate with a location device (e.g. the navigation system 48) to identify a current location of the vehicle 26. Once the location is identified, the control module 24 may communicate the location back to the smart device 10. The location of the vehicle 26 may be announced via the speaker of the smart device 10 by announcing a corresponding address or nearby landmark. For example, based on the GPS location of the vehicle 26, a nearby landmark may be identified by the server 16 and the smart home device 10 may output the location of the vehicle relative to the landmark. For example, the smart device 10 may output: “vehicle 1 is parked near store A in City B,” or “vehicle 1 is driving in direction A (e.g. north) near store C on Street D in City F.” In this way, the control module 24 may provide the smart home device 10 with information identifying the location of the vehicle 26 such that the smart home device 10 can announce the information to an authorized user.
As discussed herein, the second device may correspond to the mobile electronic device 28, which may be utilized in combination with the control module 24 to communicate information to and from the communication interface 30. In some embodiments, the mobile electronic device 28 may be a smartphone, tablet, or the like, or may, alternatively, be a dedicated device integrated with the vehicle or portable in nature. In this configuration, the control module 24 may communicate with the mobile electronic device 28 via a wired or wireless communication interface 30 as discussed herein. The control module 24 may be integrated within the vehicle 26 and may receive power from the vehicle battery and/or vehicle ignition. The control module 24 may be one of several HOMELINK® devices available from Gentex Corporation of Zeeland, Mich. Such devices may, for example, be integrated with a rearview mirror assembly, a sun visor, or a vehicle console such as an overhead console.
Referring now to
Referring now to
As previously discussed herein, the vehicle status may correspond to an engine warning, oil warning, maintenance schedule, tire pressure indication, airbag operation warning, or any other status indications identifiable by the vehicle controller. Additionally, the status identification may correspond to a security system status, ignition system status, fuel level indication, door lock status, door latch status, widow position status, etc. In some embodiments, the request for the status identification may be specifically directed to any of these indications. Such a status identification may be prompted by a specific request to the smart device 10. For example, in response to, “smart device, what is the fuel level of vehicle 1?”, the smart device may request an indication of the vehicle status in the form of the fuel level of the vehicle 26. Accordingly, in step 88, the control module 24 may communicate with the vehicle controller via the vehicle bus interface 44 to identify the fuel level of vehicle 1.
If the vehicle status is identified in step 90, the control module 24 may continue to send the status indication to the server 16 via the communication interface 30 (92). If the vehicle status is not identified in step 90, the control module 24 may continue to communicate with the vehicle controller until an error state is entered after repeated failures. The error state may be communicated to the smart device 10 via the communication interface 30 or may be identified by the smart device 10 after a timeout period has expired. Following step 92, the status identification of the vehicle 26 may be communicated from the server 16 back to the voice-controlled smart device 10 (94). The voice-controlled smart device 10 may then output a message identifying the status communicated in the status identification for the vehicle 26 (96). In reference to
Referring now to
If the request to control the vehicle 26 is not authenticated in step 108, the server 16 may communicate a message denying authentication for the user to control the vehicle 26 to the smart device 10 (110). The smart device 10 may then output a message from the speakers indicating that the control of the vehicle 26 is denied (112). If the request to control the vehicle 26 is authenticated in step 108, the server 16 may communicate the control request to the control module 24 via the communication interface 30 (114). In response to receiving the control request, the control module 24 may communicate with the vehicle controller via the vehicle bus interface 44 to control the system or accessory of the vehicle 26 as requested (116). The control module 24 may then continue to verify whether or not the control request for the vehicle 26 is completed in step 118.
If the vehicle control request is not completed, the control module 24 may continue to step 110. If the vehicle control request is successfully completed, the control module 24 may communicate a status signal identifying the completion of the control of the vehicle 26 to the server 16 via the communication interface (120). The server 16 may then communicate the status indication of the vehicle control request to the smart device 10 (122). In response to receiving the status indication, the smart device 10 may be configured to output a message from the speakers identifying the status of the control instruction for the vehicle 26 as being complete (124).
The vehicle control instruction as discussed herein may correspond to various forms of requests to control various vehicle systems and accessories. For example, the control may be configured to the following exemplary vehicle systems without limitation: an ignition system, a lighting system, a horn or alarm system, a door lock system, one or more automated or power doors, a climate control or heating system, a defrost system, etc. Additionally, a single command may be configured to control more than one of the vehicles systems or accessories. For example, “smart home, prepare vehicle 1,” may activate an ignition of the vehicle 26, activate the climate control to heat or cool the vehicle, and/or activate a defrost function. The settings may be configured seasonally and stored based on one or more preferences of a user of the system 22.
Modifications of the disclosure will occur to those skilled in the art and to those who make or use the disclosure. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the disclosure, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
For purposes of this disclosure, the term “coupled” (in all of its forms: couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature, or may be removable or releasable in nature, unless otherwise stated.
It will be understood that any described processes, or steps within described processes, may be combined with other disclosed processes or steps to produce systems and methods within the scope of the present disclosure. The exemplary system and method disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned system and method without departing from the concepts of the present disclosure, and further, it is to be understood that such concepts are intended to be covered by the following claims, unless these claims, by their language, expressly state otherwise. Further, the claims, as set forth below, are incorporated into and constitute part of this Detailed Description.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/670,885, filed May 14, 2018, entitled “VEHICLE CONTROL MODULE FOR SMART HOME CONTROL SYSTEM,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6028537 | Suman | Feb 2000 | A |
7219123 | Fiechter | May 2007 | B1 |
8643481 | Campbell | Feb 2014 | B2 |
9288270 | Penilla | Mar 2016 | B1 |
9344849 | Snyder | May 2016 | B2 |
9463807 | Mansur | Oct 2016 | B2 |
10310505 | Hanson | Jun 2019 | B1 |
20060238316 | Taki | Oct 2006 | A1 |
20080269958 | Filev | Oct 2008 | A1 |
20100094496 | Hershkovitz | Apr 2010 | A1 |
20100153207 | Roberts | Jun 2010 | A1 |
20100211252 | Wang | Aug 2010 | A1 |
20110313594 | Kato | Dec 2011 | A1 |
20120095643 | Bose | Apr 2012 | A1 |
20120101659 | Kim | Apr 2012 | A1 |
20120116608 | Park | May 2012 | A1 |
20120120930 | Ji | May 2012 | A1 |
20120245945 | Miyauchi | Sep 2012 | A1 |
20120323763 | Michael | Dec 2012 | A1 |
20120323767 | Michael | Dec 2012 | A1 |
20120323772 | Michael | Dec 2012 | A1 |
20130103200 | Tucker | Apr 2013 | A1 |
20130144470 | Ricci | Jun 2013 | A1 |
20130184970 | Kanafani | Jul 2013 | A1 |
20130185072 | Huang | Jul 2013 | A1 |
20140107891 | Choi | Apr 2014 | A1 |
20140170515 | Na | Jun 2014 | A1 |
20150057926 | Gupta | Feb 2015 | A1 |
20150073697 | Barrett | Mar 2015 | A1 |
20150120151 | Akay | Apr 2015 | A1 |
20150145663 | Moon | May 2015 | A1 |
20150254987 | Altintas | Sep 2015 | A1 |
20150277942 | Rork | Oct 2015 | A1 |
20160023665 | Sherony | Jan 2016 | A1 |
20160144714 | Kim | May 2016 | A1 |
20160159339 | Cho | Jun 2016 | A1 |
20160247153 | Lesesky | Aug 2016 | A1 |
20160249181 | Taniguchi | Aug 2016 | A1 |
20160280160 | MacNeille | Sep 2016 | A1 |
20160305794 | Horita | Oct 2016 | A1 |
20170134382 | Darnell | May 2017 | A1 |
20170174157 | Deljevic | Jun 2017 | A1 |
20180091930 | Jefferies | Mar 2018 | A1 |
20180096684 | Goote et al. | Apr 2018 | A1 |
20180137033 | Ohmert | May 2018 | A1 |
20180137692 | Ohmert | May 2018 | A1 |
20180141455 | Jeon | May 2018 | A1 |
20180143635 | Zijderveld | May 2018 | A1 |
20180172452 | Xu | Jun 2018 | A1 |
20180189581 | Turcot | Jul 2018 | A1 |
20180203443 | Newman | Jul 2018 | A1 |
20180203451 | Cronin | Jul 2018 | A1 |
20180209802 | Jung | Jul 2018 | A1 |
20180226077 | Choi | Aug 2018 | A1 |
20180239349 | Rasmussen | Aug 2018 | A1 |
20180272878 | Lee | Sep 2018 | A1 |
20180275653 | Endo | Sep 2018 | A1 |
20180306598 | DeCia | Oct 2018 | A1 |
20180352376 | Shuman | Dec 2018 | A1 |
20180357838 | Roberts | Dec 2018 | A1 |
20180357898 | Kamini | Dec 2018 | A1 |
20190011907 | Park | Jan 2019 | A1 |
20190027137 | Sohn | Jan 2019 | A1 |
20190033860 | Okimoto | Jan 2019 | A1 |
20190047514 | Brombach | Feb 2019 | A1 |
20190048647 | Lickfelt | Feb 2019 | A1 |
20190143905 | Cazzoli | May 2019 | A1 |
20190164421 | Lauer | May 2019 | A1 |
20190176752 | Cermak | Jun 2019 | A1 |
20190180740 | Nandy | Jun 2019 | A1 |
20190213883 | Kim | Jul 2019 | A1 |
20190219413 | Prakah-Asante | Jul 2019 | A1 |
20190237069 | Zhao | Aug 2019 | A1 |
20190271550 | Breed | Sep 2019 | A1 |
20190311557 | Rockwell | Oct 2019 | A1 |
20190311713 | Talwar | Oct 2019 | A1 |
20190344753 | Weber | Nov 2019 | A1 |
20200005635 | Nagata | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
105446179 | Mar 2016 | CN |
2017107982 | Jun 2017 | WO |
Entry |
---|
Butt et al., Privacy Management in Social Internet of Vehicles Review Challenges and Blockchain Based Solutions (Year: 2019). |
Dillenburg et al., The Intelligent Travel Assistant (Year: 2002). |
Dudkiewicz et al., Smart Services Supporting Drivers in Effective Cars Parking (Year: 2017). |
Number | Date | Country | |
---|---|---|---|
20190344753 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62670885 | May 2018 | US |