The disclosed subject matter described herein relates to systems and methods for control of vehicle systems.
Remote control technology is used to enable an operator to remotely control a vehicle system. For example, railway vehicles such as trains may be remotely controlled in a rail yard by a handheld operator control unit (OCU) for scenarios such as set outs, pick-ups, and locomotive movements in the yard. Remote control of rail vehicles in a rail yard can improve crew productivity, reduce car dwell time in the rail yard, reduce manpower for switching operations, and eliminate or reduce the need for a low-horse-power locomotive fleet.
Using remote control technology allows a single operator to conduct local pick-ups and drop-offs between origin and destination and set-out bad order cars. A single operator can bring stranded trains into congested rail yards if the road crews' time expires. Remote control technology also allows a yard-crew member to hostel mainline power around the yard, conduct switching operations, and build the train for departure. Mainline power can be used to build trains and conduct switching operations in the rail yard. Remote control technology can also be used in slow-speed loading and unloading operations, reducing the use of road crews and improving the efficiency of operations.
In accordance with one embodiment, a vehicle control system includes an onboard controller device configured to be onboard a vehicle system and that interfaces with a propulsion system and a brake system of the vehicle system to change movement of the vehicle system. The vehicle control system further includes a remote controller device that wirelessly communicates with the onboard controller device. The remote controller device receives input from an operator, generates control signals based on the input, and wirelessly communicates the control signals to the onboard controller device to control the movement of the vehicle system while the vehicle system moves along one or more mainline routes.
In accordance with one embodiment, a method includes receiving input from an operator at a remote controller device of a vehicle control system and generating control signals at the remote controller device based on the input from the operator. The method further includes wirelessly communicating the control signals from the remote controller device to an onboard controller device disposed onboard a vehicle system and controlling one or more of a propulsion system or a brake system of the vehicle system to change movement of the vehicle system using the onboard controller device and based on the control signals that are received from the remote controller device while the vehicle system moves along one or more main line routes.
In accordance with one embodiment, a vehicle control system includes an onboard controller device configured to be onboard a vehicle system and that interfaces with a propulsion system and a brake system of the vehicle system to change movement of the vehicle system. The vehicle control system further includes a remote controller device that wirelessly communicates with the onboard controller device. The remote controller device receives input from an operator, generates control signals based on the input, and wirelessly communicates the control signals to the onboard controller device to control the movement of the vehicle system while the vehicle system moves along one or more main line routes. The control signal directs changes in one or more of dynamic braking or independent brakes of the brake system of the vehicle system.
The inventive subject matter may be understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
Embodiments of the subject matter described herein relate to systems and methods for remotely operating a vehicle system that includes a plurality of vehicles. The vehicle system may be operated remotely by an operator through a remote controller device. The vehicle system may be operated outside of a facility, such as a rail yard for example in the case of railway vehicles. The vehicle system may be operated at higher speeds and on mainline routes of the vehicle system for activities including setout, pick up, and/or repairs. The speed of the vehicle system may be regulated even if the composition of the vehicle system, the weight of the vehicle system, and/or the grade of the surface that the vehicle system is on are not known or incorrectly determined.
The speed of the vehicle system may be regulated during starting from zero speed. The speed may be regulated even if an operator enters incorrect or no information on the vehicle system weight, the vehicle system composition, or the initial grade. The speed of the vehicle system may be regulated from zero speed (i.e., from starting), during acceleration, and at different speeds, for example up to 40 mph. The speed of the vehicle system may also be regulated, by either accelerating or decelerating, from one target speed to another target speed. The speed of the vehicle system may also be regulated by decelerating to zero speed (i.e., stopping). The speed of the vehicle system may also be regulated to maintain coupler forces between the vehicles within limits.
An open loop control may be used for starting the vehicle system. Open loop control may also be used for regulating the speed of the vehicle system during stopping, for example during coast-to-idle or coast-to-brake modes of operation. Closed loop control may be used to regulate the speed of the vehicle system. The closed loop control may use Proportional-Integral-Derivative (PID) control.
Referring to
Each propulsion-generating vehicle includes a propulsion system 28. The propulsion system may include on or more traction motors operably coupled with axles and/or wheels of the propulsion-generating vehicles. The traction motors may be connected with the axles and/or wheels via one or more gears, gear sets, or other mechanical devices to transform rotary motion generated by the traction motors into rotation of the axles and/or wheels to propel the vehicles and, consequently, the vehicle system. Different traction motors may be operably connected with different axles and/or wheels such that traction motors that may be deactivated (e.g., turned off) do not rotate corresponding axles and/or wheels while traction motors that remain activated (e.g., turned on) rotate corresponding axles and/or wheels.
The one or more propulsion generating vehicles include an onboard controller device 38. The onboard controller device may include a Proportional-Integral-Derivative (PID) controller. The onboard controller device may include a processor and a memory that stores instructions executable by the processor. The memory may also store data, including data received during operation of the vehicle system, for example while operated by remote control. The onboard controller device may also include a display to display information to an operator of the vehicle system and an input device, such as a touch screen or keyboard.
An operator 20 may remotely control operation of the vehicle system with a remote controller device, or operator control unit (OCU) 18. The remote controller device may send and receive signals 22 to and from one or more of the propulsion-generating vehicles. As shown in
The propulsion-generating vehicle includes an independent braking system 42 that brakes wheels 48 of the propulsion-generating vehicle. The propulsion-generating vehicle also includes a dynamic braking system 40. The dynamic brake system can represent the traction motors operating in a regenerative braking mode in order to slow or stop movement of the vehicle. The vehicle system may further include an automatic braking system 44 for braking wheels 50 of the non-propulsion generating vehicles and the wheels of the propulsion-generating vehicle(s). The automatic braking system includes a brake pipe 46 that carries pressurized brake fluid (e.g., air) to activate the brakes for the wheels. The automatic brake system may be an Electronically Controlled Pneumatic (ECP) brake system that is controlled by the onboard controller device.
Sensors 52 may be provided on the one or more propulsion-generating vehicles and sensors 54 may be provided on the one or more non-propulsion-generating vehicles. The sensors may communicate by wire or wirelessly with the onboard controller device(s) of the one or more propulsion-generating vehicles. The sensors may provide visual data and sensor data. The sensors may include, but are not limited to, optical sensors such as digital video cameras, speed sensors, temperature sensors, oil pressure sensors, voltage sensors, current sensors, brake line pressure conveyed via end-of-train telemetry, operator input/output device status, and other locomotive sensors. Additional data that may be made available by sensors include, but not limited to, power notch setting, braking commands, and outputs of various engineer aids such as data produced by trip or rail network scheduling or optimizing systems. Other types of sensors that may provide data also include, but are not limited to, microphones, an accelerometer, digital thermometers, and location detection sensors, such as an on-board GPS system.
The remote controller device is configured to receive input from an operator, generate control signals based on the input, and to wirelessly communicate the control signals to the onboard controller device to control the movement of the vehicle system while the vehicle system moves along one or more routes, including one or more main line routes. As shown in
The onboard controller device is configured to change a throttle setting of the propulsion system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator. The onboard controller device is configured to change a dynamic brake setting of the propulsion system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator. The onboard controller device is configured to change an independent brake setting of the brake system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator.
The remote controller device is configured to receive input from the operator of the remote controller device. According to one embodiment, one input may be a weight of the vehicle system and the remote controller device is configured to generate control signals based on the weight of the vehicle system. According to one embodiment, one input may be a grade on which the vehicle system is disposed and the remote controller device is configured to generate the control signals based on the grade.
According to one embodiment, the remote controller device is configured to receive one or more of a first number of propulsion-generating vehicles in the vehicle system or a second number of non-propulsion-generating vehicles in the vehicle system as the input from the operator and to generate the control signals based on the one or more of the first number or the second number. According to one embodiment, the vehicle system includes multiple propulsion-generating vehicles, and the onboard controller device is configured to synchronously control settings of one or more of the propulsion systems or the brake systems onboard the multiple propulsion-generating vehicles based on the control signals received from the remote controller device.
According to one embodiment, the remote controller device is configured to receive a speed set point as the input from the operator and to generate the control signals based on the speed set point.
According to one embodiment, the onboard controller device is configured to monitor inter-vehicle forces within the vehicle system, for example from sensors that determine forces on the couplers, and to control one or more of the propulsion system or the brake system based on the control signals received from the remote controller device to one or more of reduce the inter-vehicle forces or maintain the inter-vehicle forces within a designated range.
According to one embodiment, the onboard controller device is configured to restrict a frequency at which a throttle setting of the propulsion system is changed based on the control signals that are received from the remote controller device. According to one embodiment, the onboard controller device is configured to engage a dynamic brake of the brake system of the vehicle system responsive to the control signals received from the remote controller device directing the onboard controller device to stop the movement of the vehicle system.
The onboard controller device may include a proportional-integral-derivative (PID) controller and according to one embodiment the onboard controller device is configured to use a first set of control gains above a designated speed and a different, second set of control gains that change as a function of one or more operational parameters. The operational parameters include one or more of a weight of the vehicle system or a speed of the vehicle system.
According to one embodiment, the onboard controller device is configured to receive a current commanded speed that the vehicle system is to move. The onboard controller device is also configured to determine a current moving speed at which the vehicle system is moving and to calculate a reference shaped speed at which one or more of a propulsion system or a brake system of the vehicle system is directed to operate to cause the current moving speed of the vehicle system to approach the current commanded speed.
The reference speed determined by the onboard controller device is based on a reference shaping model that changes the reference speed based on relative values of the current commanded speed, a previous commanded speed that the vehicle system previously was commanded to move, the current moving speed of the vehicle system, and a previous reference shaped speed. The onboard controller device is configured to control the one or more of the propulsion system or the brake system to operate to cause the vehicle system to move at the reference shaped speed that is calculated.
According to one embodiment, the onboard controller device is configured to calculate the reference shaped speed by linearly increasing or linearly decreasing a previous value of the reference shaped speed.
According to one embodiment, the onboard controller device is configured to calculate the reference shaped speed by increasing or decreasing a previous value of the reference shaped speed at a rate that changes based on one or more of (a) a first difference between a current value of the reference shaped speed and the current commanded speed or (b) a second difference between the current moving speed of the vehicle system and one or more of the reference shaped speed or the current commanded speed. The onboard controller device is configured to calculate a faster value for the rate when the difference between the current value of the reference shaped speed and the current commanded speed is larger and a slower value when the difference between the current value of the reference shaped speed and the current commanded speed is smaller. The onboard controller device is configured to calculate a first designated value for the rate when the difference between the current value of the reference shaped speed and the current commanded speed is larger than a designated value and a second designated value for the rate that is slower than the first designated value when the difference between the current value of the reference shaped speed and the current commanded speed is no larger than the designated value.
According to one embodiment, the onboard controller device is configured to calculate the reference shaped speed by increasing or decreasing a previous value of the reference shaped speed at a first rate then a faster, second rate, followed by a slower, third rate.
According to one embodiment, the onboard controller device is configured to calculate the reference shaped speed by increasing or decreasing a previous value of the reference shaped speed according to a time invariant first order model.
According to one embodiment, the onboard controller device is configured to calculate the reference shaped speed by changing a previous value of the reference shaped speed according to a rate that is based on one or more of a weight of the vehicle system and the current moving speed.
According to one embodiment, the onboard controller device is configured to calculate a faster value for the rate when the difference between the current value of the reference shaped speed and the current commanded speed is larger and a slower value when the difference between the current value of the reference shaped speed and the current commanded speed is smaller.
According to one embodiment, the onboard controller device is configured to receive the current commanded speed from an operator input device, for example from the remote controller device.
According to one embodiment, the onboard controller device is configured to receive the current commanded speed from an automated control system.
Referring to
According to one embodiment, controlling the one or more of the propulsion system or the brake system includes changing a throttle setting of the propulsion system. Controlling the one or more of the propulsion system or the brake system may include changing a dynamic brake setting of the propulsion system. Controlling the one or more of the propulsion system or the brake system may include changing an independent brake setting of the brake system. Controlling the one or more of the propulsion system or the brake system may include controlling the movement of the vehicle system to move at speeds that exceed fifteen miles per hour.
According to one embodiment, receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system occurs may occur while the remote controller device is offboard the vehicle system. According to one embodiment, receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system occurs may occur while the remote controller device is onboard the vehicle system.
According to one embodiment, the vehicle system includes at least a first propulsion-generating vehicle that includes the propulsion system and a second non-propulsion-generating vehicle, and receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system occurs while the remote controller device is onboard the non-propulsion-generating vehicle of the vehicle system.
According to one embodiment, the input that is received by the remote controller device includes one or more of a weight of the vehicle system, a grade on which the vehicle system is disposed, a first number of propulsion-generating vehicles in the vehicle system, a second number of non-propulsion-generating vehicles in the vehicle system, or a speed set point.
According to one embodiment, controlling the one or more of the propulsion system or the brake system includes adaptively limiting a frequency based on a controller mode at which a throttle setting of the propulsion system is changed based on the control signals that are received from the remote controller device.
According to one embodiment, the one or more of the propulsion system or the brake system includes engaging a dynamic brake of the brake system of the vehicle system responsive to the control signals received from the remote controller device directing the onboard controller device to stop the movement of the vehicle system.
According to one embodiment, controlling the one or more of the propulsion system or the brake system includes clamping a control gain that is output by a proportional-integral-derivative (PID) controller of the onboard controller device to the propulsion system of the vehicle system at speeds of the vehicle system that are slower than a designated speed limit. Referring to
Controlling the one or more of the propulsion system or the brake system may include transitioning from an open loop control mode to a closed loop control mode responsive to the vehicle system reaching the designated speed limit.
Referring to
According to one embodiment, the grade input that is received at the onboard controller device indicates that the multi-vehicle system is on an ascending grade, and the method further includes maintaining application of the brake system while concurrently increasing the tractive effort that is generated by the propulsion system and determining whether the multi-vehicle system is rolling backward down the ascending grade. Responsive to determining that the multi-vehicle system is not rolling backward down the ascending grade, the method further includes releasing the brake system while continuing to generate the tractive effort at a first threshold level. Responsive to determining that the multi-vehicle system is rolling backward down the ascending grade, the method further includes maintaining application of the brake system while concurrently generating the tractive effort at a second threshold level that is greater than the first threshold level.
According to one embodiment, the grade input that is received at the onboard controller device indicates that the multi-vehicle system is on a flat grade, and the method further includes releasing the brake system at a configurable slew rate and concurrently generating the tractive effort with the propulsion system until the multi-vehicle system is stretched or the multi-vehicle system is moving forward.
According to one embodiment, the grade input that is received at the onboard controller device indicates that the multi-vehicle system is on a descending grade, and the method further includes verifying that one or more traction motors of the propulsion system are set up for dynamic braking, releasing the brake system at a configurable slew rate, and determining whether the multi-vehicle system is moving forward. Responsive to determining that the multi-vehicle system is moving forward, the method further includes engaging the one or more traction motors to dynamically brake to keep a moving speed of the multi-vehicle system to be no faster than the designated speed.
According to one embodiment, the method further includes determining that the multi-vehicle system is rolling backward in contradiction to the grade input that was received and engaging the brake system to stop the multi-vehicle system from rolling backward. The method further includes building up generation of the tractive effort provided by the propulsion system while concurrently engaging the brake system until the multi-vehicle system no longer rolls backward and releasing the brake system.
According to one embodiment, the closed loop control process of controlling the movement of the multi-vehicle system includes maintaining a speed of the multi-vehicle system at or within a threshold range of the speed command signal by alternating between (a) dynamically braking the multi-vehicle system using the propulsion system of the multi-vehicle system and (b) setting a throttle of the propulsion system to idle while the speed of the multi-vehicle system exceeds a designated stall speed of the multi-vehicle system to maintain the movement of the multi-vehicle. The method further includes applying the brake system of the multi-vehicle system responsive to (c) receiving an updated speed command signal at the onboard controller device from the remote controller device that reduces the speed of the multi-vehicle system and (d) the speed of the multi-vehicle system reaching the stall speed.
According to one embodiment, the brake system of the multi-vehicle system includes independent brakes, and the closed loop control process of controlling the movement of the multi-vehicle system includes maintaining a speed of the multi-vehicle system at or within a threshold range of the speed command signal by alternating between (a) applying the independent brakes of the multi-vehicle system and (b) setting a throttle of the propulsion system to idle while the speed of the multi-vehicle system exceeds a designated stall speed of the multi-vehicle system to maintain the movement of the multi-vehicle. The method further includes applying the independent brakes of the multi-vehicle system responsive to (c) receiving an updated speed command signal at the onboard controller device from the remote controller device that reduces the speed of the multi-vehicle system and (d) the speed of the multi-vehicle system reaching the stall speed.
Referring to
According to one embodiment, the reference shaped speed is calculated by linearly increasing or linearly decreasing a previous value of the reference shaped speed.
According to one embodiment, the reference shaped speed is calculated by increasing or decreasing a previous value of the reference shaped speed at a rate that changes based on a difference between a current value of the reference shaped speed and the current commanded speed. The rate is faster when the difference between the current value of the reference shaped speed and the current commanded speed is larger and the rate is slower when the difference between the current value of the reference shaped speed and the current commanded speed is smaller. The rate is a first designated rate when the difference between the current value of the reference shaped speed and the current commanded speed is larger than a designated value and the rate is a second designated rate that is slower than the first designated rate when the difference between the current value of the reference shaped speed and the current commanded speed is no larger than the designated value.
According to one embodiment, the reference shaped speed is calculated by increasing or decreasing a previous value of the reference shaped speed according to a time invariant first order model. According to one embodiment, the reference shaped speed is calculated by changing a previous value of the reference shaped speed at a rate that changes based on one or more of a weight of the vehicle system and the current moving speed. According to one embodiment, the current commanded speed is received from an operator input device, for example from the remote controller device or the onboard controller device. According to one embodiment, the current commanded speed is received from an automated control system.
A vehicle control system may include an onboard controller device configured to be onboard a vehicle system and to interface with a propulsion system and a brake system of the vehicle system to change movement of the vehicle system and a remote controller device configured to wirelessly communicate with the onboard controller device. The remote controller device may be configured to receive input from an operator, generate control signals based on the input, and to wirelessly communicate the control signals to the onboard controller device to control the movement of the vehicle system while the vehicle system moves along one or more main line routes.
Optionally, the onboard controller device may be configured to change a throttle setting of the propulsion system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator. Optionally, the onboard controller device may be configured to change a dynamic brake setting of the propulsion system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator.
Optionally, the onboard controller device may be configured to change an independent brake setting of the brake system of the vehicle system to change the movement of the vehicle system based on the input that is received from the operator.
Optionally, the onboard controller device may be configured to control the movement of the vehicle system along mainline routes. Optionally, the remote controller device and the onboard controller device may be configured to control the movement of the vehicle system that is sized to hold one or more human passengers.
Optionally, the remote controller device may be configured to receive the input from the operator, generate the control signals, and wirelessly communicate the control signals while the remote controller device is offboard the vehicle system. Optionally, the remote controller device may be configured to receive the input from the operator, generate the control signals, and wirelessly communicate the control signals while the remote controller device is onboard the vehicle system.
Optionally, the vehicle system may include at least a first propulsion-generating vehicle that includes the propulsion system and a second non-propulsion-generating vehicle, and the remote controller device may be configured to receive the input from the operator, generate the control signals, and wirelessly communicate the control signals while the remote controller device is onboard the non-propulsion-generating vehicle of the vehicle system. Optionally, the remote controller device may be configured to receive the input from the operator that is not a certified or licensed locomotive operator and to generate the control signals based on the input for controlling the movement of the vehicle system.
Optionally, the remote controller device may be configured to receive a weight of the vehicle system as the input from the operator and to generate the control signals based on the weight of the vehicle system. Optionally, the remote controller device may be configured to receive a grade on which the vehicle system is disposed as the input from the operator and to generate the control signals based on the grade.
Optionally, the remote controller device may be configured to receive one or more of a first number of propulsion-generating vehicles in the vehicle system or a second number of non-propulsion-generating vehicles in the vehicle system as the input from the operator and to generate the control signals based on the one or more of the first number or the second number. Optionally, the remote controller device may be configured to receive a speed set point as the input from the operator and to generate the control signals based on the speed set point.
Optionally, the vehicle system may include multiple propulsion-generating vehicles, and the onboard controller device may be configured to synchronously control settings of one or more of the propulsion system or the brake system onboard the multiple propulsion-generating vehicles based on the control signals received from the remote controller device.
Optionally, the vehicle system may include multiple propulsion-generating vehicles, and the onboard controller device may be configured to asynchronously control settings of one or more of the propulsion system or the brake system onboard the multiple propulsion-generating vehicles based on the control signals received from the remote controller device.
Optionally, the vehicle system may include multiple vehicles and the onboard controller device may be configured to monitor inter-vehicle forces within the vehicle system and to control one or more of the propulsion system or the brake system based on the control signals received from the remote controller device to one or more of reduce the inter-vehicle forces or maintain the inter-vehicle forces within a designated range.
Optionally, the onboard controller device may be configured to restrict a frequency at which a throttle setting of the propulsion system is changed based on the control signals that are received from the remote controller device.
Optionally, the onboard controller device may be configured to engage a dynamic brake of the brake system of the vehicle system responsive to the control signals received from the remote controller device directing the onboard controller device to stop the movement of the vehicle system.
Optionally, the onboard controller device may include a proportional-integral-derivative (PID) controller and the onboard controller device may be configured to use a first set of control gains above a designated speed and a different, second set of control gains that change as a function of one or more operational parameters. Optionally, the operational parameters may include one or more of a weight of the vehicle system or a speed of the vehicle system.
A method may include receiving input from an operator at a remote controller device of a vehicle control system and generating control signals at the remote controller device based on the input from the operator. The method may further include wirelessly communicating the control signals from the remote controller device to an onboard controller device disposed onboard a vehicle system and controlling one or more of a propulsion system or a brake system of the vehicle system to change movement of the vehicle system using the onboard controller device and based on the control signals that are received from the remote controller device while the vehicle system moves along one or more main line routes.
Optionally, controlling the one or more of the propulsion system or the brake system may include changing a throttle setting of the propulsion system.
Optionally, controlling the one or more of the propulsion system or the brake system may include changing a dynamic brake setting of the propulsion system. Optionally, controlling the one or more of the propulsion system or the brake system may include changing an independent brake setting of the brake system. Optionally, controlling the one or more of the propulsion system or the brake system may include controlling the movement of the vehicle system to move at speeds that exceed fifteen miles per hour.
Optionally, receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system may occur while the remote controller device is offboard the vehicle system. Optionally, receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system may occur while the remote controller device is onboard the vehicle system.
Optionally, the vehicle system may include at least a first propulsion-generating vehicle that includes the propulsion system and a second non-propulsion-generating vehicle, and receiving the input, generating the control signals, wirelessly communicating the control signals, and controlling the one or more of the propulsion system or the brake system may occur while the remote controller device is onboard the non-propulsion-generating vehicle of the vehicle system.
Optionally, the input may be received by the remote controller device from the operator that is not a certified or licensed train engineer.
Optionally, the input that may be received by the remote controller device includes one or more of a weight of the vehicle system, a grade on which the vehicle system is disposed, a first number of propulsion-generating vehicles in the vehicle system, a second number of non-propulsion-generating vehicles in the vehicle system, or a speed set point.
Optionally, the vehicle system may include multiple propulsion-generating vehicles and controlling the one or more of the propulsion system or the brake system may include synchronously controlling settings of the one or more of the propulsion system or the brake system onboard the multiple propulsion-generating vehicles based on the control signals received from the remote controller device.
Optionally, the vehicle system may include multiple vehicles, and the method may further include monitoring inter-vehicle forces within the vehicle system and controlling one or more of the propulsion system or the brake system based on the control signals received from the remote controller device to one or more of reduce the inter-vehicle forces or maintain the inter-vehicle forces within a designated range.
Optionally, controlling the one or more of the propulsion system or the brake system may include adaptively limiting a frequency based on a controller mode at which a throttle setting of the propulsion system is changed based on the control signals that are received from the remote controller device.
Optionally, controlling the one or more of the propulsion system or the brake system may include engaging a dynamic brake of the brake system of the vehicle system responsive to the control signals received from the remote controller device directing the onboard controller device to stop the movement of the vehicle system.
Optionally, controlling the one or more of the propulsion system or the brake system may include clamping a control gain that is output by a proportional-integral-derivative (PID) controller to the propulsion system of the vehicle system at speeds of the vehicle system that are slower than a designated speed limit.
Optionally, controlling the one or more of the propulsion system or the brake system includes transitioning from an open loop control mode to a closed loop control mode responsive to the vehicle system reaching the designated speed limit.
A vehicle control system may include an onboard controller device configured to be onboard a vehicle system and to interface with a propulsion system and a brake system of the vehicle system to change movement of the vehicle system and a remote controller device configured to wirelessly communicate with the onboard controller device. The remote controller device may be configured to receive input from an operator, generate control signals based on the input, and to wirelessly communicate the control signals to the onboard controller device to control the movement of the vehicle system while the vehicle system moves along one or more main line routes. The control signals may direct changes in one or more of dynamic braking or independent brakes of the brake system of the vehicle system.
As used herein, the terms “processor” and “computer,” and related terms, e.g., “processing device,” “computing device,” and “controller” may be not limited to just those integrated circuits referred to in the art as a computer, but refer to a microcontroller, a microcomputer, a programmable logic controller (PLC), field programmable gate array, and application specific integrated circuit, and other programmable circuits. Suitable memory may include, for example, a computer-readable medium. A computer-readable medium may be, for example, a random-access memory (RAM), a computer-readable non-volatile medium, such as a flash memory. The term “non-transitory computer-readable media” represents a tangible computer-based device implemented for short-term and long-term storage of information, such as, computer-readable instructions, data structures, program modules and sub-modules, or other data in any device. Therefore, the methods described herein may be encoded as executable instructions embodied in a tangible, non-transitory, computer-readable medium, including, without limitation, a storage device and/or a memory device. Such instructions, when executed by a processor, cause the processor to perform at least a portion of the methods described herein. As such, the term includes tangible, computer-readable media, including, without limitation, non-transitory computer storage devices, including without limitation, volatile and non-volatile media, and removable and non-removable media such as firmware, physical and virtual storage, CD-ROMS, DVDs, and other digital sources, such as a network or the Internet.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description may include instances where the event occurs and instances where it does not. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it may be related. Accordingly, a value modified by a term or terms, such as “about,” “substantially,” and “approximately,” may be not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges may be identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
This written description uses examples to disclose the embodiments, including the best mode, and to enable a person of ordinary skill in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The claims define the patentable scope of the disclosure, and include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.