This application is based on and incorporates herein by reference Japanese Patent Application No. 2003-420006 filed on Dec. 17, 2003.
The present invention relates to a display system used in a vehicle including an automobile.
Conventionally, there is proposed a driving assistance system that is used for indicating information relating to a periphery, to a driver of a vehicle (e.g., Patent document 1). In Patent document 1, when it is determined that a driver misses looking at a road sign, a driving assistance system designates information relating to the not seen road sign, to inform the driver of the designated information.
Generally, an urban area has more road signs than a suburban area. When a driver pays attention to a pedestrian or another vehicle during the driving in the urban area, the driver cannot sufficiently observe the peripheral road signs. Here, the conventional driving assistance system outputs all the information that the driver did not look at, so that the driver may not recognize the road sign important to the driving.
It is an object of the present invention to provide a vehicle display system capable of properly indicating peripheral information that is important to a driver on driving.
To achieve the above object, a vehicle display system is provided with the following. A color image of a forward scenery ahead of a vehicle is taken. An object including a red light element in the taken color image of the forward scenery is detected. An object corresponding to at least one of a leading vehicle, a road sign, and a traffic control apparatus is recognized. Of the red light element of the recognized object, a first position on the taken color image of the forward scenery is extracted. An eye point of a user of the vehicle is detected. A second position that is located on a display area in a windshield of the vehicle and corresponds to the extracted first position of the red light element is designated based on the detected eye point. A display image that is used to highlight the designated second position over the forward scenery is generated. The generated display image is displayed at the designated second position on the display area so that the displayed image is superimposed on the forward scenery. The user is thereby caused to recognize the display image.
In this structure, a driver is provided with a red light element that indicates information important to driving. The red light element is included in lighting of brake lights of a leading vehicle, a road sign such as a halt sign or a do-not-enter sign, or a red traffic signal of a traffic control apparatus. This possibly results in preventing a driver of the subject vehicle from missing recognizing the important information.
As another aspect of the present invention, a vehicle display system is provided with the following. A color image of a forward scenery ahead of a vehicle is taken. An object including a red light element in the taken color image of the forward scenery is detected. Of the detected object, an object corresponding to at least one of a leading vehicle, a road sign, and a traffic control apparatus is recognized. Of the red light element of the recognized object, a first position on the taken color image of the forward scenery is extracted. A display image used to highlight the extracted first position over the forward scenery within the color image is generated. The taken color image and the generated display image are displayed so that the generated display image is superimposed over the extracted first position on the displayed color image.
In this structure, a color image of a forward scenery and also a generated display image are displayed by being superimposed with each other on a head-up display or a display disposed in a center console of the vehicle. A driver thereby properly recognizes the displayed images, also resulting in preventing of missing recognizing the important information.
The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
The present invention is directed to as an embodiment a vehicle display system 100 whose overall structure is shown in
The windshield 101 is a front window and provided with a surface treatment in its surface facing a cabin of the vehicle, the treatment which functions as a combiner. This surface-treated area is designed to become a display area where a display light outputted from the projector 103 is projected. That is, a known display area of a head-up display is designed to be located on the windshield 101. An occupant of the vehicle seated on a driver seat can thereby see the display image projected on the display area by the light outputted from the projector 103 so that the display image is superimposed on a real forward scenery ahead of the subject vehicle.
The mirrors 102a, 102b are reflection plates that introduce the display light outputted from the projector 103 to the windshield 101. The mirrors 102a, 102b can be adjusted in their inclination angles based on an instruction signal from the control unit 110. The projector 103 obtains image data from the control unit 110, converts the image data to a display light, and outputs the display light. The outputted display light is projected on the display area on the windshield 101.
The camera 104a is an optical camera used as a photographing unit that photographs a forward area ahead of the subject vehicle, to output to the control unit 110 a photographing image signal including: image vertical and horizontal synchronization signals; and an RGB color signal indicating a color of each of pixels of the image. The RGB color signal indicates a color of each of pixels of the image by combining (r, g, b) three primary colors of red (R), green (G), and blue (B) as shown in
For instance, when an eight bit element (0 to 255) is assigned to represent each color, a total of 24 bits formed of each eight bit of the three primary colors can represent 16,777,216 colors. When each color is 255, a pure white is outputted. By contrast, when each color is 0 (zero), a pure black is represented.
The camera 104b is formed of, e.g., a CCD camera to detect an eye point of the user of the subject vehicle based on the image photographed by the camera 104b.
The laser radar 105 measures, of an object that reflects the radiated laser light, a distance, a relative speed, or a lateral bias that measures from a subject-vehicle center in a subject-vehicle width direction by radiating laser light to a given range ahead of the subject vehicle. The measurement results are converted to electric signals and then outputted to the control unit 110.
The GPS antenna 106 receives radio waves transmitted from the known GPS (Global Positioning System) satellites, and outputs the received signals as electric signals to the control unit 110.
The vehicle speed sensor 107 detects a speed of the subject vehicle, so that detection results are outputted to the control unit 110.
The azimuth sensor 109 is formed of a known geomagnetism sensor or gyroscope to detect an absolute advancing orientation of the subject vehicle and an acceleration generated in the subject vehicle to output them to the control unit 110 as electric signals.
The control unit 110 generates a display image that is to be displayed on a display area designed on the windshield 101, primarily based on a signal from the cameras 104a, 104b and outputs image data of the generated display image to the projector 103.
As shown in
The CPU 301, the ROM 302, the RAM 303, and the drawing RAM 306 are formed of a known processor and memory module, where the CPU 301 uses the RAM 303 as a temporary storage that temporarily stores data and executes various processings based on a program stored in the ROM 302. Further, the drawing RAM 306 stores image data to be outputted to the projector 103.
The input and output unit 304 functions as an interface. The input and output unit 304 is inputted with signals from the cameras 104a, 104b, the laser radar 105, the GPS antenna 106, the speed sensor 107, the azimuth sensor 108, and various data from the map database 305a, the image information database 305b; further, the unit 304 outputs the inputted signals and various data to the CPU 301, the RAM 303, the drawing RAM 306, and the display controller 307.
The map database 305a is a storage that stores map data formed of road-related data such as road signs and traffic control apparatuses, and facility-related data. The map database 305b uses as a storage a CD-ROM, a DVD-ROM etc. because of its data volume; however, a rewritable storage such as a memory card or a hard disk can be used as the storage. Here, the road-related data includes positions and kinds of the road signs; and setting-positions, kinds, and shapes of the traffic control apparatuses in the intersections.
The image information database 305b is a storage that stores display image data to be used when the display image is generated so as to output to the drawing RAM 306. The display controller 307 reads out the image data stored in the drawing RAM 306, and outputs the read image data to the projector 103 after computing a display position so that the display image can be displayed in a proper position on the windshield.
Further, the vehicle display system 100 of this embodiment, detects objects that have red light elements from among the RGB image of the forward scenery of the subject vehicle taken by the camera 104a. Of the detected objects having the red light elements, an object corresponding to a leading (or preceding) vehicle, a road sign, a traffic control apparatus, or the like is recognized. Then, a position within the color image (i.e., a pixel position on vertical and horizontal axes of the color image) is extracted with respect to each of the recognized objects.
Furthermore, from the image photographed by the camera 104b, an eye point of the user seated on a driver seat of the subject vehicle is detected, and then based on the detected eye point, a given position on the display area in the windshield 101 is designated. Here, the given position corresponds to, within the color image, the pixel position of the object having the red light element.
The vehicle display system 100 generates a display image for highlighting the position of the object having the red light element, on the display area in the windshield 101, based on a display image stored in the image information database 305b, to display the generated display image on the designated position in the windshield 101.
Next, the process of the vehicle display system 100 will be explained with reference to
At Step S20, objects having red light elements are detected from the obtained RGB color image. Here, the detected object possesses a given combination (r, g, b) of red (R), green (G), and blue (B). In this given combination, the red light element is a given value or more while the green element and the blue element are less than given values. For instance, as shown in
At Step S30, of the objects having the red light elements detected at Step S20, an object corresponding to a leading vehicle, a road sign, or a traffic control apparatus is recognized. Recognizing the leading vehicle can be performed not only based on the shape of the vehicle, but also based on a measurement result of the laser radar 105, resulting in enhancement of recognition accuracy. Further, recognizing the road sign or the traffic control apparatus is performed by the following: designating a current position of the subject vehicle based on signals from the GPS satellites received by the GPS antenna 106; obtaining an advancing orientation at the designated position of the subject vehicle, from the azimuth sensor 108; obtaining road signs and the traffic control apparatuses located along the advancing orientation from the map database 305a; and recognizing whether a forward object having a red light element is a road sign or a traffic control apparatus lighting a red traffic signal. By virtue of the processing at Step S30, brake lights LVL, LVR disposed at a left end and a right end of the rear of the leading vehicle LV, and a halt sign SG are recognized, as shown in
At Step S40, with respect to at least one of the leading vehicle, the road sign, and the traffic control apparatus recognized as the objects having the red light elements, a position (pixel position) in the RGB color image is extracted.
At Step S50, from the image photographed by the camera 104b, an eye point of the user seated on the driver seat of the subject vehicle is detected.
At Step S60, based on the eye point of the user detected at Step S50, a position of a red light element on the display area within the windshield 101 is designated.
At Step S70, a display image is generated for highlighting the position of the red light element on the display area in the windshield 101. For instance, a given display image is extracted from display image data stored in the image information database 305b.
At Step S80, the display image generated at Step S70 is displayed in the position of the red light element, which is designated at Step S60, on the display area in the windshield 101. This highlights the brake lights LVL, LVR that are disposed at the left and right ends of the rear of the leading vehicle LV, the halt sign SG, so that the user of the subject vehicle can easily recognize them.
As explained above, the vehicle display system 100 of the embodiment, recognizes the leading vehicle, the road sign, and the traffic control apparatus, all of which possess the red light elements in the camera image of the forward scenery taken by the camera, and displays the recognized objects having the red light elements by highlighting the position of the recognized object on the display area in the windshield 101.
This results in proper user's recognition of the brake lights of the leading vehicle, the road signs such as the halt sign, and do-not-enter sign, and the traffic control apparatus with the red traffic signal lighting, all of which mainly include “red” that indicates the information important to the driving. Consequently, an effect is expected that prevents the user of the subject vehicle from missing recognizing the information important to the driving.
(Modification 1)
In the above embodiment, the vehicle display system 100 displays a display image for highlighting, on a display area in the windshield 101 of the subject vehicle. However, the system 100 can be differently constructed. For instance, a color image of a forward scenery ahead of the subject vehicle can be displayed on a display screen 120 (shown in
This enables the user to properly recognize the brake lights of the leading vehicle, the road signs such as the halt sign, and do-not-enter sign, and the traffic control apparatus with the red traffic signal lighting, all of which mainly include “red” that indicates the information important to the driving.
(Modification 2)
In the above embodiment, the vehicle display system 100 displays a cross-shape, as shown in
Furthermore, in the modification 1, the display image superimposed on the displayed color image of the forward scenery can be displayed so that the display image possesses a red light element having a brightness more than that of the displayed color image of the forward scenery. Further, similarly, a display image can be displayed by magnifying the object having a red light element. Yet further, a display image can be displayed by blinking the position having a red light element.
(Modification 3)
For instance, generally, viewing, in the daytime, lighting of the brake lights of the leading vehicle or lighting of the red traffic signal of the traffic control apparatus is more difficult than in the nighttime. This phenomenon remarkably takes place, in particular, when a sun light directly advances to the subject vehicle around the morning or twilight. By contrast, in the nighttime, the lighting of the brake lights of the leading vehicle or the lighting of the red traffic signal of the traffic control apparatus can be recognized without any highlighting.
Consequently, it is preferable that a display image for highlighting is preferentially provided when the brightness of the forward scenery is a given level or more. Thus, the user who is in a state where the corresponding object is difficult to be recognize is properly provided with the information important to driving.
(Modification 4)
In the above embodiment, the vehicle display system 100 does not consider whether the user already recognizes the leading vehicle, the road sign, or the traffic control apparatus. Therefore, even when the user already recognizes them, the position of the red light element is highlighted, resulting in bothering the user.
To solve this problem, a vehicle display system can be provided with a sight line detecting unit 130 (shown in
Further, to achieve the modification 4, for instance, by adopting, as the sight line detecting unit, an infrared floodlight lamp, an infrared floodlight region photographing camera, a viewing point sensor, all of which are disclosed in JP-2001-357498 A, a user's viewing point on the display area in the windshield can be detected. An object located at the viewing point on the display area in the windshield 101 is thereby designated, so that the designated object can be excluded from the object whose position is to be highlighted.
It will be obvious to those skilled in the art that various changes may be made in the above-described embodiments of the present invention. However, the scope of the present invention should be determined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-420006 | Dec 2003 | JP | national |