The present invention relates to a vehicle control system that shifts the load of the vehicle to the side of the front wheels in an early phase of a cornering maneuver for an improved handling of the vehicle.
In a known vehicle control system for improving the cornering performance of a vehicle, a braking force is generated in the front wheels at the start of a cornering operation, without regard to a braking operation of the vehicle operator, so that the load of the vehicle is shifted to the side of the front wheels. See JP6229879B2, for instance. By moving the load of the vehicle to the side of the front wheels, the frictional force between the front wheels and the road surface is increased, and the lateral force generated in the front wheels is increased so that the cornering performance of the vehicle is improved. According to this prior art, a steer drag which is given as a component of the lateral force of the front wheels which is directed rearward is computed from the front wheel steering angle and the vehicle speed. An additional pitch moment to be applied to the vehicle is calculated from the time differential value of the steer drag, and the target braking force to be generated from a braking force generating device is calculated from the additional pitch moment.
However, according to the vehicle control system disclosed in JP6229879B2, when a target braking force (additional braking force) is adjusted so that an appropriate additional deceleration may be caused to the vehicle under a normal steering speed, the following problem will be created. Specifically, when a rapid steering operation is performed such as rapidly steering left and right so as to cause rapid changes in the vehicle behavior, the additional deceleration or the additional braking force tends to be excessive so that the vehicle driver may experience an impression of a lack of stability in the behavior of the vehicle.
In view of such a problem of the prior art, a primary object of the present invention to provide a vehicle control system which shifts the load of the vehicle to the side of the front wheels in an early phase of a cornering maneuver for an improved handling of the vehicle without creating an impression of a lack of stability in the behavior of the vehicle even when rapid changes are caused in the behavior of the vehicle such as when a rapid steering operation is performed.
To achieve such an object, the present invention provides a vehicle control system (30), comprising: a braking force generating device (6, 22) configured to generate a braking force to shift a load of a vehicle to a side of front wheels thereof at an initial stage of a cornering; a control device (31) configured to control the braking force generated by the braking force generating device; and a vehicle state information acquiring device (33, 34, 35) configured to acquire vehicle state information including a vehicle speed (V) and a steering angle of the front wheels (6), wherein the control device includes an additional deceleration calculation unit (43) that calculates an additional deceleration (Gxadd) to be generated in the vehicle according to the vehicle state information, a correction coefficient setting unit (83, 46) that calculates a lateral jerk equivalent value (Jy) according to the vehicle state information, and sets a lateral jerk correction coefficient (Kj, Kjc) for weakening the additional deceleration according to the lateral jerk equivalent value, an additional deceleration correction unit (44) that corrects the additional deceleration by the lateral jerk correction coefficient, and an additional braking force calculation unit (45) that calculates an additional braking force (Fbadd) to be generated by the braking force generating device according to the additional deceleration corrected by the additional deceleration correction unit.
According to this arrangement, the load of the vehicle is shifted to the side of the front wheels by causing the braking force generating device to generate the additional braking force calculated by the control device based on the additional deceleration at the initial stage of cornering so that the cornering performance of the vehicle is improved. In view of the fact that the lateral jerk of the vehicle becomes significantly large when a steering operation is performed so as to cause rapid changes in the vehicle behavior, the correction coefficient setting unit calculates the lateral jerk equivalent value according to the vehicle state information, and sets the lateral jerk correction coefficient according to the lateral jerk equivalent value. As a result, the vehicle operator is prevented from experiencing an impression of a lack of stability in the behavior of the vehicle due to the excessive additional deceleration or additional braking force even when rapid changes are caused in the behavior of the vehicle such as when a rapid steering operation is performed.
Preferably, the lateral jerk equivalent value (Jy) is calculated from a front wheel steering angle gain (G1) corresponding to the steady-state lateral acceleration which depends on the vehicle speed (V), and the steering angular velocity (ω) of the front wheels.
Thereby, the lateral jerk equivalent value is set so as to be dependent on the vehicle speed by using the front wheel steering angle gain corresponding to the steady-state lateral acceleration so that the influence of phase delay can be eliminated. Therefore, in a situation where the vehicle speed is high so that the vehicle behavior is delayed, the lateral jerk equivalent value which is properly corrected according to the vehicle speed can be calculated.
Preferably, the correction coefficient setting unit (46) includes a correction coefficient correction unit (84) that corrects the lateral jerk correction coefficient (Kj) and outputs the corrected lateral jerk correction coefficient (Kjc), and the correction coefficient correction unit (84) is configured to determine if the additional deceleration (Gxadd) calculated by the additional deceleration calculation unit (43) is 0 or not, and if the additional deceleration is not 0, selects a smaller of the lateral jerk correction coefficient (Kj) which is set according to the lateral jerk equivalent value (Jy) and a previous value of the corrected lateral jerk correction coefficient (Kj) that has been outputted as the lateral jerk correction coefficient (Kjc), the additional deceleration correction unit (44) correcting the additional deceleration by using the corrected lateral jerk correction coefficient (Kjc).
Since the lateral jerk correction coefficient changes only in the decreasing direction while a series of values of the additional deceleration are being outputted without ever increasing so that the controllability of the vehicle is not impaired by the fluctuations in the lateral jerk correction coefficient.
Preferably, the correction coefficient setting unit (46) sets the lateral jerk correction coefficient (Kj) so as to get smaller as the lateral jerk equivalent value (Jy) increases.
According to this arrangement, when the vehicle driver performs a rapid steering operation, the lateral jerk correction coefficient gets smaller so that the additional deceleration applied to the vehicle is weakened. As a result, the vehicle operator is prevented from experiencing an impression of a lack of stability in the behavior of the vehicle.
Thus, the present invention provides a vehicle control system which shifts the load of the vehicle to the side of the front wheels in an early phase of a cornering maneuver for an improved handling of the vehicle without creating an impression of a lack of stability in the behavior of the vehicle even when rapid changes are caused in the behavior of the vehicle such as when a rapid steering operation is performed.
A vehicle control system 30 according to an embodiment of the present invention is described in the following with reference to the appended drawings.
The vehicle 1 is provided with a power plant 6 that drives the wheels 4 (4A, 4B). The power plant 6 may consist of at least one of an internal combustion engine such as a gasoline engine and a diesel engine and an electric motor. The vehicle 1 of the present embodiment is a front-wheel drive vehicle in which the power plant 6 is a gasoline engine and the driving force and braking force (rotational resistance) of the power plant 6 are transmitted to the front wheels 4A. The power plant 6 is a driving force generating device that generates the driving force that acts on the vehicle 1, and is also a braking force generating device that generates a braking force that acts on the vehicle 1. Alternatively, the vehicle 1 may be a four-wheel drive vehicle or a rear-wheel drive vehicle.
Each suspension device 3 includes a suspension arm 7 pivotally supported by the vehicle body 2, a knuckle 8 supported by the suspension arm 7 to rotatably support the front wheel 4A or the rear wheel 4B, and a spring 11 and a damper 12 provided between the vehicle body 2 and the suspension arm 7.
The vehicle 1 is provided with a steering device 15 that steers the front wheels 4A. The steering device 15 includes a steering shaft 16 rotatably supported by the vehicle body 2 around an axis thereof, a steering wheel 17 provided at the upper end of the steering shaft 16, a pinion provided at the lower end of the steering shaft 16, and a rack 18 extending laterally and meshing with the pinion. The two ends of the rack 18 are connected to left and right knuckles 8 via tie rods, respectively. When the steering wheel 17 connected to the steering shaft 16 is turned, the rack 18 moves laterally in the corresponding direction, causing the front wheels 4A to be steered via the corresponding knuckles 8. Further, the steering shaft 16 is fitted with an electric motor that applies assist torque to the steering shaft 16 in response to a steering input from the driver.
Each of the front wheels 4A and the rear wheels 4B is provided with a brake device 20. The brake device 20 may consist of a disc brake device which is configured to generate a braking force on the corresponding wheel 4A, 4B by means of the oil pressure supplied from an oil pressure supply device 21. A brake system 22 is formed by the brake devices 20 of the different wheels and the oil pressure supply device 21. The brake system 22 is a braking force generating system that generates a braking force acting on the vehicle 1. The oil pressure supply device 21 is configured to independently control the hydraulic pressure supplied to each brake device 20 so that the braking forces applied to the front wheels 4A and the rear wheels 4B of the brake system 22 can be changed independently of each other.
The vehicle 1 is provided with a vehicle control system 30 that controls the behavior of the vehicle 1. The vehicle control system 30 includes a control device 31 as a main part thereof. The control device 31 is essentially an electronic control circuit (ECU) composed of a microcomputer, ROM, RAM, a peripheral circuit, an input/output interface, various drivers, and the like. The control device 31 is connected to the power plant 6, the oil pressure supply device 21, and various sensors so as to be able to exchange signals via a communication means such as CAN (Controller Area Network).
The vehicle body 2 is provided with an accelerator pedal sensor that detects the amount of operation of the accelerator pedal (accelerator opening Ap) and a brake pedal sensor that detects the amount of operation of the brake pedal (brake pedal stroke Bp). The control device 31 executes multiple control operations. In one of these control operations, a target braking force Fbt to be generated by the brake system 22 is calculated from the brake pedal stroke Bp or the like, and an oil pressure supply device 21 is controlled according to the target braking force Fbt. In another control operation, the control device 31 calculate a target driving force Fdt that is to be generated by the vehicle 1 from the accelerator opening Ap or the like, and controls the power plant 6 based on the target driving force Fdt.
When the power plant 6 includes an electric motor, the control device 31 may generate the braking force according to the brake pedal stroke Bp by using a regenerative brake obtained by operating the electric motor as a generator. Further, in this case, the control device 31 calculates a requested fore and aft force Fxr by adding the requested driving force Fdr determined by the accelerator opening Ap and the requested braking force Fbr determined the brake pedal stroke Bp, and controls at least one of the brake device 20 and the power plant 6. The requested driving force Fdr is a component that forms at least a part of the target driving force Fdt, and the requested braking force Fbr is a component that forms at least a part of the target braking force Fbt.
The vehicle 1 is equipped with an ACC (Adaptive Cruise Control System) as a form of an ADAS (Advanced Driver Assistance System). An ADAS switch 25 for turning on and off the ADAS is provided in the vicinity of the driver's seat. When the ADAS switch 25 is turned on by the driver's operation, the control device 31 starts controlling the vehicle speed V so as to maintain the vehicle speed V at a constant value selected by the vehicle operator or to maintain a selected vehicle-to-vehicle distance to the vehicle traveling in front of the own vehicle without requiring the vehicle operator to adjust the accelerator opening Ap or the brake pedal stroke Bp. For this purpose, the control device 31 sets a necessary control-requested braking force Fbc or a control-requested driving force Fdc, and performs an ADAS control for controlling the braking system 22 and the power plant 6 as required. Hereinafter, the control-requested driving force Fdc and the control-requested braking force Fbc are collectively referred to as a control-requested fore and aft force Fxc (Fxc=Fdc+Fbc). The control-requested fore and aft force may be generated by any other onboard device.
The control device 31 controls at least one of the brake system 22 and the power plant 6 to increase the lateral force of the front wheels 4A by shifting the load of the vehicle 1 to the side of the front wheels 4A at an early stage of a cornering operation without regard to the accelerator pedal operation or the brake pedal operation performed by the vehicle operator. More specifically, the control device 31 calculates an additional deceleration Gxadd to be added or applied to the vehicle 1 based on the vehicle state amounts representing the dynamic state of the vehicle 1 regardless of the driver's accelerator pedal operation and brake pedal operation, and controls at least one of the brake system 22 and the power plant 6 so as to generate an additional braking force Fbadd corresponding to the additional deceleration Gxadd. The vehicle state amounts include the vehicle speed V, which is the speed of the vehicle 1, the front wheel steering angle δ, which is the steering angle of the front wheels 4A, and the front wheel steering angular velocity ω, which is the steering angular velocity of the front wheels 4A.
The vehicle body 2 is provided with vehicle speed sensors 33, a front wheel steering angle sensor 34, and a front wheel steering angular velocity sensor 35 as vehicle state amount detection devices. Each of the front wheels 4A and the rear wheels 4B is provided with the corresponding vehicle speed sensor 33 which outputs a pulse signal generated in response to the rotation of the corresponding wheel 4A, 4B to the control device 31. The control device 31 acquires the wheel speeds of the front wheels 4A and the rear wheels 4B based on the signals from the vehicle speed sensors 33, and acquires the vehicle speed V by averaging the wheel speeds of the different wheels. The vehicle speed V is acquired as a positive value when moving forward and as a negative value when moving backward.
The front wheel steering angle sensor 34 outputs a signal corresponding to the rotational angle of the steering shaft 16 (steering wheel steering angle) to the control device 31. The control device 31 converts the rotational angle input from the front wheel steering angle sensor 34 into a rotational angle of the front wheels 4A (front wheel steering angle), which are the steered wheels, by multiplying the steering wheel steering angle by a predetermined gear ratio, and acquires the front wheel steering angle δ. The front wheel steering angle δ is acquired as a positive value during a left turn operation and as a negative value during a right turn operation.
The front wheel steering angular velocity sensor 35 outputs a signal corresponding to the rotational angular velocity (steering wheel steering angular velocity) of the steering shaft 16 to the control device 31. The control device 31 converts the angular velocity input from the front wheel steering angular velocity sensor 35 into the steering angular velocity of the front wheels 4A (front wheel steering angular velocity), which are the steered wheels, by multiplying the angular velocity input from the front wheel steering angular velocity sensor 35 by a predetermined gear ratio, and acquires the front wheel steering angular velocity ω. The front wheel steering angular velocity ω is acquired as a positive value during a leftward turning operation and as a negative value during a rightward turning operation. The front wheel steering angular velocity ω is a time differentiated value of the front wheel steering angle δ and is represented by d/dt δ. Hereinafter, in mathematical formulas and drawings, d/dt may be represented by a dot placed above the variable. In this particular case, the front wheel steering angular velocity ω is obtained not a value calculated by time-differentiating the front wheel steering angle δ, but as a speed detection value corresponding to the angular velocity output from the front wheel steering angular velocity sensor 35.
In another embodiment, the front wheel steering angle sensor 34 detects the stroke of the rack 18 in the lateral direction, and the control device 31 multiplies the stroke input from the front wheel steering angle sensor 34 by a predetermined coefficient to obtain the front wheel steering angle δ. Further, it may be arranged such that the front wheel steering angular velocity sensor 35 detects the stroke speed of the rack 18 in the lateral direction, and the control device 31 multiplies the stroke speed input from the front wheel steering angle sensor 34 by a predetermined coefficient to obtain the steering angular velocity of the front wheels 4A. The front wheel steering angular velocity is thus detected as a value corresponding to the linear stroke velocity of the rack 18.
The control device 31 serves as a vehicle speed acquisition device that acquires the vehicle speed V in cooperation with the vehicle speed sensors 33, a front wheel steering angle acquisition device that acquires the front wheel steering angle δ in cooperation with the front wheel steering angle sensor 34, and a front wheel steering angular velocity acquisition device that acquires the front wheel steering angular velocity ω in cooperation with the front wheel steering angular velocity sensor 35.
As shown in
By operating these functional units, the control device 31 executes an additional deceleration control to generate a braking force acting on the vehicle 1 from the power plant 6 and/or the brake system 22. The control device 31 causes the load of the vehicle 1 to be shifted to the side of the front wheels 4A by executing the additional deceleration control so as to generate the additional deceleration Gxadd so that the load of the vehicle 1 is shifted to the side of the front wheels 4A at an early stage of a cornering maneuver, and the cornering performance (heading performance) of the vehicle 1 can be improved.
In this way, the control device 31 calculates the additional braking force Fbadd based on the front wheel steering angle δ, the front wheel steering angular velocity ω and the vehicle speed V, and executes the additional deceleration control whereby the braking force to be applied to the vehicle 1 is generated by the power plant 6 and/or the brake system 22. This control process is executed by the control device 31 without using the actual lateral acceleration of the vehicle 1 detected by a lateral acceleration sensor. As a result, the control lateral acceleration Gy can be advanced in phase with respect to the actual lateral acceleration so that the additional deceleration Gxadd can be generated in the vehicle 1 earlier than when the actual lateral acceleration is used. Therefore, it is possible to reduce a time delay of the additional deceleration Gxadd that could be caused by the communication delay in acquiring the sensor information, the communication delay of the target braking force information, and the response delay of the braking force generating device.
On the other hand, the steer drag differential value d/dt GxD is advanced in phase relative to the steer drag GxD by 90°. Therefore, when the additional deceleration calculation unit 43 calculates the additional deceleration Gxadd based on the steer drag differential value d/dt GxD, and the control device 31 generates the additional braking force Fbadd based on this calculated steer drag differential value d/dt GxD, the additional deceleration Gxadd is additionally applied to the vehicle 1 in such a manner that the total deceleration of the vehicle 1 is advanced in phase relative to the deceleration component due to the steer drag as shown by the imaginary line in
As shown in
The front wheel steering angle gain setting unit 47 is provided with a front wheel steering angle gain map defining the relationship between the vehicle speed V and the front wheel steering angle gain G1 such that the desired characteristics of the responsiveness of the lateral acceleration to the front wheel steering angle δ, which changes according to the vehicle speed V, may be achieved. The front wheel steering angle gain setting unit 47 extracts a value corresponding to the vehicle speed V from the front wheel steering angle gain map, and sets the extracted value as the front wheel steering angle gain G1. The front wheel steering angle gain G1 is a correction gain corresponding to the steady-state lateral acceleration characteristics that changes with the vehicle speed V, and gets larger in value as the vehicle speed V increases.
The front wheel steering angular velocity gain setting unit 48 is provided with a front wheel steering angular velocity gain map defining the relationship between the vehicle speed V and the front wheel steering angular velocity gain G2 such that the desired characteristics of the responsiveness of the lateral acceleration to the front wheel steering angular velocity ω, which changes according to the vehicle speed V, may be achieved. The front wheel steering angular velocity gain setting unit 48 extracts a value corresponding to the vehicle speed V from the front wheel steering angular velocity gain map, and sets the extracted value as the front wheel steering angular velocity gain G2. The front wheel steering angular velocity gain G2 is a correction gain corresponding to the steady-state lateral slip angle characteristics that changes with the vehicle speed V, and gets smaller in value as the vehicle speed V increases.
The control lateral acceleration arithmetic calculation unit 49 calculates the control lateral acceleration Gy by calculating Equation (1) given below:
Gy=G1·δ+G2·ω (1)
Thus, the control lateral acceleration arithmetic calculation unit 49 calculates the first multiplication value (the first term of Equation (1)) by multiplying the front wheel steering angle δ by the front wheel steering angle gain G1 which is the first correction value based on the vehicle speed V, calculates the second multiplication value (the second term of Equation (1)) by multiplying the front wheel steering angular velocity ω by the front wheel steering angular velocity gain G2, which is the second correction value based on the vehicle speed V, and calculates the control lateral acceleration Gy by adding the first multiplication value and the second multiplication value to each other. By calculating the control lateral acceleration Gy in this way by using the control lateral acceleration calculation unit 41, the contribution of the control lateral acceleration Gy to the lateral acceleration of the vehicle 1 is caused to change with the vehicle speed V in such a manner that the response of the actual lateral acceleration to the steering operation changes with the vehicle speed V in an optimum fashion.
When calculating the control lateral acceleration Gy, the control lateral acceleration arithmetic calculation unit 49 uses the front wheel steering angular velocity ω acquired from the front wheel steering angular velocity sensor 35, instead of the time differential value of the front wheel steering angle δ acquired from the front wheel steering angle sensor 34. Thereby, Equation (1) used for calculating the control lateral acceleration Gy is prevented from being one of a higher order. As a result, calculation delay in the control device 31 can be minimized so that the control lateral acceleration Gy can be calculated in a more appropriate manner. Further, when the control device 31 holds the previous value (the value obtained in the previous control cycle) because of a failure to obtain the current steering angle information from the sensor, the steering angular velocity value is prevented from changing in an oscillatory manner. This topic will be discussed in a greater detail hereinafter.
The LPF 50 performs a low-pass filter process on the control lateral acceleration Gy calculated by the control lateral acceleration arithmetic calculation unit 49. As a result, the increase in the high frequency gain is suppressed so that undue fluctuations of the control lateral acceleration Gy in a high frequency region is prevented, and the noise in the control lateral acceleration Gy is substantially eliminated. By performing the low-pass filter process on the control lateral acceleration Gy by using the control lateral acceleration calculation unit 41 in this way, it becomes possible to apply a stable braking force to the vehicle 1.
Equation (1) is an approximation of the equation for the control lateral acceleration Gy of the conventional model calculated by using the planar two degrees of freedom model of the vehicle 1 by disregarding the second order delay component and the differential component determined by the specifications of the vehicle 1. The control lateral acceleration arithmetic calculation unit 49 calculates the control lateral acceleration Gy by using Equation (1) based on the front wheel steering angle δ, the front wheel steering angular velocity ω, and the vehicle speed V in this way. Therefore, the phase of the control lateral acceleration Gy can be advanced as compared with the conventional technique of calculating the control lateral acceleration Gy by using a planar two degrees of freedom model, and the additional deceleration Gxadd can be generated in the vehicle 1 at an early stage.
As shown in
The front wheel steering angle δ increases from 0 during the time interval between the time point t2 and the time point t3, decreases to a negative value during the time interval between the time point t4 and the time point t5, and increases again back to value 0 during the time interval between the time point t6 and the time point t7. The front wheel steering angular velocity ω becomes positive during the time intervals between the time point t2 and the time point t3, and between the time point t6 and the time point t7, and becomes negative during the time interval between the time point t4 and the time point t5. During the time periods between the time point t2 and the time point t3, between the time point t4 and the time point t5, and between the time point t6 to time point t7, the control lateral acceleration Gy before filtering (without filtering), the control lateral acceleration Gy after filtering (with filtering), and the conventional model lateral acceleration Gyc start changing in this order.
A similar behavior can be observed during the time interval between the time point t10 and the time point t17 as that observed during the time interval between the time point t2 and the time point t7. However, the steering angle information (the front wheel steering angle δ acquired by the front wheel steering angle sensor 34 and the front wheel steering angular velocity ω acquired by the front wheel steering angular velocity sensor 35) failed to be inputted from the sensors to the control device 31 at the time point t16, and is inputted only at the time point t17. In this manner, when the steering angle information is temporarily lost (failure to update the information occurs), the control device 31 retains the immediately preceding steering angle information (at the time point t15) (the steering angle information of the previous control cycle), and the steering angle information is used thereafter (at the time point 116) (in the current control cycle). Therefore, in appearance, the steering angle information does not change from the time point t15 to the time point t16, and changes somewhat more significantly than the actual change that may have taken place from the time point t16 to the time point t17.
As described above, the control lateral acceleration arithmetic calculation unit 49 uses the front wheel steering angle δ acquired from the front wheel steering angle sensor 34 and the front wheel steering angular velocity ω acquired from the front wheel steering angular velocity sensor 35 to calculate the control lateral acceleration Gy. Therefore, the control lateral acceleration Gy also does not change from the time point t15 to the time point t16, and changes slightly more significantly than the actual change from the time point t16 to the time point t17.
In the example for comparison shown in
In the present embodiment, since the control lateral acceleration calculation unit 41 uses the front wheel steering angular velocity ω acquired from the front wheel steering angular velocity sensor 35, instead of the time differentiated value of the front wheel steering angle δ, to calculate the control lateral acceleration Gy, the formula in Equation (1) for calculating the control lateral acceleration may consist of a relatively low order formula. As a result, the change in the front wheel steering angular velocity ω is suppressed, and any discontinuity (sudden change) of the control lateral acceleration Gy due to the information discontinuity is alleviated.
The dead zone threshold value setting unit 51 sets a threshold Gyth to be used for the dead zone process for the control lateral acceleration Gy according to the vehicle speed V. More specifically, the dead zone threshold value setting unit 51 sets the threshold value Gyth to a positive value which gets larger with a higher vehicle speed V. The absolute value calculation unit 52 calculates the absolute value of the threshold value Gyth set by the dead zone threshold value setting unit 51. Since the dead zone threshold value setting unit 51 sets a positive value to the threshold value Gyth, the absolute value calculation unit 52 outputs the threshold value Gyth as it is. The negative value calculation unit 53 multiplies the threshold value Gyth by −1 to convert the threshold value Gyth to a negative value, and outputs the converted negative value threshold value—Gyth.
The dead zone processing unit 54 performs a dead zone process on the control lateral acceleration Gy by using the positive threshold value Gyth and the negative value threshold value—Gyth. More specifically, when the absolute value of the inputted control lateral acceleration Gy is equal to or less than the threshold value Gyth (|Gy|≤Gyth), the dead zone processing unit 54 outputs 0 as the control lateral acceleration Gy as the dead zone process, and when the absolute value of the inputted control lateral acceleration Gy is larger than the threshold value Gyth (|Gy|>Gyth), the absolute value of the control lateral acceleration Gy is reduced by the threshold value Gyth, and this reduced value is outputted as the control lateral acceleration Gy as the dead zone processing.
By performing the dead zone process in this way, the dead zone processing unit 54 outputs 0 as the control lateral acceleration Gy in the dead zone region where the absolute value is equal to or less than the predetermined threshold value Gyth. Therefore, in the dead zone region, no additional deceleration Gxadd is generated so that the vehicle behavior is the same as that of the base vehicle on which the vehicle control system 30 is mounted. Therefore, in the range of the front wheel steering angle δ where the vehicle travels substantially straight ahead (the dead zone region), the steering reaction force is the same as that of the base vehicle, and the vehicle 1 maintains the same responsiveness as the base vehicle. In this operating condition, since the frequency of occurrence of the additional braking force Fbadd decreases, the decrease in the durability of the brake system 22 and the brake lamp is not adversely affected. Further, in the operating range corresponding to this control dead zone, since the additional braking force Fbadd does not act on the vehicle 1 in the range where the front wheel steering angle δ is small, the operation of the vehicle control system 30 is prevented from interfering with the operation of other functional devices that are configured to operate when the vehicle travels straight ahead. On the other hand, when the control lateral acceleration Gy starts exceeding the predetermined threshold value Gyth, the control lateral acceleration is outputted as a continuous value increasing from 0 following the dead zone process. Therefore, the additional deceleration Gxadd increases gradually so that the cornering performance of the vehicle 1 can be improved while maintaining a smooth vehicle behavior.
The control lateral acceleration front wheel component calculation unit 55 multiplies the control lateral acceleration Gy which has been subjected to the dead zone processing by a front axle mass ratio mf/m (which is the ratio of the front axle mass mf to the vehicle mass m) to calculate a control lateral acceleration front wheel component Gyf which is the front wheel component of the control lateral acceleration Gy. The discrete differential calculation unit 56 differentiates the control lateral acceleration front wheel component Gyf to calculate the control lateral acceleration front wheel component differential value d/dt Gyf. The steer drag differential value arithmetic calculation unit 57 calculates the steer drag differential value d/dt GxD (=d/dt (Gyf·δ)), which is the differential value of the steer drag GxD (=Gyf·δ), from the front wheel steering angle δ, the front wheel steering angular velocity ω, the control lateral acceleration front wheel component Gyf and the control lateral acceleration front wheel component differential value d/dt Gyf by using Equation (2) given in the following.
The advance time constant multiplication unit 61 multiplies the steer drag differential value d/dt GxD by the advance time constant τc. As a result, the magnitude of the steer drag differential value d/dt GxD, which is the basis for calculating the additional deceleration Gxadd shown in
As shown in
The correction coefficient setting unit 46 includes a first correction coefficient calculation unit 69 and a second correction coefficient calculation unit 70. The first correction coefficient calculation unit 69 includes an operator-requested driving force calculation unit 71, a requested driving force calculation unit 72, a driving force-acceleration conversion unit 73, an operator-requested braking force calculation unit 74, a high value selection unit 75, a negative value calculation unit 76, a braking force-deceleration conversion unit 77, an adder 78, and a first correction coefficient setting unit 79.
The operator-requested driving force calculation unit 71 calculates the operator-requested driving force Fdo to be applied to the vehicle 1 according to the operation of the driver as indicated by the accelerator opening Ap. The operator-requested driving force Fdo is calculated as a positive value that gets larger as the accelerator opening Ap is increased. The requested driving force calculation unit 72 calculates the requested driving force Fdr which the vehicle 1 is requested to generate based on the operator-requested driving force Fdo and the control-requested driving force Fdc. In the present embodiment, the requested driving force calculation unit 72 calculates the requested driving force Fdr by adding the control-requested driving force Fdc to the operator-requested driving force Fdo. In another embodiment, the requested driving force calculation unit 72 calculates or selects the larger of the operator-requested driving force Fdo and the control-requested driving force Fdc as the requested driving force Fdr. The driving force-acceleration conversion unit 73 calculates the requested acceleration Gdr for the vehicle 1 by dividing the requested driving force Fdr by the mass m of the vehicle 1.
The operator-requested braking force calculation unit 74 calculates the operator-requested braking force Fbo to be applied to the vehicle 1 according to the driver's operation as indicated by the brake pedal stroke Bp. The operator-requested braking force Fbo is calculated as a positive value that gets larger as the brake pedal stroke Bp is increased. Hereinafter, the operator-requested driving force Fdo and the operator-requested braking force Fbo are collectively referred to as an operator-requested fore and aft force Fxo (Fxo=Fdo+Fbo). The control-requested braking force Fbc inputted from the ADAS control unit 68 is also calculated as a value of 0 or larger. The high value selection unit 75 compares the operator-requested braking force Fbo with the control-requested braking force Fbc, and selects the greater of the two. The negative value calculation unit 76 outputs a value obtained by multiplying the value selected by the high value selection unit 75 by −1 as the requested braking force Fbr. The high value selection unit 75 and the negative value calculation unit 76 function as a requested braking force calculation unit that calculates the requested braking force Fbr from the operator-requested braking force Fbo and the control-requested braking force Fbc. The braking force-deceleration conversion unit 77 calculates the requested deceleration Gbr for the vehicle 1 by dividing the requested braking force Fbr by the mass m of the vehicle 1.
The adder 78 calculates the requested fore and aft acceleration Gxr by adding the requested acceleration Gdr and the requested deceleration Gbr to each other. In other words, the requested fore and aft acceleration Gxr is calculated from the requested driving force Fdr and the requested braking force Fbr for the vehicle 1 outputted from the requested driving force calculation unit 72 and the requested braking force calculation unit (75, 76). The requested fore and aft force Fxr can be obtained by adding the requested driving force Fdr and the requested braking force Fbr to each other as discussed earlier (Fdr+Fbr=Fxr). Therefore, the requested fore and aft force Fxr includes the requested driving force Fdr and the requested braking force Fbr.
Further, as discussed above, the requested driving force Fdr is calculated from the operator-requested driving force Fdo and the control-requested driving force Fdc, and the requested braking force Fbr is calculated from the operator-requested braking force Fbo and the control-requested braking force Fbc. In other words, the requested fore and aft force Fxr includes the operator-requested driving force Fdo, the control-requested driving force Fdc, the operator-requested braking force Fbo, and the control-requested braking force Fbc. Therefore, the requested fore and aft force Fxr includes the operator-requested fore and aft force Fxo by the driver's operation and the control-requested fore and aft force Fxc not by the driver's operation.
The first correction coefficient setting unit 79 sets a first correction coefficient Kp based on the requested fore and aft force Fxr. More specifically, the first correction coefficient setting unit 79 includes a correction coefficient map, and sets the first correction coefficient Kp according to the requested fore and aft force Fxr by looking up the correction coefficient map. The correction coefficient map is constructed such that: when the requested fore and aft force Fxr is equal to or greater than a first value m (negative value) and is equal to or smaller than a second value n (positive value), the first correction coefficient Kp is 1; when the requested fore and aft force Fxr is smaller than the first value m, the first correction coefficient Kp is a value which is greater than 0 and gets smaller as the requested fore and aft force Fxr decreases; and when the requested fore and aft force Fxr is greater than the second value n, the first correction coefficient Kp is a value which is greater than 0 and smaller than 1, and gets smaller as the requested fore and aft force Fxr increases. The first correction coefficient Kp set by the first correction coefficient setting unit 79 is forwarded to the multiplier 80.
The second correction coefficient calculation unit 70 includes a lateral jerk equivalent value calculation unit 81, an absolute value calculation unit 82, a second correction coefficient setting unit 83 (lateral jerk correction coefficient setting unit), and a second correction coefficient correction unit 84. The lateral jerk equivalent value calculation unit 81 includes a front wheel steering angle gain setting unit 85 having the same configuration as the front wheel steering angle gain setting unit 47 described above. In a multiplication unit 86 of the lateral jerk equivalent value calculation unit 81, the front wheel steering angle gain G1 set by the front wheel steering angle gain setting unit 85 according to the vehicle speed V is multiplied by the front wheel steering angular velocity ω to calculate the lateral jerk equivalent value (d/dt Gy). The lateral jerk equivalent value is an estimated lateral jerk value obtained by converting the front wheel steering angular velocity ω into a vehicle behavior equivalent value by multiplying the front wheel steering angular velocity ω by the front wheel steering angle gain G1. The control device 31 forms a lateral jerk equivalent value acquisition device that acquires the lateral jerk equivalent value in cooperation with the vehicle speed sensor 33 and the front wheel steering angular velocity sensor 35.
The absolute value calculation unit 82 calculates the absolute value of the lateral jerk equivalent value calculated by the lateral jerk equivalent value calculation unit 81. The second correction coefficient setting unit 83 sets the lateral jerk correction coefficient Kj according to the absolute value of the lateral jerk equivalent value. More specifically, the second correction coefficient setting unit 83 includes a lateral jerk correction coefficient map, and the lateral jerk correction coefficient Kj can be looked up from this lateral jerk correction coefficient map for each given absolute value of the lateral jerk equivalent value. In the lateral jerk correction coefficient map, the lateral jerk correction coefficient Kj is 1 when the absolute value of the lateral jerk equivalent value is equal to or smaller than a predetermined value b, and is a value which is equal to or greater than 0 and gets smaller as the absolute value of the lateral jerk equivalent value increases when the absolute value of the lateral jerk equivalent value is greater than the predetermined value b.
Instead of including the lateral jerk equivalent value calculation unit 81, the absolute value calculation unit 82, and the second correction coefficient setting unit 83, the second correction coefficient calculation unit 70 may consist of a three-dimensional map which generates the lateral jerk correction coefficient Kj for a given input of the vehicle speed V and the front wheel steering angular velocity ω. However, in this case, as the number of grid points on this three-dimensional map increases, the labor required for creating the map may become prohibitively great. On the other hand, in the present embodiment, the second correction coefficient calculation unit 70 calculates the lateral jerk equivalent value normalized by the front wheel steering angular velocity ω, and uses a two-dimensional map to obtain the lateral jerk correction coefficient Kj from the lateral jerk equivalent value so that the labor required for creating the map can be minimized.
The second correction coefficient correction unit 84 includes a reset determination unit 87, a switching unit 88, and a low value selection unit 89, and is configured to obtain a second correction coefficient Kjc by correcting the lateral jerk correction coefficient Kj and output the second correction coefficient Kjc. The reset determination unit 87 determines if the additional deceleration Gxadd is 0, and if the additional deceleration Gxadd is 0, sets the reset flag F to 1. The switching unit 88 outputs the second correction coefficient Kjc by switching between the lateral jerk correction coefficient Kj set by the second correction coefficient setting unit 83 and a low lateral jerk correction coefficient KjMIN set by the low value selection unit 89 according to the reset flag F. More specifically, when the reset flag F is 1, the lateral jerk correction coefficient Kj set by the second correction coefficient setting unit 83 is outputted as the second correction coefficient Kjc, and when the reset flag F is 0, the lateral jerk correction coefficient KjMIN selected by the low value selection unit 89 is outputted as the second correction coefficient Kjc. The low value selection unit 89 compares the lateral jerk correction coefficient Kj set by the second correction coefficient setting unit 83 with the previous value of the second lateral jerk correction coefficient Kjc outputted from the second correction coefficient correction unit 84, and selects the smaller of these two values.
Owing to this correction process performed by the second correction coefficient correction unit 84, as a series of values of the additional deceleration Gxadd are outputted as shown in
As shown in
In the state where the accelerator opening Ap is held at a small value between the time point t21 and the time point t23, the requested fore and aft acceleration Gxr is approximately 0. Therefore, the correction coefficient K is maintained at 1 by the first correction coefficient setting unit 79 of
When the accelerator opening Ap is at a high level so as to accelerate the vehicle 1 between the time point t31 and the time point t34, the requested fore and aft acceleration Gxr is a large positive value. Therefore, the correction coefficient K is maintained at a predetermined value a which is larger than 0 and smaller than 1 by the first correction coefficient setting unit 79 in
When the brake pedal stroke Bp is so large as to decelerate the vehicle 1 between the time point t41 and the time point t44, the requested fore and aft acceleration Gxr becomes a negative value having a large absolute value. Therefore, the correction coefficient K is maintained at 0 by the first correction coefficient setting unit 79 shown in
As described above, the control device 31 shown in
As described above, the requested fore and aft force Fxr includes a requested driving force Fdr (
For example, when the driver depresses both the accelerator pedal and the brake pedal at the same time, if the correction coefficient K based on the requested driving force Fdr and the correction coefficient K based on the requested braking force Fbr are individually set, the two versions of the correction coefficient K are required to be mediated (such as low select process). On the other hand, in the present embodiment, as discussed above with reference to
Further, as described above, the requested fore and aft force Fxr includes the operator-requested fore and aft force Fxo generated by the driver's operation and the control-requested fore and aft force Fxc not generated by the driver's operation. Therefore, the correction coefficient K is set based on the requested fore and aft force Fxr including the operator-requested fore and aft force Fxo by the driver's operation such as pedal operation and the control-requested fore and aft force Fxc requested by the ADAS or the like, instead of the driver's operation. This allows the additional deceleration Gxadd to be controlled without causing any discomfort to the driver due to an unanticipated behavior of the vehicle 1.
For example, when the ACC is in operation, and the distance to the preceding vehicle increases, the ACC will request acceleration, and the driver expects the vehicle 1 to accelerate automatically in a corresponding manner. In a situation where the front wheels 4A are steered while the ACC is requesting acceleration, if the correction coefficient K is set based solely on the operator-requested fore and aft force Fxo due to the driver's operation, the additional deceleration Gxadd is applied to the vehicle 1 without being weakened. As a result, the driver may experience discomfort due to the difference between the expected behavior of the vehicle 1 and the actual behavior of the vehicle. On the other hand, as in this embodiment of the present invention, when the correction coefficient K is set by the requested fore and aft force Fxr that includes the control-requested fore and aft force Fxc, the additional deceleration Gxadd will be weakened in this situation. Therefore, the behavior of the vehicle 1 does not deviate from the expectation of the driver so that the discomfort that the driver may experience is minimized.
From the time point t51 to the time point t56, the additional deceleration Gxadd is generated according to the change in the control lateral acceleration Gy after the dead zone processing by the operation of the steering wheel 17. However, the lateral jerk equivalent value has not reached the weakening correction region set in a region where the absolute value of the lateral jerk equivalent value is larger than the predetermined value b (
Also between the time point t61 and the time point t68, the additional deceleration Gxadd is generated according to the change in the control lateral acceleration Gy after the dead zone processing by the operation of the steering wheel 17. Here, the absolute value of the lateral jerk equivalent value Jy does not reach the weakening correction region during the time interval between the time point t61 and the time point t62, the additional deceleration Gxadd is calculated as the same value before and after the correction by the correction coefficient K. On the other hand, when the lateral jerk equivalent value reaches the weakening correction region at the time point t63, the second correction coefficient Kjc is set to a value smaller than 1. The additional deceleration Gxadd is generated during the time interval between the time point t64 and the time point t65, but the additional deceleration Gxadd is corrected by the second correction coefficient Kjc so as to be weakened.
As described above, the correction coefficient setting unit 46 of
At that time, since the correction coefficient setting unit 46 sets the lateral jerk correction coefficient Kj so that the lateral jerk correction coefficient Kj gets smaller as the lateral jerk equivalent value Jy increases. Therefore, when the driver performs a sudden steering operation, the lateral jerk correction coefficient Kj gets smaller when the vehicle operator performs a sudden cornering maneuver so that the additional deceleration Gxadd applied to the vehicle 1 is weakened. As a result, the vehicle operator is prevented from experiencing an impression of a lack of vehicle stability.
As described above, the lateral jerk equivalent value Jy is calculated from the front wheel steering angle gain G1 and the front wheel steering angular velocity ω corresponding to the steady-state lateral acceleration which depends on the vehicle speed V. Since the lateral jerk equivalent value Jy is made dependent on the vehicle speed by using the front wheel steering angle gain G1, any adverse influences of a phase lag are eliminated. Therefore, in a situation where the vehicle speed V is so high that the vehicle behavior is delayed to a significant extent, the lateral jerk equivalent value Jy is corrected according to the vehicle speed V.
Further, the absolute value of the lateral jerk equivalent value Jy is equal to or less than the predetermined value b at the time point t64 in
When the additional deceleration Gxadd is not 0 and the reset flag F is 1 as discussed above, the smaller of the lateral jerk correction coefficient Kj set by the second correction coefficient correction unit 84 of the correction coefficient setting unit 46 according to the lateral jerk equivalent value Jy and the previously outputted value (the previous value) of the output second correction coefficient Kjc is selected as the second correction coefficient Kjc to be outputted. Then, the correction coefficient setting unit 46 calculates the correction coefficient K by using the second correction coefficient Kjc. By performing such a correction process by using the second correction coefficient correction unit 84, the second correction coefficient Kjc is prevented from increasing during the time intervals between the time point t65 and the time point t66 and between the time point t67 and the time point t68, or while a series of values of the additional deceleration Gxadd are being outputted. Thereby, the controllability of the vehicle 1 is prevented from being lowered by the changes (the increases and decreases) in the second correction coefficient Kjc a series of values of the additional deceleration Gxadd are being outputted.
During the time interval between the time point t71 and the time point t72, the second correction coefficient Kjc is generally held at a value smaller than 1 and larger than 0, similarly as during the time interval between the time point t65 and the time point t66. On the other hand, during the time intervals between the time point t72 and the time point t73 and between the time point t73 and the time point t74, the second correction coefficient Kjc is generally held at 0, and the additional deceleration Gxadd is corrected so as to be weakened to 0. When the second correction coefficient correction unit 84 of the correction coefficient setting unit 46 did not perform the correction process, the additional deceleration Gxadd would have changed significantly as the second correction coefficient Kjc changes from 0 to 1 as shown by the broken line. In the present embodiment, even in such a case, the correction coefficient setting unit 46 performs the correction process to maintain the second correction coefficient Kjc so that the controllability of the vehicle 1 is prevented from being lowered by the increases and the decreases in the second correction coefficient Kjc while a series of values of the additional deceleration Gxadd are being outputted.
Also, the specific configurations and arrangements of each member or portion, quantity, angle, calculation formula, etc. can be appropriately changed within the scope of the present invention. Further, the components shown in the above embodiments are not entirely indispensable, but can be appropriately selected, omitted and substituted.
Number | Date | Country | Kind |
---|---|---|---|
2021-049179 | Mar 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
11325599 | Hirota et al. | May 2022 | B2 |
20120179349 | Yamakado | Jul 2012 | A1 |
20140145498 | Yamakado et al. | May 2014 | A1 |
20160264135 | Yamakado | Sep 2016 | A1 |
20160347181 | Yamakado | Dec 2016 | A1 |
20200223410 | Ikezawa | Jul 2020 | A1 |
20200369261 | Umetsu et al. | Nov 2020 | A1 |
20220242377 | Okubo | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
110154779 | Aug 2019 | CN |
111231940 | Jun 2020 | CN |
114834440 | Aug 2022 | CN |
10025598 | Dec 2000 | DE |
2005028919 | Feb 2005 | JP |
4129702 | Aug 2008 | JP |
2010111350 | May 2010 | JP |
6229879 | Nov 2017 | JP |
2018177223 | Nov 2018 | JP |
WO-2009027790 | Mar 2009 | WO |
WO-2012043683 | Apr 2012 | WO |
WO-2015151565 | Oct 2015 | WO |
Entry |
---|
Office Action for Chinese Patent Application No. 202210182166.4 dated Sep. 21, 2023; 8 pp. |
Number | Date | Country | |
---|---|---|---|
20220306062 A1 | Sep 2022 | US |