The invention relates generally to vehicle door movement control devices, and, more particularly, to a mechanism for enabling vehicle door articulation, for example, in a pickup truck, with or without a B-pillar, with the mechanism permitting opening and closing of a door with or without an adjacent door being opened.
As is known in the art, automobile designs are governed by a variety of ergonomic and operational factors. For doors and other such components, the design is generally based on ergonomic factors such as exterior appearance, and the location and visibility of hinges, latches and adjacent components, and operational factors such as the ingress/egress opening provided, the maximum clearance required for opening/closing a door, and crash performance.
For pick-up trucks, sport-utility vehicles (SUVs) and other such vehicles which are designed to accommodate ingress/egress of several passengers and also provide means for transport of large goods, the ingress/egress opening and maximum clearance required for opening/closing a door can be of particular importance. For example, a pick-up truck having front and back driver/passenger doors may include a C-pillar mounted rear door which pivots relative to the C-pillar in a similar manner as the A-pillar mounted front door to thus provide a relatively large and unobstructed ingress/egress opening without the intermediate B-pillar. Due to the large size, in particular the door length (width when open), of a typical pick-up truck, driver/passenger ingress/egress can become particularly restrictive, if not impossible, if a vehicle is parked adjacent to the truck and is sufficiently close to prevent a person from boarding or loading to enter the area between the front and rear doors (when open), invariably known as parking lot entrapment. A typical truck with front and back (rear) doors will include a B-pillar mounted rear door, which pivots relative to the B-pillar in a manner similar to the A-pillar mounted front door. This design does not suffer to the same extent from parking lot entrapment, but is still restricted as regards ingress/egress due to limitations of the door opening when parked adjacent to other vehicles.
In an effort to address such parking lot entrapment concerns, a host of sliding or articulating rear door designs, such as the design disclosed in U.S. Pat. No. 6,183,039 to Kohut, have been proposed.
Specifically, referring to
Thus, while pivot and slide door system (20) of Kohut provides for articulating and sliding movement of door (36), system (20) and especially interlock assembly (110) nevertheless are relatively complex in design, and thus susceptible to failure. As system (20) is illustrated for use with a single car door, Kohut does not discuss whether door (36) is pivotally operable with a vehicle having a front door.
It would therefore be of benefit to provide a mechanism for permitting opening and closing of both a C-pillar mounted, rear-hinging rear door, and a conventional B-pillar mounted rear door with or without a front door being opened, with the mechanism including a minimal number of components for facilitating manufacture, assembly and operation of the overall mechanism and adjacent components.
In accordance with one aspect of the present invention, drawbacks and deficiencies of prior art articulating door mechanisms are overcome by providing a vehicle door articulating mechanism including an articulating hinge assembly having a hinge arm pivotally mounted via a first hinge mount to a vehicle structure at one end thereof, a vehicle door pivotally mounted via a second hinge mount to the hinge arm at an opposite end of the hinge arm, a first cam mounted to the first hinge mount at one end of the hinge arm, a second cam mounted to the second hinge mount at an opposite end of the hinge arm, and a belt at least partially encircling both the first and second cams. The hinge arm is disposed at first and second angular positions when the vehicle door is respectively disposed in closed and opened positions. The vehicle door articulating mechanism allows the door to articulate away independent of an adjacent vehicle door during initial and continued opening of the vehicle door. The door in the fully opened position is parallel to the vehicle body side.
According to another aspect of the present invention, the vehicle door articulating mechanism may include a spring and a tensioner on the belt to facilitate appropriate rotation of the mechanism to open the door and bring it parallel with the vehicle side.
According to further aspects of the present invention, a vehicle compartment closure articulating mechanism including one or more articulating hinge assemblies is provided, which include one or more hinge arms pivotally mounted via a first hinge mount to a vehicle body structure at one end thereof, a vehicle door pivotally mounted via a second hinge to the hinge arm at an opposite end of the hinge arm, a first cam mounted to the first hinge mount at one end of the hinge arm, a second cam mounted to the second hinge mount at the opposite end of the hinge arm, and a belt at least partially encircling both the first and second cams. The hinge arm may be disposed at first and second angular positions when the compartment closure is respectively disposed in closed and opened positions. The vehicle door articulating mechanism thus provides articulating movement of the vehicle door during initial and continued opening thereof of the vehicle door relative to a vehicle body structure. The vehicle door in the fully opened position is parallel to the vehicle body structure.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
Referring now to the drawings wherein like reference numerals designate corresponding parts throughout the several views,
Referring to
The various sub-components of rear door articulating mechanism 10 will now be described in detail with reference to
Specifically, as shown in
Referring next to
As shown in
In order to latch/unlatch rear door 16, door 16 may include one or both of front and rear latches 110A and 110B. Front latch 110A is shown provided adjacent the lower end of the door 16 and engageable with striker 111 provided adjacent the lower end of door opening frame. The rear latch 110B may likewise be engageable with striker (not shown). Door 16 may further include a release handle 112 in a conventional manner. As readily evident to those skilled in the art, in order to efficiently open and close door 16, handle 112 may be a pull-type handle as shown, whereby a user may grasp onto handle 112 and pull and slide the rear door 16 to open or close the door 16 as needed.
The opening/closing of rear door 16 will now be described in detail with reference to
Referring to
Referring next to
Referring to
As discussed above, since rear door articulating and sliding mechanism 10 may allow for complete opening of rear door 16, with front door 14 being fully opened or closed, referring to
Referring to
To summarize, the invention thus provides rear door articulating mechanism 10 for vehicle rear door articulation, with the system permitting opening and closing of a rear door with or without a front door being opened. The system requires minimal modification of a vehicle structure, in that, components such as hinge mounts 32, 26 can be installed by minimal modification to a C-pillar area or the rear door and roof structure. The invention facilitates ease of ingress and egress and allows maximum access for loading and unloading of transportable items. Based on the discussion above, the mode of opening of rear door 16 is not constrained by parking lot restrictions that limit conventional door opening when adjacent to another vehicle or object that prevents full rotation of a conventional hinged door. Thus, parking lot entrapment, which prevents access to the door openings in such situations, is thereby avoided.
Those skilled in the art would readily appreciate in view of this disclosure that various modifications could be made to the aforementioned components, without departing from the scope of the present invention. For example, first and second cams 66, 68 could be configured in a variety of shapes and sizes to allow rotation ratios of belt 38 as rear door 16 is opened. Belt 38 could include one or more timing mechanisms to aid control of rotation. Yet further, whereas mechanism 10 has been described as being usable with rear door 16 in the exemplary embodiment illustrated, it is readily evident that mechanism 10 may be usable with a vehicle front, middle or other doors, or with a compartment closure (i.e. broadly a vehicle door for the occupant compartment or another compartment for storing objects), or a tailgate assembly, for facilitating the afore-described articulating/sliding operation. Moreover, whereas door 16 has been discussed as being manually operable via handle 112, mechanism 10 may be used with an automatic door 16 operable, for example, by a remote or vehicle mounted push-button.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
2904852 | Davis | Sep 1959 | A |
3051999 | Schimek | Sep 1962 | A |
3075803 | Wilfert | Jan 1963 | A |
3313063 | Patin | Apr 1967 | A |
3619853 | Merrill | Nov 1971 | A |
3628216 | Savell | Dec 1971 | A |
3728819 | Goldbach et al. | Apr 1973 | A |
3758990 | Balanos | Sep 1973 | A |
3935674 | Williams et al. | Feb 1976 | A |
4025104 | Grossbach et al. | May 1977 | A |
4135760 | Grossbach | Jan 1979 | A |
4945677 | Kramer | Aug 1990 | A |
5139307 | Koops et al. | Aug 1992 | A |
5251953 | Willey | Oct 1993 | A |
5319880 | Kuhlman | Jun 1994 | A |
5398988 | DeRees et al. | Mar 1995 | A |
5507119 | Sumiya et al. | Apr 1996 | A |
5561887 | Neag et al. | Oct 1996 | A |
5812684 | Mark | Sep 1998 | A |
5846463 | Keeney et al. | Dec 1998 | A |
5896704 | Neag et al. | Apr 1999 | A |
5921613 | Breunig et al. | Jul 1999 | A |
6030025 | Kanerva | Feb 2000 | A |
6036257 | Manuel | Mar 2000 | A |
6183039 | Kohut et al. | Feb 2001 | B1 |
6196618 | Pietryga et al. | Mar 2001 | B1 |
6213535 | Landmesser et al. | Apr 2001 | B1 |
6299235 | Davis et al. | Oct 2001 | B1 |
6382705 | Lang et al. | May 2002 | B1 |
6386621 | Kozak et al. | May 2002 | B1 |
6390535 | Chapman | May 2002 | B1 |
6394529 | Davis et al. | May 2002 | B2 |
6447054 | Pietryga et al. | Sep 2002 | B1 |
6572176 | Davis et al. | Jun 2003 | B2 |
6629337 | Nania | Oct 2003 | B2 |
6793268 | Faubert et al. | Sep 2004 | B1 |
6802154 | Holt et al. | Oct 2004 | B1 |
6817651 | Carvalho et al. | Nov 2004 | B2 |
6826869 | Oberheide | Dec 2004 | B2 |
6860543 | George et al. | Mar 2005 | B2 |
6896315 | Batinli et al. | May 2005 | B2 |
6926342 | Pommeret et al. | Aug 2005 | B2 |
6942277 | Rangnekar et al. | Sep 2005 | B2 |
6997504 | Lang et al. | Feb 2006 | B1 |
7000977 | Anders | Feb 2006 | B2 |
7003915 | Yokomori | Feb 2006 | B2 |
7032953 | Rangnekar et al. | Apr 2006 | B2 |
7104588 | George et al. | Sep 2006 | B2 |
7168753 | Faubert et al. | Jan 2007 | B1 |
7178853 | Oxley et al. | Feb 2007 | B2 |
7219948 | Curtis, Jr. et al. | May 2007 | B2 |
7243978 | Mather et al. | Jul 2007 | B2 |
7287804 | Yamagishi et al. | Oct 2007 | B2 |
7325361 | Rogers et al. | Feb 2008 | B2 |
7341304 | Osada et al. | Mar 2008 | B2 |
7393044 | Enomoto | Jul 2008 | B2 |
7445005 | Bartmann et al. | Nov 2008 | B2 |
7523585 | Butera et al. | Apr 2009 | B2 |
7611190 | Elliott et al. | Nov 2009 | B1 |
7810282 | Oxley | Oct 2010 | B2 |
20020096800 | Keeney et al. | Jul 2002 | A1 |
20030218358 | Hahn | Nov 2003 | A1 |
20050093337 | Herrmann et al. | May 2005 | A1 |
20050116496 | Lowson et al. | Jun 2005 | A1 |
20050134158 | Bartmann et al. | Jun 2005 | A1 |
20050146159 | Shen et al. | Jul 2005 | A1 |
20060059799 | Zimmer et al. | Mar 2006 | A1 |
20060103047 | Zwolinski | May 2006 | A1 |
20060249983 | Heuel et al. | Nov 2006 | A1 |
20060267375 | Enomoto | Nov 2006 | A1 |
20070075565 | Magsaam | Apr 2007 | A1 |
20070085374 | Mather et al. | Apr 2007 | A1 |
20070214606 | Hoffman | Sep 2007 | A1 |
20070283524 | Gordon | Dec 2007 | A1 |
20080190028 | Oxley | Aug 2008 | A1 |
20080224501 | Zimmer et al. | Sep 2008 | A1 |
20090000200 | Heuel et al. | Jan 2009 | A1 |
20090051194 | Elliott et al. | Feb 2009 | A1 |
20090070960 | Elliott et al. | Mar 2009 | A1 |
20090072582 | Elliott et al. | Mar 2009 | A1 |
20090072583 | Elliott et al. | Mar 2009 | A1 |
20090200833 | Heuel et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
3831698 | Mar 1990 | DE |
102004039885 | Feb 2006 | DE |
0012511 | Jun 1980 | EP |
0875434 | Nov 1998 | EP |
0957019 | Nov 1999 | EP |
1813759 | Aug 2007 | EP |
389061 | May 1931 | GB |
3140583 | Jun 1991 | JP |
3140584 | Jun 1991 | JP |
2004175199 | Jun 2004 | JP |
2005153738 | Jun 2005 | JP |
2007138630 | Jun 2007 | JP |
2008094323 | Apr 2008 | JP |
100448753 | Sep 2004 | KR |
0242589 | May 2002 | WO |
WO 200600572 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100171336 A1 | Jul 2010 | US |