The present invention relates to a decorative component for a vehicle having a radar device.
Conventionally, some vehicles are equipped with a radar device located on the back of the front grille for measuring the distance with another vehicle or an obstacle by using radar waves. If a decorative component such as a metal emblem is located in the path of radar waves transmitted from the radar device, the radar waves are interfered by the component. This causes the radar device to function improperly.
Accordingly, for example, Japanese Laid-Open Patent Publication No. 2002-135030 discloses a vehicle decorative component that includes a back coating plate made of a material transparent to radar waves, an outer surface coating plate made of an optically transparent material that is also transparent to radar waves, and a metal film made of indium located between the back coating plate and the outer surface coating plate. The indium film is transparent to radar waves. Since the vehicle decorative component disclosed in Japanese Laid-Open Patent Publication No. 2002-135030 includes a metal film made of indium, the component has radar wave transparency as well as a metallic appearance.
Japanese Laid-Open Patent Publication No. 2004-309322 discloses a vehicle decorative component having a two-layer structure in which a substantially optically transparent protective layer and a back layer that are adhered to each other. In the vehicle decorative component of Japanese Laid-Open Patent Publication No. 2004-309322, the refractive index of the back layer is less than the refractive index of the protective layer, and protrusions and recesses are formed between the protective layer and the back layer. Although the decorative component of the publication No. 2004-309322 has no metal layer, light is reflected by the protrusions and recesses, which gives the component a metallic appearance.
Since the metal film of Japanese Laid-Open Patent Publication No. 2002-135030 is formed of a special metal, or indium, which has a high transparency to radar waves, the manufacturing costs are increased. In the vehicle decorative component of the publication No. 2004-309322, the refractive index of the back layer is less than that of the protective layer. Thus, the interface between the back layer and the protective layer is likely to refract and reflect radar waves. Such refractions and reflections of radar waves attenuate the intensity of the radar waves. As a result, the radar waves cannot readily pass through the decorative component of the publication No. 2004-309322.
Accordingly, it is an objective of the present invention to provide an inexpensive vehicle decorative component that has an improved transparency of radar waves.
In accordance with one aspect of the present invention, a vehicle decorative component located in a path of radar waves emitted from a radar device mounted in the vehicle is provided. The component includes a first layer and a second layer. The first layer is made of a transparent resin material, and has a back surface. The second layer is made of a resin material, and has a front surface that contacts the back surface of the first layer. A ground patter is formed on at least one of the back surface of the first layer and the front surface of the second layer. The refractive index of the first layer is the same as the refractive index of the second layer.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
One embodiment of the present invention will now be described with reference to
In
As shown in
As shown in
The back layer 10 is relatively thin and made of resin. The back layer 10 is colored to be translucent. When the wavelength of radar waves emitted by the radar device 2 is represented by a symbol λe, and the relative permittivity of the first layer is represented by a symbol εp, the thickness of the back layer 10 is substantially equal to an integral multiplication of a value obtained by dividing half the wavelength by the square root of the relative permittivity. That is, the thickness of the back layer 10 is substantially equal to an integral multiplication of a value represented by the expression (λe/2)/(εp)1/2. In this embodiment, the thickness of the back layer 10 is, for example, set to 6 mm. In this specification, the expression “substantially equal thickness” refers to a thickness that is in a range of 1% of a reference thickness.
A back 11 of the back layer 10 is a smooth surface that is designed to be directly attached, for example, to the vehicle radiator grille. As shown in
The protective layer 20, which contacts the back layer 10 as shown in
As shown in
An operation of the vehicle decorative component 1 will now be described.
The decorative component 1 is attached to the radiator grille of a vehicle. Since the front contact surface 15 has ground pattern as shown in
This embodiment provides the following advantages.
(1) In the decorative component 1, the back 22 of the protective layer 20 and the front surface 13 of the back layer 10 contact each other, and ground pattern is formed on the front contact surface 15. The protective layer 20 and the back layer 10 have the same refractive index. Therefore, when passing through the interface between the protective layer 20 and the back layer 10, the radar waves are hardly refracted or reflected. Also, since the ground pattern is formed on the front contact surface 15, the projections 12, in which no ground pattern is formed, is recognized as the shape of an emblem when the decorative component 1 is viewed from front.
(2) The back layer 10 is colored to be translucent. Also, the ground pattern is formed on the back layer 10 except for the projections 12. Therefore, the projections 12 are visually distinct.
(3) The protective layer 20 is optically transparent and thicker than the back layer 10. Therefore, although the back layer 10 is relatively thin, the protective layer 20 protects the back layer 10 from external impacts. The decorative component 1 thus has a sufficient durability.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the invention may be embodied in the following forms.
The projections 12 formed on the back layer 10 and the recesses 21 formed on the protective layer 20 may be omitted. In this case, ground pattern is formed in predetermined sections of the front surface 13 of the back layer 10 as shown in
Instead of forming ground pattern on the front contact surface 15, ground pattern may be formed on the projection surfaces 14 and the front contact surface 15 may be formed as a smooth surface. In this case also, the contrast between the projections 12 and the other sections is distinct, so that the projections 12 are recognized as the emblem when the decorative component 1 is viewed.
Ground pattern may be formed in other portions in addition to the front contact surface 15. For example, as shown in
The decorative component 1 does not need to have a two-layer structure. For example, the decorative component 1 may have a three-layer structure with a second protective layer made of optically transparent resin, which second protective layer is provided on the front surface 13 of the protective layer 20. Further, the decorative component 1 may have a four-layer structure with another back layer provided on the back 22 of the back layer 10. In these cases, all the layers need to have the same refractive index.
The shapes of minute recesses and projections in the ground pattern on the front contact surface 15 are not limited to any specific shapes. For example, the minute recesses and projections may have rectangular or trapezoidal cross-sections.
The thicknesses of the back layer 10 and the protective layer 20 are not limited to any specific values. For example, the protective layer 20 may be thicker. Also, the thickness of the back layer 10 may be 24 mm, so that the back layer 10 has the same thickness as the protective layer 20. Alternatively, the back layer 10 may be thicker than the protective layer 20. However, the thicknesses of the protective layer 20 and the back layer 10 are substantially equal to an integral multiplication of a value obtained by dividing half the wavelength by the square root of the relative permittivity ( (λe/2)/(εp)1/2).
The back layer 10 does not need to be translucent. For example, the back layer 10 may be made of an optically transparent material or an opaque material. Also, the back layer 10 may be colored in any color.
The back layer 10 and the protective layer 20 may be formed of different materials. For example, the back layer 10 may be made of syndiotactic polystyrene, and the protective layer 20 may be made of polyvinyl chloride. Even if the back layer 10 and the protective layer 20 are made of different materials, the decorative component 1 has a favorable transparency to radar waves as long as the used materials have the same refractive index.
The shapes of the projections 12 formed on the back layer 10 and the recesses 21 formed on the protective layer 20 are not limited to any specific shapes. For example, the projections 12 may have rectangular cross-sections, and the recesses 21 may be shaped to correspond to the shapes of the projections 12.
Instead of forming the projections 12 on the front surface 13 of the back layer 10 and the recesses 21 on the back 22 of the protective layer 20, projections may be formed on the back 22 of the protective layer 20 and recesses may be formed on the front surface 13 of the back layer 10. Even in this case, the projections formed on the protective layer 20 and the recesses formed on the back layer 10 form the shape of an emblem.
Instead of forming ground pattern on the front contact surface 15 of the back layer 10, part of the back layer 10 may be colored. For example, sections corresponding to the projections 12 may be formed to be optically transparent, and sections corresponding to the front contact surface 15 may be colored, so that the projections 12 is visually distinct from the front contact surface 15. In this case also, the contrast between the projections 12 and the other sections is distinct, so that the projections 12 are recognized as the emblem.
Number | Date | Country | Kind |
---|---|---|---|
2005-333381 | Nov 2005 | JP | national |