Vehicle detection apparatus and vehicle detection method

Information

  • Patent Grant
  • 6504490
  • Patent Number
    6,504,490
  • Date Filed
    Friday, June 22, 2001
    23 years ago
  • Date Issued
    Tuesday, January 7, 2003
    22 years ago
Abstract
There are provided a vehicle detection apparatus and a vehicle detection method which are capable of detecting a sound source even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle and calculating the location in the vehicle traveling direction and the lane direction of the sound source and the number of passing vehicles. In the vehicle detection apparatus and the vehicle detection method, noises are collected by a microphone array (402) comprising a plurality of microphones arranged in the form of a matrix in the same plane, the outputs thereof are sampled periodically with time windows in a noise component matrix calculation section (122), the direction in the vehicle traveling direction and the lane direction of the sound source in each window is estimated in an α-direction calculation section (410) and a β-direction calculation section (417), the vehicle is detected by the degree of similarity between the estimated directions in the vehicle traveling direction and traveling sound templates in a vehicle detection section (124), and the estimated directions in the lane direction are counted for each lane and the location in the lane direction of the sound source is detected in a lane detection section (312).
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a vehicle detection apparatus and a vehicle detection method which can detect a desired vehicle by using a microphone array.




2. Description of the Related Art




There have so far been proposed a wide variety of apparatuses for detecting the state of traffic flow from the noises produced by vehicles, and such proposed apparatuses include those intended for reducing the sizes and costs of the apparatuses. An exemplified apparatus is shown in

FIG. 16

, as comprising sound collectors


701


and


702


, amplifying circuits


703


and


704


, a switching circuit


705


, a frequency analyzing circuit


706


, a frequency distribution comparing circuit


707


, a time difference detecting circuit


708


, a time difference/velocity converting circuit


709


, a timing controlling circuit


710


and a velocity display outputting circuit


711


and determines the velocity of traffic flow by measuring noises at the two spots along and in the vicinity of a road where traffic flows (Japanese Patent Application Laid-Open No. 114098/1993).




In

FIG. 16

, the first sound collector


701


and the second sound collector


702


are placed along traffic flow with a fixed distance L therebetween. The noises A and B of the traffic flow which have been collected by these sound collectors


701


and


702


are in turn inputted to the frequency analyzing circuit


706


by switching the switching circuit


705


alternately, and their frequencies are in turn analyzed by the frequency analyzing circuit


706


, to ensure that frequency spectral distributions SA and SB are obtained.




Then, the degree of similarity between the frequency spectral distribution SA and the frequency spectral distribution SB is detected by the frequency distribution comparing circuit


707


, and the time difference between the frequency spectral distribution SA and the frequency spectral distribution SB which nearly match with each other is determined by the time difference detecting circuit


708


. The time difference/velocity converting circuit


709


determines the velocity V of a noise source (vehicle) by performing the computation represented by the expression “V=L/dt”. In this case, the direction in which the vehicle in headed can be calculated from the calculated time difference.




However, such a conventional detection apparatus has the problem that the accuracy of detecting a vehicle lowers when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than a desired vehicle because, as described above, the conventional detection apparatus measures noises only at the two spots along and in the vicinity of a road where traffic flows and calculates the velocity and traveling direction of the vehicle based on the time difference between the frequency spectral distribution SA and the frequency spectral distribution SB which nearly match with each other.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a vehicle detection apparatus which is capable of detecting a sound source even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle and calculating the location in the vehicle traveling direction and the lane direction of the vehicle and the number of passing vehicles.




It is another object of the present invention to provide a vehicle detection method which is capable of detecting a sound source even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle and calculating the location in the vehicle traveling direction and the lane direction of the vehicle and the number of passing vehicles.




In accordance with a first aspect of the present invention, there is provided a vehicle detection apparatus which comprises a sound collection means comprising a plurality of microphones and placed in the vicinity of a road; a direction estimation means for sampling the input signals from the sound collection means periodically with time windows and estimating the direction of a sound source in each time window; and a similarity calculation means for calculating the degree of similarity between the estimation results by the direction estimation means and a plurality of templates which indicate a change in the location of the sound source with time while the vehicle is traveling. According to this constitution, a change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction. According to this constitution, the location in the vehicle traveling direction of a vehicle is detected.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction and a plurality of microphones aligned on a line perpendicular to the vehicle traveling direction. According to this constitution, the location in the vehicle traveling direction and the lane direction of a vehicle is detected.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction and a plurality of microphones aligned on a line perpendicular to the vehicle traveling direction. According to this constitution, the location in the vehicle traveling direction and the lane direction of a vehicle is detected. In this case, the above direction estimation means comprises an estimation means for estimating the location in the vehicle traveling direction and the lane direction of the sound source.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction and a plurality of microphones aligned on a line perpendicular to the vehicle traveling direction. According to this constitution, the location in the vehicle traveling direction and the lane direction of a vehicle is detected. In this case, when the above road has a plurality of lanes, the vehicle detection apparatus according to the present invention comprises counters for counting the estimation results by the above direction estimation means for each lane and a lane detection means for detecting the location in the lane direction of the sound source based on the counting values of these counters.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones arranged in the form of a matrix in the same plane. According to this constitution, even when a plurality of vehicles are traveling simultaneously, the microphones arranged in the form of a matrix identifies a sound source precisely and detects the location in the vehicle traveling direction and the lane direction of the vehicle while the deterioration of the accuracy of the detection by other noises is suppressed.




In the aforesaid vehicle detection apparatus according to the present invention, the above direction estimation means comprises an estimation means for estimating the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source. According to this constitution, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction).




In the aforesaid vehicle detection apparatus according to the present invention, the above direction estimation means comprises an estimation means for estimating the direction in the vehicle traveling direction and the lane direction of a sound source two-dimensionally. According to this constitution, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction). In this case, the above direction estimation means comprises an estimation means for estimating the direction of a sound source by scanning in the vehicle traveling direction with the direction of the sound source in the lane direction limited to the center of the road.




In the aforesaid vehicle detection apparatus according to the present invention, the above direction estimation means comprises an estimation means for estimating the direction in the vehicle traveling direction and the lane direction of a sound source two-dimensionally. According to this constitution, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction). In this case, the above direction estimation means comprises an estimation means for estimating the direction of a sound source by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.




In the aforesaid vehicle detection apparatus according to the present invention, when the above road has a plurality of lanes, comprises a first counter which counts the estimation results by the above direction estimation means for each lane, a lane location detection means for detecting the location in the lanes of a sound source based on the counting values of this counter, and a second counter which counts the detection results by this lane location detection means for each lane. According to this constitution, passing vehicles are counted for each lane by the above second counter.




In the aforesaid vehicle detection apparatus according to the present invention, the above similarity calculation means comprises a comparison means for comparing the above plurality of templates with the estimation results. According to this constitution, the traveling velocity of a vehicle is calculated by using the templates (plurality of templates) at different velocities.




In the aforesaid vehicle detection apparatus according to the present invention, the above similarity calculation means comprises a comparison means for comparing the above plurality of templates with the estimation results. According to this constitution, the traveling velocity of a vehicle is calculated by using the templates (plurality of templates) at different velocities. In this case, the above plurality of templates are preferably those prepared by using the sounds of a vehicle when the vehicle is caused to travel at different velocities.




In the aforesaid vehicle detection apparatus according to the present invention, the above similarity calculation means comprises a comparison means for comparing the above plurality of templates with the estimation results. According to this constitution, the traveling velocity of a vehicle is calculated by using the templates (plurality of templates) at different velocities. In this case, the above plurality of templates are preferably those prepared by expanding or contracting the time base of a template prepared by using the sound of a vehicle traveling at a constant velocity, and the above similarity calculation means comprises a time-base expansion means for expanding or contracting the above time base of the template.




In the aforesaid vehicle detection apparatus according to the present invention, the above sound collection means comprises a plurality of microphones the number of which is equal to or greater than “number of assumed sound sources+1”. According to this constitution, the accuracy of estimating the direction of a sound source improves, and the vehicle can still be detected even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle.




In accordance with a second aspect of the present invention, there is provided a vehicle detection method which comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones placed in the vicinity of a road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the direction of a sound source is estimated in each time window; and a similarity calculation step in which the degree of similarity between the estimation results by this direction estimation step and templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated. According to this method, a change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected.




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones aligned on a line parallel to the vehicle traveling direction and placed in the vicinity of a road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the direction of a sound source is estimated in each time window; and a vehicle detection step in which the degree of similarity between the estimation results by this direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation. According to this method, a change in the location in the vehicle traveling direction of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected, and the traveling velocity of the vehicle is calculated by using the templates (plurality of templates) at different velocities.




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones aligned on a line parallel to the vehicle traveling direction and on a line perpendicular to the vehicle traveling direction and placed in the vicinity of a road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by this direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the above direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values. According to this method, the location in the traveling direction and the lane direction of the vehicle is detected.




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by this direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the above direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values. According to this method, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction).




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by this direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the above direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values. According to this method, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to define only an α direction (lane direction) or a β direction (vehicle traveling direction). In this case, in the above direction estimation step, the direction of the sound source is estimated by scanning in the vehicle traveling direction with the direction of the sound source in the lane direction limited to the center of the road.




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by this direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the above direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values. According to this method, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction). In this case, in the above direction estimation step, the direction of the sound source is estimated by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; and a lane-specific vehicle detection step in which the estimation results in the lane direction by this direction estimation step are counted for each lane to carry out vehicle detection and detected vehicles are counted for each lane. According to this method, passing vehicles are counted for each lane while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction).




The aforesaid vehicle detection method according to the present invention may comprises a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the above plurality of microphones are sampled periodically with time windows and the two-dimensional direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; and a lane-specific vehicle detection step in which the estimation results in the lane direction by this direction estimation step are counted for each lane to carry out vehicle detection and detected vehicles are counted for each lane. According to this method, passing vehicles are counted for each lane while the deterioration of the accuracy of the detection by other noises is suppressed more securely, as compared with, for example, the case where microphones are aligned in the x-axis and z-axis directions to set only an α direction (lane direction) or a β direction (vehicle traveling direction). In this case, in the above direction estimation step, the direction of the sound source is estimated by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.




In the above vehicle detection step of the aforesaid vehicle detection method according to the present invention, the degree of similarity between the templates prepared by using the sounds of a vehicle traveling at different velocities and the above estimation results in the above vehicle detection step is calculated. According to this method, a change in the location in the vehicle traveling direction of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected, and the traveling velocity of the vehicle is calculated by using the templates (plurality of templates) at different velocities.




In the vehicle detection method according to the present invention, the above vehicle detection step further comprises a velocity detection step in which the degree of similarity between the templates prepared by expanding or contracting the time base of a template prepared by using the sounds of a vehicle traveling at a constant speed and the above estimation results is calculated and, according to the result of the calculation, the velocity of the detected vehicle is calculated from the expansion ratio of the template and the vehicle velocity used for preparing the template. According to this method, a change in the location in the vehicle traveling direction of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected, and the traveling velocity of the vehicle is calculated by using the templates (plurality of templates) at different velocities.




In the aforesaid vehicle detection method according to the present invention, template matching is used to calculate the degree of similarity between the above templates and the estimation results. According to this method, a change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected. A change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected in the vehicle traveling direction.




In the aforesaid vehicle detection method according to the present invention, DP matching is used to calculate the degree of similarity between the templates and the estimation results. According to this method, a change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected. A change in the location of the vehicle with time is detected by calculating the above degree of similarity, whereby the vehicle is detected in the vehicle traveling direction.




In the aforesaid vehicle detection method according to the present invention, the number of the above plurality of microphones is equal to or greater than “number of assumed sound sources+1”. According to this method, the accuracy of estimating the direction of a sound source improves, and a vehicle is detected even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle.











BRIEF DESCRIPTION OF THE DRAWINGS




The Present invention and many of the advantages thereof will be better understood from the following detailed description when considered in connection with the accompanying drawings, wherein:





FIG. 1

is a block diagram showing the vehicle detection apparatus


100


of the first embodiment;





FIG. 2

is a block diagram showing the substantial part of the vehicle detection apparatus of the first embodiment according to the present invention;





FIG. 3

is a diagram showing the placement of the microphone array of the first embodiment according to the present invention;





FIG. 4

is a flow chart showing the vehicle detection method of the first embodiment according to the present invention;





FIG. 5

is a block diagram showing the substantial part of the vehicle detection apparatus of the second embodiment according to the present invention;





FIG. 6

is a flow chart showing the vehicle detection method of the second embodiment according to the present invention;





FIG. 7

is a block diagram showing the substantial part of the vehicle detection apparatus of the third embodiment according to the present invention;





FIG. 8

is a block diagram showing the substantial part (α-direction noise component calculation section and α-direction calculation section) of the vehicle detection apparatus of the third embodiment according to the present invention;





FIG. 9

is a diagram showing the placement of the microphone array of the third embodiment according to the present invention;





FIG. 10

is a flow chart showing the vehicle detection method of the third embodiment according to the present invention;





FIG. 11

is a block diagram showing the substantial part of the vehicle detection apparatus of the fourth embodiment according to the present invention;





FIG. 12

is a diagram showing the placement of the microphone array of the fourth embodiment according to the present invention;





FIG. 13

is a flow chart showing the vehicle detection method of the fourth embodiment according to the present invention;





FIG. 14

is a block diagram showing the substantial part of the vehicle detection apparatus of the fifth embodiment according to the present invention;





FIG. 15

is a flow chart showing the vehicle detection method of the fifth embodiment according to the present invention; and





FIG. 16

is a block diagram showing the substantial part of a conventional vehicle detection apparatus.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The embodiments according to the present invention will be described with reference to the drawings hereinafter.




[First Embodiment]




As shown in

FIG. 1

, the vehicle detection apparatus


100


of the first embodiment according to the present invention comprises a CPU


4


and a memory


5


which control the whole detection apparatus, a sound collector


3


which collects the noises produced by a traveling vehicle, an input control section


1


which controls the driving of the sound collector


3


(including the rotation of a microphone array


102


to be described later), an arithmetic circuit


11


which performs a variety of computations such as those for calculating noise components, for calculating the estimated direction of a noise source and for detecting the vehicle, an arithmetic control section


8


which controls the driving of the arithmetic circuit


11


, a CRT


9


and a display control section


6


which display the result of detection, a printer


10


and a printing control section


7


which print the result of detection, and a timer circuit


2


which is used for measuring time.




As shown in

FIGS. 2 and 3

, the above vehicle detection apparatus


100


comprises a microphone array


102


comprising M (M>2) number of microphones, a β-direction noise component matrix calculation section


122


which receives the outputs of the microphone array


102


and calculates the noise components in the outputs, a β-direction calculation section


123


which receives the output of the 3-direction noise component matrix calculation section


122


and calculates the estimated β direction of a sound source, and a vehicle detection section


124


which detects a vehicle traveling on the road


101


, in its substantial part comprising the sound collector


3


, the CPU


4


, the memory


5


and the arithmetic circuit


11


.




As shown in FIG.


3


(


a


), the microphone array


102


is placed on a line parallel to the vehicle traveling direction of the road


101


, and the above M number of microphones are aligned on the above line at a regular interval d. This interval between the microphones is not necessarily constant. In this case, however, it is set to be a regular interval d because the calculation of a direction control vector in the β-direction calculation section


123


is facilitated. This interval d must be made shorter than a half of the wavelength of a target sound source signal and, within the range, the accuracy of estimating the direction of a sound source increases as the value of the interval d increases. When a target sound source is a vehicle, although frequency characteristics vary from vehicle to vehicle, since many different types of vehicles produce a sufficient power in the range of 500 Hz to 3 kHz, the interval d between the microphones is desirably 5 to 34 cm in order to detect the direction of the sound source within the above range. Particularly, when the interval d is set to be 5 to 10 cm, the size of the sensor can be decreased. Further, to improve the accuracy of estimating the direction of a sound source, the number M of microphones is desirably equal to or greater than “assumed number of sound sources (vehicles)+1”. Particularly, in the case of a one-lane road, M is suitably 3 or 4 and, in the case of a multi-lane road, M is suitably “number of lanes+1” to “number of lanes×2”.




As shown in FIG.


3


(


b


), the microphone array


102


is configured such that it can be rotated in a vertical direction. The normal extended from the plane on which the microphone array


102


is placed forms an angle α with the z axis and is set to cross the center of the road. Further, as shown in FIG.


3


(


c


), the microphone array


102


is configured such that it can also be rotated in a horizontal direction and that the direction of noises (vehicle) is estimated by an angle P formed by the normal extended from the plane on which the microphone array


102


is placed and the x axis.




The β-direction noise component matrix calculation section


122


comprises M number of amplifiers


103


which are connected to the microphone array


102


and receive the outputs of the microphones of the microphone array


102


, M number of waveform samplers


104


which are connected to the M number of amplifiers


103


and receive the outputs of the corresponding amplifiers


103


, M number of frequency analyzers


105


which are connected to the M number of waveform samplers


104


and receive the outputs of the corresponding waveform samplers


104


, a correlation matrix calculator


107


which is connected to the M number of frequency analyzers


105


and receives the output (complex amplitude matrix) S


1


of the frequency analyzers


105


, an eigenvector calculator


108


which is connected to the correlation matrix calculator


107


, and a noise component matrix calculator


109


which is connected to the eigenvector calculator


108


.




Further, the β-direction calculation section


123


comprises a β-direction setting device


111


which sets the β direction in scanning the microphone array


102


, a direction vector calculator


112


which is connected to the β-direction setting device


111


, a direction-specific power calculator


110


which is connected to the direction vector calculator


112


and to the β-direction noise component matrix calculation section


122


(noise component matrix calculator


109


), a frequency averaging device


113


which is connected to the direction-specific power calculator


110


, and a time averaging device


114


which is connected to the frequency averaging device


113


. The output (estimated β direction) S


3


of the β-direction calculation section


123


is obtained, via the frequency averaging device


113


and the time averaging device


114


, from the above direction-specific power calculator


110


.




Further, the vehicle detection section


124


comprises an estimated direction buffer


116


which is connected to the β-direction calculation section


123


, a distance calculator


117


which is connected to the estimated direction buffer


116


and receives a preset sound source location template S


4


, and a comparator


119


which is connected to the distance calculator


117


and receives a preset distance reference value S


5


. The output S


6


of the comparator


119


is the result of vehicle detection (the output of the vehicle detection section


124


).




Next, a vehicle detection method based on the above vehicle detection apparatus


100


will be described.




As shown in

FIG. 4

, the vehicle detection method according to the present embodiment comprises a sound collection step (s


1001


), a noise component calculation step (s


1002


), an estimated β direction calculation step (s


1003


) and a vehicle detection step (s


1004


).




In the sound collection step (s


1001


), the microphone array


102


is controlled by the above input control section


1


to collect the noises produced by the vehicles and the like on the road


101


, and the outputs of the microphone array


102


are amplified by the amplifiers


103


.




In the noise component calculation step (s


1002


), after the outputs of the microphone array


102


are amplified by the amplifiers


103


, the amplified outputs are inputted to the waveform samplers


104


and sampled periodically with a time window having a window length W.




Although the shape of the time window may be a rectangle, a time window having small amplitudes at both ends, such as a Hanning window, is more preferable. As for the window length W, a shorter window length W further deteriorates the accuracy of direction estimation, while a longer window length W is more liable to fail to track the sudden movement of a sound source. Therefore, an optimum window length W must be selected according to the traveling velocity of a target sound source. For example, when the direction of a vehicle passing the position which is away from the microphone array


102


at a distance L of 10 m at a velocity of about 40 km/hr is to be estimated, the time window length W is suitably 2 to 10 ms. The period of sampling by the time window is suitably W/2 to 2 W.




For the time signals thus-sampled in the waveform samplers


104


, a complex amplitude for each frequency is calculated in the frequency analyzers


105


. As a method for calculating the complex amplitude, a method based on known fast Fourier transform (FFT) is appropriate. However, when the number of frequencies for which the complex amplitudes are calculated is equal to or less than four, a method based on known discrete Fourier transform (DFT) is appropriate. As for the above frequencies, the accuracy of direction estimation increases as they become higher so long as they are lower than a frequency whose wavelength is twice as long as the distance d in the microphone array


102


. Therefore, practically, frequencies having a wavelength of not shorter than c/10d, in which c represents a sound velocity, and shorter than c/2d, in which c is the same as defined above, are appropriate. A complex amplitude matrix S


1


is calculated for a certain frequency and is expressed as a column vector X[m] as shown by (expression 1)








X[m]=[x




1




,x




2




, . . . ,x




M


]


T


  (expression 1)






In the above expression, x


m


(m=1 to M) represents a complex amplitude for the frequency, which is calculated from the input signal from the m


th


microphone. In addition, the letter T indicates the transposed matrix of the matrix [·].




Then, in the correlation matrix calculator


107


, a correlation matrix is calculated from the output (complex amplitude matrix) S


1


of the M number of frequency analyzers


105


by (expression 2) and expressed by the matrix R[m,m]








R[m,m]=X[m]·X[m]




H


  (expression 2)






In the above expression, the letter H indicates a transposed complex conjugate, and m is 1 to M.




Then, in the eigenvector calculator


108


, the eigenvectors v


1


[m], v


2


[m], v


M


[m] (m=1 to M) of the above matrix R[m,m] are calculated. To calculate the above eigenvectors, since the above matrix R is a Hermitian matrix, it is firstly converted to a tridiagonal matrix by a known Householder's method, and the eigenvectors are then calculated by using a known QR method.




Then, in the noise component matrix calculator


109


, the matrix Rn[m,m] corresponding to the noise components when there are K number of sound sources is calculated as shown by (expression 3).








Rn[m,m]=v




K+1




[m]v




K+1




[m]




H




+v




K+2




[m]v




K+2




[m]




H




+ . . . +v




M




[m]v




M




[m]




H


  (expression 3)






In the above expression, the number K of sound sources must be not larger than “the number M of microphones−1”, and when the number of sound sources cannot be estimated in advance, it is set to be “K=M−1”. The noise component matrix Rn thus calculated is outputted from the β-direction noise component matrix calculation section


122


and inputted to the β-direction calculation section


123


. The noise component calculation step (s


1002


) proceeds as described above.




In the estimated β direction calculation step (s


1003


), firstly, a desired β is set in the β-direction setting device


111


of the β-direction calculation section


123


. Then, in the direction control vector calculator


112


, using the above β, a direction control vector S


2


is expressed as a column vector d[m] as shown by (expression 4).








d[m]=[


1


,e




−jωτ




,e




−jω2τ




, . . . ,e




−jω(M−1)τ


]


T


  (expression 4)






In the above expression, τ is defined by (expression 5).






τ=(


d


sin β)/


c


  (expression 5)






In the above expression, c represents a sound velocity.




Then, the β-direction power calculator


110


receives the output (noise component matrix Rn) of the β-direction noise component matrix calculation section


122


and the above direction control vector S


2


to calculate a power in the β direction, P(β).








P


(β)=1/(


d[m]




H




·Rn[m,m]·d[m]


)  (expression 6)






In the expression (6), by changing the β direction from −90° to +90° and calculating P(β) for each β, direction-specific powers are calculated. Further, the βmax which provides the largest P(β) is determined. By the above process, the estimated direction of a sound source using a certain frequency in a certain time window is calculated.




Then, the above process is repeated for each frequency, and the outputs of the β-direction power calculator


110


are averaged in the frequency averaging device


113


, whereby the estimated direction of the sound source in the above time window is calculated.




Then, the above process is repeated for each time window, and the outputs of the frequency averaging device


113


are averaged in the time averaging device


114


, whereby the estimated β direction S


3


of the sound source is calculated. The estimated β direction calculation step (s


1003


) proceeds as described above, and the estimated β direction S


3


thus estimated of the sound source is inputted to the vehicle detection section


124


as the output of the β-direction calculation section


123


.




In the vehicle detection step (s


1004


), firstly, the above estimated β direction S


3


of the sound source is stored in the estimated direction buffer


116


of the vehicle detection section


124


for a certain period of time. The required buffer storage time depends on the velocity of the target vehicle. The lower the velocity becomes, the more storage time is required. For example, when a vehicle traveling at a velocity of about 60 km/hr is a target, at least one second of buffering is required, and when the velocity is reduced to a half, the buffering time must be doubled.




Then, in the distance calculator


117


, the distance D between the above estimated β direction S


3


of the sound source which has been stored in the estimated direction buffer


116


for a certain period of time and the preset sound source location template S


4


is calculated. The content of the estimated direction buffer


116


is expressed as f[i] (i=1 to W, W represents the size of the template). Further, when the content of the sound source location template S


4


is expressed as t[i] (i=1 to W, W represents the size of the template), the distance D normalized by the size of the template can be expressed as shown by (expression 7).









D
=




i
=
1

W




&LeftBracketingBar;


f


[
i
]


-

t


[
i
]



&RightBracketingBar;

/
W






(expression  7)













The distance D is closer to 0 when the degree of similarity between the above estimated β direction S


3


of the sound source which has been stored in the estimated direction buffer


116


and the sound source location template S


4


is higher. To prepare the sound source location template S


4


, a method in which the sound source location template S


4


is prepared by sampling the data on the estimated direction of a sound source which are calculated by causing a vehicle to travel at different velocities under ideal conditions having no other vehicles and noise sources around the sound source is desirable. However, when such a method cannot be used, a method in which the sound source location template S


4


is prepared according to change in the direction of the sound source which is estimated from the location of the microphone array


102


.




Then, in the comparator


119


, the above distance D is compared with the distance reference value S


5


. When the above distance D is shorter, it is determined that a vehicle is detected, and the above distance D is outputted as the vehicle detection result S


6


. This vehicle detection result S


6


is displayed on the CRT


9


or printed on the printer


10


.




An optimum distance reference value S


5


varies according to the location of the microphone array


102


. It is desirably 20° to 50° where an ambient noise level is relatively low.




As described above, the vehicle detection apparatus of the first embodiment according to the present invention has the microphone array


102


comprising M number of microphones aligned parallel to the vehicle traveling direction in the sound collector


3


and has the noise component matrix calculation section


122


which is connected to the microphone array


102


in the substantial part of the detection apparatus which comprises the CPU


4


, the memory


5


and the arithmetic circuit


11


. In the noise component matrix calculation section


122


, the outputs of the M number of microphones are amplified in the amplifiers


103


, the outputs of the amplifiers


103


are sampled periodically with a certain time window in the waveform samplers


104


, frequency analyses are conducted in the frequency analyzers


105


to calculate complex amplitude matrices for the above frequencies, correlation matrices are calculated from the above complex amplitude matrices in the correlation matrix calculator


107


, the eigenvectors of the above correlation matrices are calculated in the eigenvector calculator


108


, and noise component matrices corresponding to the noise components are calculated in the noise component matrix calculator


109


.




Further, the above substantial part of the detection apparatus also has the β-direction calculation section


123


which is connected to the noise component matrix calculation section


122


. In the βdirection calculation section


123


, the direction corresponding to the apparent β direction from the microphone array


102


is set in the β-direction setting device


111


, a direction control vector is calculated in the direction control vector calculator


112


, β-direction powers are calculated from the above direction control vector and the above noise component matrices, the average of the above β-direction powers with respect to the frequencies and the time windows is calculated in the frequency averaging device


113


and the time averaging device


114


, and the average can be outputted as the estimated β direction.




Further, the above substantial part of the detection apparatus also has the vehicle detection section


124


which is connected to the β-direction calculation section


123


. In the vehicle detection section


124


, after the above estimated β direction is stored in the estimated direction buffer


116


for a certain period of time, the distance between the above estimated β direction and the sound source location template which indicates a change in the location of a sound source with time while the vehicle is traveling is calculated successively, and the calculated distance is compared with the preset distance reference value in the comparator


119


. When the above distance is shorter than the distance reference value, it is determined that a vehicle is detected, and the above distance is outputted as the result of vehicle detection.




Thus, by having the microphone array


102


comprising M number of microphones aligned parallel to the vehicle traveling direction in the above sound collector


3


and having the noise component matrix calculation section


122


, the β-direction calculation section


123


and the vehicle detection section


124


in the substantial part of the detection apparatus which comprises the CPU


4


, the memory


5


and the arithmetic circuit


11


, when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than a desired vehicle, the sound source (vehicle) can be detected by suppressing the interference by other vehicles or noises.




[Second Embodiment]





FIG. 5

shows the substantial part of the vehicle detection apparatus of the second embodiment according to the present invention. Since the configuration of the whole vehicle detection apparatus and the configuration and placement of the microphone array are generally the same as those of the first embodiment,

FIGS. 1 and 3

are used, and the same constituents as those in the first embodiment are referred to by the same numerals and symbols and will not be described.




The present embodiment is different from the first embodiment in that a vehicle and velocity detection section


214


is provided in place of the vehicle detection section (


124


in

FIG. 2

) and that a time-base expander


208


and a velocity calculator


209


are provided in the vehicle and velocity detection section


214


. According to this configuration, there can be obtained the effect of detecting the velocity of a vehicle by suppressing the interference by other vehicles or noises.




The vehicle and velocity detection section


214


comprises an estimated direction buffer


205


which is connected to the β-direction calculation section


123


, a distance calculator


206


which is connected to the estimated direction buffer


205


and to the time-base expander


208


, a comparator


211


which is connected to the distance calculator


206


and receives a preset distance reference value S


5


, the time-base expander


208


which is connected to the above distance calculator


206


and to the velocity calculator


209


and receives a preset sound source location template S


18


, and the velocity calculator


209


which is connected to the time-base expander


208


. The output S


6


of the above comparator


211


is the result of vehicle detection, the output S


7


of the velocity calculator


209


is the velocity of a vehicle, and these are the outputs of the vehicle and velocity detection section


214


.




Next, a vehicle detection method based on the above vehicle detection apparatus


100


will be described.





FIG. 6

shows the vehicle detection method of the second embodiment according to the present invention. This is different from that of the first embodiment in that a vehicle and velocity detection step (s


2004


) is provided in place of the vehicle detection step (s


1004


in

FIG. 4

) and that the result of vehicle detection and the velocity of a vehicle are outputted.




A sound collection step (s


1001


), a noise component calculation step (s


1002


) and an estimated β direction calculation step (s


1003


) are the same as those in the first embodiment.




In the vehicle and velocity detection step (s


2004


), the estimated β direction S


3


of a sound source which has been estimated in accordance with the first embodiment is inputted to the vehicle and velocity detection section


214


as the output of the β-direction calculation section


123


and, firstly, stored in the estimated direction buffer


205


for a certain period of time. The required buffer storage time depends on the velocity of the target vehicle. The required buffer storage time depends on the velocity of the target vehicle. The lower the velocity becomes, the more storage time is required. For example, when a vehicle traveling at a velocity of about 60 km/hr is a target, at least one second of buffering is required, and when the velocity is reduced to a half, the buffering time must be doubled.




Meanwhile, the preset sound source location template S


18


is inputted to the time-base expander


208


. To prepare the sound source location template S


18


, a method in which the sound source location template S


18


is prepared by sampling the data on the estimated direction of a sound source which are calculated by causing the vehicle to travel at a constant velocity V


0


under ideal conditions having no other vehicles and noise sources around the sound source is desirable. However, when such a method cannot be used, a method in which the sound source location template S


4


is prepared according to change in the direction of the sound source which is estimated from the location of the microphone array


102


.




In the time-base expander


208


, the time base of the above sound source location template S


18


is expanded or contracted, and the expanded or contracted template is outputted. The expansion ratio p of the time base is determined by the velocity to be detected of a vehicle. For example, when the velocity which is n times as high as the vehicle velocity V


0


used to prepare the above sound source location template S


18


is to be detected, the expansion ratio p is set to be 1/n. When the expansion ratio p is less than 1, the sound source location template S


18


is contracted, while when the expansion ratio p is more than 1, the sound source location template S


18


is expanded. Further, when the time base of the sound source location template S


18


is provided in a discrete manner, the sound source location template S


18


is approximated continuously, and the expanded or contracted template is then calculated. The template after expansion or contraction is inputted to the distance calculator


206


.




Then, the distance calculator


206


receives the estimated β direction S


3


of the sound source which has been stored in the estimated direction buffer


205


and the above expanded or contracted template and calculates the distance D between the template and the sound source.




The size Ws of the expanded or contracted template is W×p. When the expanded or contracted template is expressed as ts[i] (i=1 to Ws) and the content (estimated β direction S


3


of the sound source) of the estimated direction buffer


205


as f[i] (i=1 to W, W represents the size of the template), the distance D normalized by the size of the template can be expressed by (expression 8).









D
=




i
=
1

W




&LeftBracketingBar;


f


[
i
]


-

ts


[
i
]



&RightBracketingBar;


Ws






(expression  8)













The distance D is calculated by changing the expansion ratio p within the range of the estimated velocity of a vehicle. The distance D is closer to 0 when the degree of similarity between the estimated direction buffer


205


and the expanded or contracted template ts[i] is higher.




Then, the comparator


211


compares the input (the above distance D) from the distance calculator


206


with the preset distance reference value S


5


inputted in advance. When the above distance D is shorter, it is determined that a vehicle is detected, and the above distance D is outputted as the vehicle detection result S


6


. An optimum distance reference value S


5


varies according to the location of the microphone array


102


. It is desirably 20° to 50° where an ambient noise level is relatively low.




Meanwhile, the velocity calculator


209


calculates the velocity of the vehicle from the inputs (the above expansion ratios of the time base) from the time-base expander


208


. When the velocity of the vehicle is V


0


and the expansion ratio which provides the shortest distance D is pm, “pm×V


0


” is calculated as the vehicle velocity S


7


. This vehicle velocity S


7


, together with the aforementioned vehicle detection result S


6


, is displayed on the CRT


9


or printed on the printer


10


.




As described above, the vehicle detection apparatus of the second embodiment according to the present invention has the vehicle and velocity detection section


214


which is connected to the β-direction calculation section


123


in the above substantial part of the detection apparatus. In this vehicle and velocity detection section


214


, using the expansion ratio when the time base of the sound source location template S


18


is expanded or contracted in the time-base expander


208


, the velocity S


7


of the detected vehicle is calculated by the velocity calculator


209


.




[Third Embodiment]





FIGS. 7 and 8

show the substantial part of the vehicle detection apparatus of the third embodiment according to the present invention. Since the configuration of the whole vehicle detection apparatus is generally the same as that of the first embodiment,

FIG. 1

is used, and the same constituents as those in the first embodiment are referred to by the same numerals and symbols and will not be described.




The present embodiment is different from the first embodiment in that a microphone array


302


comprising M


1


number of microphones aligned in the x-axis direction and M


2


number of microphones aligned in the y-axis direction is used in place of the microphone array (


102


in

FIG. 1

) comprising M number of microphones aligned in the x-axis direction. Further, the present embodiment is also different from the first embodiment in that an α-direction noise component matrix calculation section


303


is further provided and that amplifiers


603


, waveform samplers


604


, frequency analyzers


605


, a correlation matrix calculator


607


, an eigenvector calculator


608


and a noise component matrix calculator


609


are provided in the α-direction noise component matrix calculation section


303


. Still further, the present embodiment is also different from the first embodiment in that an α-direction calculation section


305


is further provided and that an α-direction setting device


611


, a direction-specific power calculator


610


, a direction control vector calculator


612


, a frequency averaging device


613


and a time averaging device


614


are provided in the α-direction calculation section


305


. Still further, the present embodiment is also different from the first embodiment in that a lane detection section


312


is further provided and that a lane


1


direction counter


307


, a lane


2


direction counter


308


and passing judging devices


309


and


310


are provided in the lane detection section


312


. According to this configuration, there can be obtained the effect of detecting the location in the lane direction of a detected vehicle by suppressing the interference by other vehicles or noises on the road having a plurality of lanes.




As shown in FIG.


9


(


a


), the microphone array


302


is placed such that it looks down at the road. Further, as shown in

FIG. 7

, it comprises M


1


number of microphones aligned on a line parallel to the vehicle traveling direction of a road


301


having a plurality of lanes (lane 1 and lane 2 shown in

FIG. 9

) and M


2


number of microphones aligned on a line perpendicular to the vehicle traveling direction. The microphones constituting the microphone array


302


are the same as those constituting the microphone array


102


in the first embodiment. Further, the above numbers M


1


and M


2


of microphones are the same as the number M of microphones in the first embodiment and, in the present embodiment (multi-lane road), M


1


and M


2


are set to be “number of lanes+1” to “number of lanes×2”, respectively. In addition, the interval between the microphones is also set to be a regular interval d in accordance with the first embodiment, and the value of d is set to be 5 to 34 cm, preferably 5 to 10 cm.




Further, as shown in FIG.


9


(


b


), the microphone array


302


is configured such that it can be rotated in a vertical direction. An α represents the angle formed by the normal extended from the plane on which the microphone array


302


is placed and the z axis. FIG.


9


(


b


) shows the case where the above normal crosses the center of the multi-lane road. Further, as shown in FIG.


9


(


c


), the microphone array


302


is configured such that it can also be rotated in a horizontal direction and that the direction of noises (vehicle) is estimated by an angle β formed by the normal extended from the plane on which the microphone array


102


is placed and the x axis.




In the microphone array


302


, the outputs of the M


1


number of microphones aligned on the line parallel to the vehicle traveling direction are inputted to the β-direction noise component matrix calculation section (noise component matrix calculation section)


122


, and the outputs of the M


2


number of microphones aligned on the line perpendicular to the vehicle traveling direction are inputted to the α-direction noise component matrix calculation section


303


.




The α-direction noise component matrix calculation section


303


comprises M


2


number of amplifiers


603


which are connected to the M


2


number of microphones of the microphone array


302


, M


2


number of waveform samplers


604


which are connected to the M


2


number of amplifiers


603


, M


2


number of frequency analyzers


605


which are connected to the M


2


number of waveform samplers


604


, a correlation matrix calculator


607


which is connected to the M


2


number of frequency analyzers


605


, an eigenvector calculator


608


which is connected to the correlation matrix calculator


607


, and a noise component matrix calculator


609


which is connected to the eigenvector calculator


608


.




Further, the α-direction calculation section


305


comprises an α-direction setting device


611


which sets the vertical scanning direction (α direction) of the microphone array


302


, a direction control vector calculator


612


which is connected to the α-direction setting device


611


, a direction-specific power calculator


610


which is connected to the direction control vector calculator


612


and receives the output of the α-direction noise component matrix calculation section


303


, a frequency averaging device


613


which is connected to the direction-specific power calculator


610


, and a time averaging device


614


which is connected to the frequency averaging device


613


. The output (estimated α direction) S


17


of the α-direction calculation section


305


is outputted, via the frequency averaging device


613


and the time averaging device


614


, from the above direction-specific power calculator


610


.




The β-direction noise component matrix calculation section (noise component matrix calculation section)


122


and the β-direction calculation section


123


are the same as their counterparts in the first embodiment except that the number of microphones in the microphone array is changed from M to M


1


. Further, the α-direction noise component matrix calculation section


303


and the α-direction calculation section


305


are the same as their counterparts in the first embodiment except that the number of microphones in the microphone array is changed from M to M


2


and that a variable α is substituted for the variable β.




The lane detection section


312


comprises a lane 1 direction counter


307


and a lane 2 direction counter


308


which are connected to the α-direction calculation section


305


, and passing judging devices


309


and


310


which are connected to the lane 1 direction counter


307


and the lane 2 direction counter


308


, respectively, and receive a preset passing judging threshold value S


8


. The outputs S


9


and S


10


of the passing judging devices


309


and


310


are the outputs (lane 1 detection result and lane 2 detection result) of the lane detection section


312


.




Next, a vehicle detection method based on the above vehicle detection apparatus


100


will be described.





FIG. 10

shows the vehicle detection method of the third embodiment according to the present invention. This method is different from that of the first embodiment in that it comprises a sound collection step (s


3001


), an αβ-direction noise component calculation step (s


3002


), an estimated αβ-direction calculation step (s


3003


) and a vehicle and lane detection step (s


3004


). According to this method, there can be obtained the effect of detecting the location in the vehicle traveling direction and the lane direction of a vehicle.




In the sound collection step (s


3001


), the microphone array


302


is controlled by the above input control section


1


to collect the noises produced by the vehicles and the like on the multi-lane road


301


having a lane 1 and a lane 2. In this microphone array


302


, the outputs of the M


1


number of microphones aligned on the line parallel to the vehicle traveling direction are inputted to and amplified by the amplifiers


103


in the β-direction noise component matrix calculation section


122


, and the outputs of the M


2


number of microphones aligned on the line perpendicular to the vehicle traveling direction are inputted to and amplified by the amplifiers


603


in the α-direction noise component matrix calculation section


303


.




In the αβ-direction noise component calculation step (s


3002


), after the outputs of the M


1


number of microphones of the above microphone array


302


are amplified by the amplifiers


103


and the outputs of the M


2


number of microphones of the microphone array


302


are amplified by the amplifiers


603


, these amplified outputs are inputted to the waveform samplers


104


and


604


, respectively, and sampled periodically with a time window having a window length W. The shape of the time window, the window length W and the period of sampling by the time window are set in accordance with the first embodiment.




For the time signals thus-sampled in the waveform samplers


104


and


604


, complex amplitudes S


1


and S


15


for each frequency are calculated in the frequency analyzers


105


and


605


. A method for calculating the complex amplitudes is selected in accordance with the first embodiment.




Then, in the correlation matrix calculators


107


and


607


, correlation matrices are calculated from the output (complex amplitude matrix) S


1


of the M


1


number of the frequency analyzers


105


and the output (complex amplitude matrix) S


15


of the M


2


number of the frequency analyzers


605


by the above (expression 2) and expressed in the form of a matrix R[m,m].




Then, in the eigenvector calculators


108


and


608


, the eigenvectors v


1


[m], v


2


[m], v


M


[m] (m=1 to M


1


and 1 to M


2


) of each matrix R[m,m] are calculated. A method for calculating the above eigenvectors is selected in accordance with the first embodiment.




Then, in the noise component matrix calculators


109


and


609


, the matrices Rn[m,m] corresponding to the noise components in the α and β directions when there are K number of sound sources are calculated by the above (expression 3). When the number K of sound sources cannot be estimated in advance, it is set to be “K=M−1” in accordance with the first embodiment. The thus-calculated α-direction noise component matrix and β-direction noise component matrix are outputted from the α-direction noise component matrix calculation section


303


and the β-direction noise component matrix calculation section


122


and inputted to the α-direction calculation section


305


and the β-direction calculation section


123


, respectively.




In the estimated αβ-direction calculation step (s


3003


), firstly, an α is set in the α-direction setting device


611


in the α-direction calculation section


305


. Then, the above α is inputted to the direction control vector calculator


612


, and a direction control vector S


16


is calculated by using the above (expression 4) and (expression 5). Meanwhile, a β is set in the β-direction setting device


111


in the β-direction calculation section


123


in accordance with the first embodiment. Then, the above β is inputted to the direction control vector calculator


112


, and a direction control vector S


2


is calculated by using the above (expression 4) and (expression 5).




Then, the direction-specific power calculator


610


receives the output (noise component matrix Rn) of the α-direction noise component matrix calculation section


303


and the above direction control vector S


16


to calculate a power in the α direction, P(α), by the above (expression 6). By changing the α direction from −90° to +90°, P(α) is calculated for each α, and the αmax which provides the largest P(α) is determined. By the above process, the estimated α direction of a sound source using a certain frequency in a certain time window is calculated (α-direction calculation process). Meanwhile, the direction-specific power calculator


110


receives the output (noise component matrix Rn) of the β-direction noise component matrix calculation section


122


and the above direction control vector S


2


to calculate a power in the β direction, P(β), and determine the βmax which provides the largest P(β) by the above (expression 6) in accordance with the first embodiment, whereby the estimated β direction of the sound source using a certain frequency in a certain time window is calculated (β-direction calculation process).




Then, the above α-direction calculation process is repeated for each frequency, and the outputs of the α-direction power calculator


610


are averaged in the frequency averaging device


613


, whereby the estimated α direction of the sound source in the above time window is calculated. Meanwhile, the above β-direction calculation process is repeated for each frequency, and the outputs of the β-direction power calculator


110


are averaged in the frequency averaging device


113


, whereby the estimated β direction of the sound source in the above time window is calculated.




Then, the above α-direction calculation process is repeated for each time window, and the outputs of the frequency averaging device


113


are averaged in the time averaging device


614


, whereby the estimated α direction S


17


of the sound source is calculated. Meanwhile, the above β-direction calculation process is repeated for each time window, and the outputs of the frequency averaging device


113


are averaged in the time averaging device


114


, wherein the estimated β direction S


3


of the sound source is calculated.




The estimated αβ-direction calculation step (s


3003


) proceeds as described above. The estimated α direction S


17


thus estimated of the sound source is inputted to the lane detection section


312


as the output of the α-direction calculation section


305


, and the estimated β direction S


3


of the sound source is inputted to the vehicle detection section


124


as the output of the β-direction calculation section


123


.




In the vehicle and lane detection step (s


3004


), the output α (estimated α direction S


17


of the sound source) of the α-direction calculation section


305


is inputted to the lane 1 direction counter


307


in the lane detection section


312


and stored in a buffer for a certain period of time. Of the stored outputs α, the number of those between the preset lower limit (α


1


L) and upper limit (α


1


H) of the lane 1 direction is outputted.




Meanwhile, the output α (estimated α direction S


17


of the sound source) of the α-direction calculation section


305


is inputted to the lane 2 direction counter


308


and stored in a buffer for a certain period of time. Of the stored outputs α, the number of those between the preset lower limit (α


2


L) and upper limit (α


2


H) of the lane 2 direction is outputted.




The buffer storage time required by the lane 1 direction counter


307


and the lane 2 direction counter


308


depends on the velocity of the target vehicle. The lower the velocity becomes, the more storage time is required. For example, when a vehicle traveling at a velocity of about 60 km/hr is a target, at least one second of buffering is required, and when the velocity is reduced to a half, the buffering time must be doubled.




Then, the passing judging device


309


receives the output of the lane 1 direction counter


307


and the preset passing judging threshold value S


8


and outputs the output of the lane 1 direction counter


307


as the lane 1 detection result S


9


when the output of the lane 1 direction counter


307


is larger than or equal to the passing judging threshold value S


8


. The value set as the passing judging threshold value S


8


is suitably about ⅕ to ½ of the number of detections in all directions in a buffer length of the lane 1 direction.




Further, the lane 2 passing judging device


310


receives the output of the lane 2 direction counter


308


and the preset passing judging threshold value S


8


and outputs the output of the lane 2 direction counter


308


as the lane 2 detection result S


10


when the output of the lane 2 direction counter


308


is larger than or equal to the passing judging threshold value S


8


.




Meanwhile, in accordance with the first embodiment, the output (estimated β direction S


3


of the sound source) of the β-direction calculation section


123


is inputted to the vehicle detection section


124


and stored in the estimated direction buffer


116


for a certain period of time. Then, the distance calculator


117


receives the above estimated β direction S


3


of the sound source and the preset sound source location template S


4


and calculates a distance D. Thereafter, the comparator


119


compares the above distance D with the distance reference value S


5


and outputs the distance D as the vehicle detection result S


6


when the above distance D is shorter.




As described above, the vehicle detection apparatus of the third embodiment according to the present invention has the microphone array


302


comprising M


1


number of microphones aligned parallel to the vehicle traveling direction and M


2


number of microphones aligned perpendicular to the vehicle traveling direction in the sound collector


3


and has the α-direction noise component matrix calculation section


303


which is connected to the above M


2


number of microphones of the microphone array


302


in the substantial part of the detection apparatus which comprises the CPU


4


, the memory


5


and the arithmetic circuit


11


. In the α-direction noise component matrix calculation section


303


, the outputs of the M


2


number of microphones aligned perpendicular to the vehicle traveling direction are amplified in the amplifiers


603


, the outputs of the amplifiers


603


are sampled periodically with a certain time window in the waveform samplers


604


, frequency analyses are conducted in the frequency analyzers


605


to calculate complex amplitude matrices for the above frequencies, correlation matrices are calculated from the above complex amplitude matrices in the correlation matrix calculator


607


, the eigenvectors of the above correlation matrices are calculated in the eigenvector calculator


608


, and noise component matrices corresponding to the noise components in the outputs of the M


2


number of microphones are calculated in the noise component matrix calculator


609


.




Further, the above substantial part of the detection apparatus also has the α-direction calculation section


305


which is connected to the α-direction noise component matrix calculation section


303


. In the α-direction calculation section


305


, the direction corresponding to the apparent α direction from the microphone array


302


is set in the α-direction setting device


611


, a direction control vector is calculated in the directional vector calculator


612


, α-direction powers are calculated from the above direction control vector and the above noise component matrices, the average of the β-direction powers with respect to the frequencies and the time windows is calculated in the frequency averaging device


613


and the time averaging device


614


, and the average can be outputted as the estimated α direction.




Further, the above substantial part of the detection apparatus also has the lane detection section


312


which is connected to the α-direction calculation section


305


. In the lane detection section


312


, the output S


17


of the α-direction calculation section


305


is inputted to the lane 1 direction counter


307


and the lane 2 direction counter


308


and stored therein for a certain period of time. Of the stored outputs α, the numbers of those between the preset upper limits and lower limits in the α direction of the lane 1 direction and the lane 2 direction can be outputted as the lane 1 detection result and the lane 2 detection result, respectively.




In addition, since the above substantial part of the detection apparatus has the β-direction noise component matrix calculation section


122


, the β-direction calculation section


123


and the vehicle detection section


124


in accordance with the first embodiment, the location in the vehicle traveling direction of a vehicle can be detected by the outputs of the M


1


number of microphones.




Thus, by referring to the above lane 1 detection result S


9


and the lane 2 detection result S


10


when a traveling vehicle is detected by the vehicle detection section


124


and the vehicle detection result S


6


is outputted, it can be determined in which lane the detected vehicle is traveling. That is, even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than a desired vehicle, the location in the vehicle traveling direction and the lane direction of the vehicle can be detected by suppressing the interference by other vehicles or noises.




[Fourth Embodiment]





FIG. 11

shows the substantial part of the vehicle detection apparatus of the fourth embodiment according to the present invention. Since the configuration of the whole vehicle detection apparatus is generally the same as that of the first embodiment,

FIG. 1

is used, and the same constituents as those in the first embodiment are referred to by the same numerals and symbols and will not be described.




The present embodiment is different from the first embodiment in that a microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane is used in place of the microphone array (


102


in

FIG. 1

) comprising M number of microphones aligned in the x-axis direction. Further, the present embodiment is also different from the first embodiment in that an α-direction calculation section


410


is further provided and that an α-direction setting device


406


, a β-direction setting device


407


, a direction control vector calculator


405


, a direction-specific power calculator


404


and a time averaging device


408


are provided in the α-direction calculation section


410


. Still further, the present embodiment is also different from the first embodiment in that a β-direction calculation section


417


is provided in place of the β-direction calculation section


123


and that an α-direction setting device


413


, a β-direction setting device


414


, a direction control vector calculator


412


, a direction-specific power calculator


411


and a time averaging device


415


are provided in the β-direction calculation section


417


. Still further, the present embodiment is also different from the first embodiment in that a lane detection section


312


is further provided (third embodiment) and that a lane 1 direction counter


307


, a lane 2 direction counter


308


and passing judging devices


309


and


310


are provided in the lane detection section


312


. According to this configuration, there can be obtained the effect of detecting the location in the lane direction of a detected vehicle by suppressing the interference by other vehicles or noises on the road having a plurality of lanes.




The microphone array


402


is placed such that it looks down at the road


401


having a lane 1 and a lane 2 as shown in FIG.


12


(


a


) and comprises M number of microphones arranged in the form of a matrix as shown in FIG.


11


. The microphones constituting the microphone array


402


are the same as those constituting the microphone array


102


in the first embodiment. As for the number of microphones, M is set to be “number of lanes+1” to “number of lanes×2” in order for the microphones to be used for the multi-lane road


401


. In addition, the interval between the microphones is also set to be a regular interval d in accordance with the first embodiment, and the value of d is set to be 5 to 34 cm, preferably 5 to 10 cm.




Further, as shown in FIG.


12


(


b


), the microphone array


402


is configured such that it can be rotated in a vertical direction. An α represents the angle formed by the normal extended from the plane on which the microphone array


402


is placed and the z axis. FIG.


12


(


b


) shows the case where the above normal crosses the center of the multi-lane road. Further, as shown in FIG.


12


(


c


), the microphone array


402


is configured such that it can also be rotated in a horizontal direction and that the direction of noises (vehicle) is estimated by the angle β formed by the normal extended from the plane on which the microphone array


402


is placed and the x axis.




Further, the α-direction calculation section


410


comprises an α-direction setting device


406


which sets the vertical scanning direction (α direction) of the microphone array


402


, a β-direction setting device


407


which sets the horizontal scanning direction (β direction) of the microphone array


402


, a direction control vector calculator


405


which is connected to the α-direction setting device


406


and to the β-direction setting device


407


, a direction-specific power calculator


404


which is connected to the direction control vector calculator


405


and receives the output of the noise component matrix calculation section


122


, and a time averaging device


408


which is connected to the direction-specific power calculator


404


. The output (estimated α direction) S


13


of the α-direction calculation section


410


is outputted from the above direction-specific power calculator


404


via the time averaging device


408


.




Meanwhile, the β-direction calculation section


417


comprises an α-direction setting device


413


which sets the vertical scanning direction (α direction) of the microphone array


402


, a β-direction setting device


414


which sets the horizontal scanning direction (β direction) of the microphone array


402


, a direction control vector calculator


412


which is connected to the α-direction setting device


413


and to the β-direction setting device


414


, a direction-specific power calculator


411


which is connected to the direction control vector calculator


412


and receives the output of the noise component matrix calculation section


122


, and a time averaging device


415


which is connected to the direction-specific power calculator


411


. The output (estimated β direction) S


14


of the β-direction calculation section


417


is outputted from the above direction-specific power calculator


411


via the time averaging device


415


.




Next, a vehicle detection method based on the above vehicle detection apparatus


100


will be described.





FIG. 13

shows the vehicle detection method of the fourth embodiment according to the present invention. This is different from that of the first embodiment in that a sound collection step (s


4001


), an estimated αβ-direction calculation step (s


4003


) and a vehicle and lane detection step (s


3004


) are provided in place of the sound collection step (s


1001


in FIG.


4


), the estimated β direction calculation step (s


1003


in

FIG. 4

) and the vehicle detection step (s


1004


in FIG.


4


), respectively. According to this method, there can be obtained the effect of detecting the location in the lane direction of a detected vehicle.




In the sound collection step (s


4001


), the microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane is controlled by the above input control section


1


to collect the sounds produced by the vehicles and the like on the road


401


having the lane 1 and the lane 2, and the outputs of the above M number of microphones are inputted to and amplified by the amplifiers


103


in the noise component matrix calculation section


122


.




In the noise component calculation step (s


4002


), in accordance with the first embodiment, after the outputs of the above microphone array


402


are amplified by the amplifiers


103


, a noise component matrix Rn[m,m] is calculated and outputted from the noise component matrix calculation section


122


. The output of the noise component matrix calculation section


122


is inputted to the α-direction calculation section


410


and the β-direction calculation section


417


.




In the estimated αβ-direction calculation step (s


4003


), in the α-direction calculation section


410


, the α-direction setting device


406


scans the angle α covering the vehicle traveling area in the lane direction. Meanwhile, the β-direction setting device


407


sets a β (fixed value). This fixed value β is the most suitably 90°, which corresponds to the front of the microphone array


402


.




Then, the direction control vector calculator


405


receives the outputs of the α-direction setting device


406


and the β-direction setting device


407


and calculates a direction control vector d[m] by using (expression 9).








d[m]=[


1,


e




−jωτ[1]




,e




−jωτ[2]




, . . . ,e




−jωτ[M−1]


]


T


  (expression 9)






In the above expression, τ[m] is defined by (expression 10).






τ[


m]


=(Δ[


m


])/


c


  (expression 10)






In the above expression, c represents a sound velocity. Further, Δ[m] represents a path difference and can be expressed as (expression 11) by using the coordinates (x[m],y[m],z[m]) and orientation (α,β) of the microphones and a distance L between the sound source and the microphones. The path difference is calculated based on the distance between the sound source and the microphones.






Δ[


m]={


(


x[m]−x[


1


]−L


cos αsin β)


2


+(


y[m]−y[


1]−


L


sin αsin β)


2


+(


z[m]−z[


1


]−L


cos β)


2


}


½


  (expression 11)






In the above expression, a sufficiently great distance L (1,000 m or greater, for example) results in a plane wave incidence condition. As the practical value for vehicle detection, the distance L is suitably set to be the distance between the microphones and the center of the road. The thus-calculated direction control vector S


11


is inputted to the direction-specific power calculator


404


as the output of the direction control vector calculator


405


.




Then, the direction-specific power calculator


404


receives the direction control vector S


11


and calculates a direction-specific power in accordance with the first embodiment. This direction-specific power is inputted to the time averaging device


408


. The direction-specific power calculator


404


corresponds to the direction-specific power calculator


110


shown in FIG.


2


.




The above direction-specific power calculation process is repeated for each time window. By averaging the calculated direction-specific powers in the time averaging device


408


, an estimated α direction S


13


is outputted. The time averaging device


408


corresponds to the time averaging device


114


shown in FIG.


2


. By scanning the α with the β fixed, the estimated a direction S


13


can be calculated.




Meanwhile, in the β-direction calculation section


417


, the α-direction setting device


413


sets an α (fixed value). This fixed value is the most suitably the direction to the center of the road. The β-direction setting device


414


scans the angle β covering the vehicle traveling area in the vehicle traveling direction.




Then, the direction control vector calculator


412


receives the outputs of the α-direction setting device


413


and the β-direction setting device


414


and calculates a direction control vector d[m] by the (expression 9) to (expression 11) as described above. The thus-calculated direction control vector is inputted to the direction-specific power calculator


411


as the output S


12


of the direction control vector calculator


412


.




Then, the direction-specific power calculator


411


receives the output (direction control vector) S


12


of the direction control vector calculator


412


and calculates a direction-specific power by using the direction control vector S


12


. The direction-specific power calculator


411


is identical to the direction-specific power calculator


110


shown in FIG.


2


.




Then, the time averaging device


415


receives the output (direction-specific power) of the direction-specific power calculator


411


and outputs an estimated β direction S


14


in accordance with the first embodiment. The time averaging device


415


is identical to the time averaging device


114


shown in FIG.


2


. Thus, by scanning the β with the α fixed, the estimated β direction S


14


can be calculated.




In the vehicle and lane detection step (s


3004


), the lane detection section


312


receives the output S


13


of the α-direction calculation section


410


and outputs a lane 1 detection result S


9


and a lane 2 detection result S


10


in accordance with the third embodiment.




Meanwhile, in the vehicle detection section


124


, the estimated direction buffer


116


receives the output S


14


of the β-direction calculation section


417


and outputs a vehicle detection result S


6


in accordance with the first embodiment. Thus, by referring to the above lane 1 detection result S


9


and the lane 2 detection result S


10


when a traveling vehicle is detected by the vehicle detection section


124


and the vehicle detection result S


6


is outputted, it can be determined in which lane the detected vehicle is traveling.




As described above, the vehicle detection apparatus of the fourth embodiment according to the present invention has the microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane in the sound collector


3


and has the noise component matrix calculation section


122


which is connected to the above M number of microphones in the microphone array


402


in the substantial part of the detection apparatus which comprises the CPU


4


, the memory


5


and the arithmetic circuit


11


. In the noise component matrix calculation section


122


, the outputs of the above M number of microphones are amplified by the amplifiers


103


, the outputs of the amplifiers


103


are sampled periodically with a certain time window in the waveform samplers


104


, frequency analyses are conducted in the frequency analyzers


105


to calculate complex amplitude matrices for the above frequencies, correlation matrices are calculated from the above complex amplitude matrices in the correlation matrix calculator


107


, the eigenvectors of the above correlation matrices are calculated in the eigenvector calculator


108


, and noise component matrices corresponding to the noise components in the outputs of the above M number of microphones are calculated in the noise component matrix calculator


109


.




Further, the above substantial part of the detection apparatus also has the α-direction calculation section


410


which is connected to the noise component matrix calculation section


122


. In the α-direction calculation section


410


, the direction corresponding to the apparent α direction from the microphone array


402


is set in the α-direction setting device


406


, the direction corresponding to the apparent β direction from the microphone array


402


is set in the β-direction setting device


407


, a direction control vector is calculated in the direction control vector calculator


405


, α-direction powers are calculated from the above direction control vector and the above noise component matrices in the direction-specific power calculator


404


, the average of the above α-direction powers with respect to the time windows is calculated in the time averaging device


408


, and the result can be outputted as the estimated a direction.




Meanwhile, the above substantial part of the detection apparatus also has the β-direction calculation section


417


which is connected to the noise component matrix calculation section


122


. In the β-direction calculation section


417


, the direction corresponding to the apparent a direction from the microphone array


402


is set in the α-direction setting device


413


, the direction corresponding to the apparent β direction from the microphone array


402


is set in the β-direction setting device


414


, a direction control vector is calculated in the direction control vector calculator


412


, β-direction powers are calculated from the above direction control vector and the above noise component matrices in the direction-specific power calculator


411


, the average of the above β-direction powers with respect to the time windows is calculated in the time averaging device


415


, and the result can be outputted as the estimated β direction.




Further, the above substantial part of the detection apparatus also has the lane detection section


312


which is connected to the α-direction calculation section


410


in accordance with the first embodiment. In the lane detection section


312


, the output α of the α-direction calculation section


410


is inputted to the lane 1 direction counter


307


and the lane 2 direction counter


308


and stored therein for a certain period of time. Of the stored outputs α, the numbers of those between the preset upper limits and lower limits in the α direction of the lane 1 direction and the lane 2 direction can be outputted as the lane 1 detection result and the lane 2 detection result, respectively. Further, since the above substantial part of the detection apparatus also has the vehicle detection section


124


which is connected to the β-direction calculation section


417


in accordance with the first embodiment, the location in the vehicle traveling direction of a vehicle can be detected by the outputs of the M number of microphones.




Thus, by the installation of the microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane, the location in the vehicle traveling direction and the lane direction of a vehicle can be detected.




[Fifth Embodiment]





FIG. 14

shows the substantial part of the vehicle detection apparatus of the fifth embodiment according to the present invention. Since the configuration of the whole vehicle detection apparatus is generally the same as that of the first embodiment,

FIG. 1

is used, and the same constituents as those in the first embodiment are referred to by the same numerals and symbols and will not be described.




The present embodiment is different from the first embodiment in that a microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane is used in place of the microphone array (


102


in

FIG. 2

) comprising M number of microphones aligned in the x-axis direction (fourth embodiment). Further, the present embodiment is also different from the first embodiment in that an α-direction calculation section


410


is provided in place of the β-direction calculation section (


123


in

FIG. 2

) (third embodiment) and that an α-direction setting device


406


, a β-direction setting device


407


, a direction control vector calculator


405


, a direction-specific power calculator


404


and a time averaging device


408


are provided in the α-direction calculation section


410


. Still further, the present embodiment is also different from the first embodiment in that a lane detection section


312


is provided in place of the vehicle detection section (


124


in

FIG. 2

) (third embodiment) and that a lane 1 direction counter


307


, a lane 2 direction counter


308


and passing judging devices


309


and


310


are provided in the lane detection section


312


. Still further, the present embodiment is also different from the third embodiment in that a lane 1 counter


508


and a lane 2 counter


509


which are connected to the lane detection section


312


are provided. According to this configuration, there can be obtained the effect of counting the number of passing vehicles for each lane.




Next, a vehicle detection method based on the above vehicle detection apparatus


100


will be described.





FIG. 15

shows the vehicle detection method of the fifth embodiment according to the present invention. This is different from that of the first embodiment in that the sound collection step (s


4001


) and noise component calculation step (s


4002


) of the fourth embodiment are provided in place of the sound collection step (s


1001


in

FIG. 4

) and the noise component calculation step (s


1002


in FIG.


4


), that an estimated α direction calculation step (s


5003


) is provided in place of the estimated β direction calculation step (s


1003


in

FIG. 4

) and that a lane-specific vehicle detection step (s


5004


) is provided in place of the vehicle detection step (s


1004


in FIG.


4


). According to this method, there can be obtained the effect of counting passing vehicles for each lane in the lane-specific vehicle detection step (s


5004


).




In the sound collection step (s


4001


), in accordance with the fourth embodiment, the microphone array


402


comprising M number of microphones arranged in the form of a matrix in one plane is controlled by the above input control section


1


to collect the noises produced by the vehicles and the like on the road having a lane 1 and a lane 2, and the outputs of the above M number of microphones are inputted to and amplified by the amplifiers


103


in the noise component matrix calculation section


122


.




In the noise component calculation step (s


4002


), after the outputs of the microphone array


402


are amplified by the amplifiers


103


, a noise component matrix Rn[m,m] is calculated in and outputted from the noise component matrix calculation section


122


in accordance with the first and fourth embodiments. The output of the noise component matrix calculation section


122


is inputted to the α-direction calculation section


410


.




In the estimated a direction calculation step (s


5003


), in the α-direction calculation section


410


, in accordance with the fourth embodiment, the direction control vector calculator


405


receives the α value set by the α-direction setting device


406


and the β value (fixed value) set by the β-direction setting device


407


and outputs a direction control vector S


11


, the direction-specific power calculator


411


receives the above direction control vector S


11


and the output of the noise component matrix calculation section


122


and calculates a direction-specific power, and the time averaging device


415


receives the output (direction-specific power) of the direction-specific power calculator


411


and outputs an estimated α direction S


13


. As described above, by scanning the α with the β fixed, the estimated a direction S


13


can be calculated.




In the lane-specific vehicle detection step (s


5004


), the lane detection section


312


receives the output (estimated α direction) S


13


of the α-direction calculation section


410


and outputs a lane 1 detection result S


9


and a lane 2 detection result S


10


in accordance with the fourth embodiment.




Then, the lane 1 counter


508


receives the output (lane 1 detection result) S


9


of the lane detection section


312


and counts the number of passing vehicles for the lane 1. Meanwhile, the lane 2 counter


509


receives the output (lane 2 detection result) S


10


of the lane detection section


312


and counts the number of passing vehicles for the lane 2.




As described above, the vehicle detection apparatus of the fifth embodiment according to the present invention has the lane 1 counter


508


and the lane 2 counter


509


which are connected to the lane detection section


312


in the substantial part of the detection apparatus The lane 1 counter


508


and the lane 2 counter


509


receive the location in the lanes of a vehicle which is detected in the lane detection section


312


and can count the number of passing vehicles (number of detected vehicles) for each lane.




Further, although there has been described in the above embodiments the case where a method based on template matching is employed as the method for calculating the distance in the distance calculators


117


and


206


, the same effect can still be obtained even when the present invention adopts a method other than the template matching-based method, such as a method based on known DP (Dynamic Program) matching.




The sound collector


3


comprising the above microphone array


102


,


302


or


402


constitutes the above sound collection means; the CPU


4


, memory


5


, arithmetic circuit


11


and the like which include the noise component matrix calculation section (β-direction noise component matrix calculation section)


122


, the α-direction noise component matrix calculation section


303


, the α-direction calculation sections


305


and


410


and the β-direction calculation sections


123


and


417


constitute the above direction estimation means; the CPU


4


, memory


5


, arithmetic circuit


11


and the like which include the vehicle detection section


124


, the vehicle and velocity detection section


214


and the lane detection section


312


constitute the above similarity calculation means; the CPU


4


, memory


5


, arithmetic circuit


11


and the like which include the α-direction calculation sections


305


and


410


and the β-direction calculation sections


123


and


417


constitute the above estimation means; the lane 1 direction counter


307


and the lane 2 direction counter


308


constitute the counter or the first counter; the lane 1 counter


508


and the lane 2 counter


509


constitute the second counter, the passing judging devices


309


and


310


constitute the above vehicle location detection means; the estimated direction buffers


116


and


205


and the distance calculators


117


and


206


constitute the above comparison means; and the time base expander


208


constitutes the above time base expansion means. Further, the noise component calculation step (s


1002


), the αβ-direction noise component calculation step (s


3002


), the estimated β-direction calculation section (s


1003


), estimated αβ-direction calculation sections (s


3003


and s


4003


) and the estimated α-direction calculation section (s


5003


) are included in the above direction estimation step.




As described above, the present invention can provide a vehicle detection apparatus and a vehicle detection method which exhibit the excellent effects of detecting a sound source even when a plurality of vehicles are traveling simultaneously or when there are noises produced from something other than the desired vehicle and calculating the location in the vehicle traveling direction and the lane direction of the sound source and the number of passing vehicles by sampling the time signals from a sound collection means comprising a plurality of microphones and placed in the vicinity of a road periodically with time windows, estimating the direction of a sound source in each time window and calculating the degree of similarity between the estimation results and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling.



Claims
  • 1. A vehicle detection apparatus comprising a sound collection means placed in the vicinity of a road and comprising a plurality of microphones; a direction estimation means for sampling the input signals from the sound collection means periodically with time windows and estimating the direction of a sound source in each time window; and a similarity calculation means for calculating the degree of similarity between the estimation results by the direction estimation means and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling.
  • 2. The vehicle detection apparatus as set forth in claim 1, wherein the sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction.
  • 3. The vehicle detection apparatus as set forth in claim 1, wherein the sound collection means comprises a plurality of microphones aligned on a line parallel to the vehicle traveling direction and a plurality of microphones aligned on a line perpendicular to the vehicle traveling direction.
  • 4. The vehicle detection apparatus as set forth in claim 3, wherein the direction estimation means comprises an estimation means for estimating the direction in the vehicle traveling direction and the lane direction of the sound source.
  • 5. The vehicle detection apparatus as set forth in claim 4, which comprises counters for counting the estimation results by the direction estimation means for each lane and a lane detection means for detecting the location in the lanes of the sound source based on the counting values of these counters, when the road has a plurality of lanes.
  • 6. The vehicle detection apparatus as set forth in claim 1, wherein the sound collection means comprises a plurality of microphones arranged in the form of a matrix in the same plane.
  • 7. The vehicle detection apparatus as set forth in claim 6, wherein the direction estimation means comprises an estimation means for estimating the direction in the vehicle traveling direction and the lane direction of the sound source two-dimensionally.
  • 8. The vehicle detection apparatus as set forth in claim 7, wherein the direction estimation means comprises an estimation means for estimating the direction of the sound source by scanning in the vehicle traveling direction with the direction of the sound source in the lane direction limited to the center of the road.
  • 9. The vehicle detection apparatus as set forth in claim 7, wherein the direction estimation means comprises an estimation means for estimating the direction of the sound source by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.
  • 10. The vehicle detection apparatus as set forth in claim 7, which further comprises a first counter which counts the estimation results by the direction estimation means for each lane, a lane location detection means for detecting the location in the lanes of the sound source based on the counting values of the counter, and a second counter which counts the detection results by the lane location detection means for each lane, when the road has a plurality of lanes.
  • 11. The vehicle detection apparatus as set forth in any one of claims 1 to 10, wherein the similarity calculation means comprises a comparison means for comparing the plurality of templates with the estimation results.
  • 12. The vehicle detection apparatus as set forth in claim 11, wherein the plurality of templates are prepared by using the sound of a vehicle when the vehicle is caused to travel at different velocities.
  • 13. The vehicle detection apparatus as set forth in claim 11, wherein the plurality of templates are prepared by expanding or contracting the time base of a template prepared by using the sound of a vehicle traveling at a constant speed, and the similarity calculation means comprises a time base expansion means for expanding or contracting the time base of the template.
  • 14. The vehicle detection apparatus as set forth in any one of claims 1 to 10, wherein the sound collection means comprises a plurality of microphones the number of which is equal to or greater than “number of assumed sound sources+1”.
  • 15. A vehicle detection method comprising a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones placed in the vicinity of a road; a direction estimation step in which the input signals from the plurality of microphones are sampled periodically with time windows and the direction of a sound source is estimated in each time window; and a similarity calculation step in which the degree of similarity between the estimation results by the direction estimation step and templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated.
  • 16. A vehicle detection method comprising a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones aligned on a line parallel to the vehicle traveling direction and placed in the vicinity of a road; a direction estimation step in which the input signals from the plurality of microphones are sampled periodically with time windows and the direction of a sound source is estimated in each time window; and a vehicle detection step in which the degree of similarity between the estimation results by the direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation.
  • 17. A vehicle detection method comprising a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones aligned on a line parallel to the vehicle traveling direction and on a line perpendicular to the vehicle traveling direction and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the plurality of microphones are sampled periodically with time windows and the direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by the direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values.
  • 18. A vehicle detection method comprising a sound collection step in which the noises produced by a traveling vehicle are collected by a plurality of microphones arranged in the form of a matrix in the same plane and placed in the vicinity of a multi-lane road; a direction estimation step in which the input signals from the plurality of microphones are sampled periodically with time windows and the direction in the vehicle traveling direction and the lane direction of a sound source is estimated in each time window; a vehicle detection step in which the degree of similarity between the estimation results in the vehicle traveling direction by the direction estimation step and a plurality of templates which indicate a change in the direction of the sound source with time while the vehicle is traveling is calculated and the vehicle is detected based on the result of the calculation; and a lane detection step in which the estimation results in the lane direction by the direction estimation step are counted for each lane and the location in the lanes of the sound source is detected based on the counting values.
  • 19. The vehicle detection method as set forth in claim 18, wherein in the direction estimation step, the direction of the sound source is estimated by scanning in the vehicle traveling direction with the direction of the sound source in the lane direction limited to the center of the road.
  • 20. The vehicle detection method as set forth in claim 18, wherein in the direction estimation step, the direction of the sound source is estimated by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.
  • 21. A vehicle detection method as set forth in claim 18, further comprising a lane-specific vehicle detection step in which a number of the vehicles detected by the vehicle detection step is counted for each lane detected by the lane detection step.
  • 22. The vehicle detection method as set forth in claim 21, wherein in the direction estimation step, the direction of the sound source is estimated by scanning in the lane direction with the direction of the sound source in the vehicle traveling direction limited.
  • 23. The vehicle detection method as set forth in any one of claims 15 to 22, wherein in the vehicle detection step, the degree of similarity between the templates prepared by using the sounds of a vehicle traveling at different velocities and the estimation results is calculated.
  • 24. The vehicle detection method as set forth in any one of claims 15 to 22, wherein the vehicle detection step further comprises a velocity detection step in which the degree of similarity between the templates prepared by expanding or contracting the time base of a template prepared by using the sounds of a vehicle traveling at a constant speed and the estimation results is calculated and, according to the result of the calculation, the velocity of the detected vehicle is calculated from the expansion ratio of the template and the vehicle velocity used for preparing the template.
  • 25. The vehicle detection method as set forth in any one of claims 15 to 22, wherein template matching is used for calculating the degree of similarity between the templates and the estimation results.
  • 26. The vehicle detection method as set forth in any one of claims 15 to 22, wherein DP matching is used for calculating the degree of similarity between the templates and the estimation results.
  • 27. The vehicle detection method as set froth in any one of claims 15 to 22, wherein the number of the plurality of microphones is equal to or greater than “number of assumed sound sources+1”.
Priority Claims (1)
Number Date Country Kind
2000-188125 Jun 2000 JP
US Referenced Citations (5)
Number Name Date Kind
5189425 Dabbs Feb 1993 A
5619616 Brady et al. Apr 1997 A
5878367 Lee et al. Mar 1999 A
6094150 Ohnishi et al. Jul 2000 A
6195608 Berliner Feb 2001 B1
Foreign Referenced Citations (2)
Number Date Country
0 902 264 Mar 1999 EP
10192637 Jul 1998 JP
Non-Patent Literature Citations (2)
Entry
Patent Abstracts of Japan, vol. 017, No. 422, Aug. 5, 1993 for Publ. No. 0581595, 1 page.
Patent Abstracts of Japan, vol. 018, No. 156, Mar. 15, 1994 for Publ. No. 05325090, 1 page.