The present invention relates to a vehicle door handle apparatus.
A publicly-know conventional vehicle door handle apparatus includes those having a link which is rotatably supported on a frame and which is rotated by operation of a handle grip (see, e.g., JP 2001-323689 A).
However, the conventional vehicle door handle apparatus is structured so that a width across flat section formed in a shaft section of the link is inserted in a narrow slot formed in the frame and that the shaft section is rotatably supported by a bearing hole. This facilitates mounting work, but at the same time, as the link rotates and a part of the width across flat section is thereby located in the slot, this part may lose support and eccentric force may act on the shaft section, resulting in dropout of the shaft section from the bearing hole.
Accordingly, an object of the present invention is to provide a vehicle door handle apparatus in which a supporting structure of a rotating section offers not only facilitated mounting but also resistance to dropout.
A vehicle door handle apparatus includes: a handle base for rotatably supporting one end side of a handle grip; and a lever which has a shaft section rotatably supported by a bearing section of the handle base and which is rotated upon pulling of the handle grip, wherein the lever includes: a first shaft tip section projecting from the shaft section to a shaft tip side and having a part cut away so as to form a circular face; and a second shaft tip section projecting from the first shaft tip section to a shaft tip side and having a width smaller than that of the first shaft tip section, and wherein the handle base includes: a bearing hole for rotatably supporting the first shaft tip section and the second shaft tip section of the lever; a first guide rail for guiding the first shaft tip section to the bearing hole; and a second guide rail narrower than the first shaft tip section for guiding the second shaft tip section to the bearing hole.
With this configuration, even when the shaft section is rotatably supported by the bearing hole and in this state, a part of the first shaft tip section moves to a position corresponding to the first guide rail where the held state of the part of the first shaft tip section is canceled, the pivotally supported state of the second shaft tip section by the bearing hole is maintained until a part of the second shaft tip section moves to a position corresponding to the second guide rail, so that the range in which the shaft section may drop out can be held down compared with the conventional cases. In short, it becomes possible to implement a structure offering resistance to dropout without spoiling mounting workability through simple improvement. Moreover, even when the second shaft tip section is formed with a small width, the shaft section is held in the bearing hole by the first shaft tip section which is wider than the second shaft tip section, and therefore the strength of the shaft section is not compromised.
It is more preferable, in view of achieving effective prevention of the dropout of the shaft section from the bearing section, to further provide a return spring which biases the lever in a rotation direction around the shaft section and which has engaging sections on both ends engaged so that eccentric force may act in a direction in which the first shaft tip section is distanced from the first guide rail.
Preferably, the first guide rail is formed so as to be displaced from a straight line passing through a center of the bearing hole, the second guide rail is formed outside of the first guide rail further away from the straight line passing through the center of the bearing hole, and a rotation direction of the shaft section of the lever at a time of pulling the handle grip is so set that an end section of an end face of the first shaft tip section and the second shaft tip section may reach a lateral face of the first guide rail prior to a lateral face of the second guide rail.
With this configuration, even when, for example, the lever is operated by an operator in the rotation direction for pulling operation of the handle grip during assembling work and the like, the first shaft tip section and the second shaft tip section may be structured to be less likely to drop out of the bearing hole.
It is preferable to provide a return spring which biases the lever in a rotation direction around the shaft section and which has engaging sections on both ends engaged so that eccentric force may act in a direction in which the first shaft tip section is distanced from the first guide rail, wherein the bearing hole is placed so that a center thereof is displaced from a center of each shaft section, which is guided via each of the guide rails, in a direction crossing the guiding direction, and wherein after the first shaft tip section is inserted into the bearing hole via the first guide rail, the bearing hole is in a state of being displaced in the crossing direction, and the displaced state is held by the eccentric force of the return spring.
With this configuration, it becomes possible to prevent at least the first shaft tip section from being placed at the position where the first shaft tip section can drop out of the first guide rail by just inserting the first shaft tip section into the first guide rail and moving it in the crossing direction. In short, it becomes possible to implement the structure which offers resistance to dropout only by mounting the shaft section so as to be rotatably supported by the bearing hole. The state of being unable to drop out is maintained by the eccentric force of the return spring. Therefore, even as the lever rotates to a rotating position for mounting operation, the shaft section of the lever does not drop out from the bearing hole, and therefore the rotating position for mounting the lever can be set in the normal operation range of the lever. As a result, it becomes possible to enhance the design flexibility.
When a position at which one edge of the circular face of the first shaft tip section comes into contact with an inner peripheral face of the bearing hole in a state that the other edge of the circular face is positioned in one outer lateral surface of the first guide rail is used as a rotary fulcrum of the shaft section, one edge of the second shaft tip section is preferably structured at least not to enter into the second guide rail.
With this configuration, even as the lever rotates and one edge in the circular face of the first shaft tip section reaches the first guide rail, the held state of one edge of the first shaft tip section is canceled. In this case, if one edge of the second shaft tip section is structured so as not to enter into the second guide rail, the second shaft tip section is still put in the state of being held in the inner peripheral face of the bearing hole, and therefore the second shaft tip section is prevented from dropping into the second guide rail. In short, it becomes possible to make the shaft section hardly drop out of the bearing section.
According to the invention, even when the shaft section is rotatably supported by the bearing hole and in this state, a part of the first shaft tip section moves to a position corresponding to the first guide rail where the held state of the part of the first shaft tip section is canceled, the pivotally supported state of the second shaft tip section by the bearing hole is maintained until a part of the second shaft tip section moves to a position corresponding to the second guide rail, so that the range in which the shaft section may drop out can be held down compared with the conventional cases. In short, it becomes possible to provide a structure offering resistance to dropout without spoiling mounting workability through simple improvement.
The embodiments of the present invention will be described hereinbelow with reference to the accompanying drawings.
A handle support section 6 on which the handle grip 2 is rotatably mounted is formed in one end section of the handle base 1, while a lever supporting section 7 on which the lever 3 is rotatably mounted is formed in the other end section. The handle support section 6 has a pivotal supporting section 6a formed for receiving and rotatably supporting one end section of the handle grip 2, so that the handle grip 2 is rotatably mounted therein. The handle base 1 is fixed onto a door panel with a handle nut 8, a screw 8a, a screw 9, and an unshown fixing member.
The lever supporting section 7 has an opening 10 through which a connecting section 19 and a pressing section 20 of the later-described handle grip 2 are inserted and a bearing section 11 (first bearing section 11A and second bearing section 11B) which supports each shaft section 23 of the lever 3 as shown in
The second bearing section 11B has a bearing hole 16 and a first guide rail 17 and a second guide rail 18 continuing to the bearing hole 16, which are respectively formed in a supporting wall 15. The bearing hole 16 is formed into a recess shape and its inner peripheral face rotatably supports the peripheral face of a second shaft 23B of the later-described lever 3. As shown in
The handle grip 2 has one end section mounted on the handle support section 6 as mentioned above. The other end section of the handle grip 2 has the pressing section 20 formed via the connecting section 19.
The lever 3 is composed of, as shown in
The shaft section 23 is provided on the base side (weight section side) of the operating section 22 so as to project from both the sides of the operating section 22 in the orthogonal direction. One projecting portion (first shaft section 23A) has a small-diameter section 23a having a generally D shape in cross section in its front end, which is rotatably supported by the bearing hole 13 of the first bearing section 11A, and has a return spring 4 placed in its outer circumference. The projection dimension of the other projecting portion (second shaft 23B) is smaller than that of the first shaft section 23A, with a first shaft tip section 27 projecting from the end face thereof, and a second shaft tip section 28 further projecting from the end face of the first shaft tip section 27.
As shown in
The second shaft tip section 28 is provided so as to project generally in a dogleg shape from the end face of the first shaft tip section 27 in the direction of the tip of the rotating shaft (rear side in the page of
The return spring 4 is composed of a coil section 4a mounted on the shaft section 23 of the lever 3 and a first engaging section 4b and a second engaging section 4c which extend from both the ends of the coil section 4a as shown in
Description is now given of the assembly method of the vehicle door handle apparatus.
First, the lever 3 is mounted on the lever supporting section 7 of the handle base 1. The return spring 4 is externally mounted on the shaft section 23 of the lever 3, and the second engaging section 4c is engaged with the lock receiving section 3a of the lever 3 in advance. Next, as shown in
Next, the handle grip 2 is mounted on the handle base 1. The handle grip 2 is rotatably mounted by putting one end side of the pressing section 20 into contact with the pressure receiving section 26 of the lever 3 and putting the other end side in the state of being pivotally supported by the pivotal supporting section 6a of the handle support section 6. In this mounting state, the lever 3 is rotated clockwise by the biasing force of the return spring 4 as shown in
In the vehicle door handle apparatus assembled in this way, the rotating range of the lever 3 is equal to the normal working range when the handle grip 2 is rotated in the operational maximum range (in the range from the state of
Description is now given of the operation of the vehicle door handle apparatus.
As described before, in the state where the door is closed before the operating of the handle grip 2, the lever 3 is rotated clockwise by the biasing force of the return spring 4 as shown in
In this state, when an operator carrying an electronic key (not shown) grips the handle grip 2 and operates the switch, a door lock system (not shown) is put in an unlock condition. Accordingly, the operator pulls the handle grip 2 from the door and rotates the handle grip 2 around the handle support section 6. With the rotation of the handle grip 2, the pressing section 20 presses the pressure receiving section 26 of the lever 3, so that the lever 3 rotates counterclockwise, as shown in
In this case, although the first shaft tip section 27 of the lever 3 moves toward the guide rail side, the shaft tip sections 27 and 28 never reach the position corresponding to the respective guide rails 17 and 18 even in the state that the handle grip 2 is fully pulled (
In the door handle apparatus, the shaft tip section may drop out of the bearing hole when an operator performs such operation as rotating the lever 3 while pushing the weight section 21 side of the lever 3 toward the guide rail during assembly works or others. For example, when a single shaft tip section 100 having a generally D shape in cross section is formed at the tip of the shaft section 23 as shown in
In the door handle apparatus of the present embodiment, when an operator operates the weight section 21 side of the lever 3 with control force F, for example, in the state shown in
As the lever 3 further rotates counterclockwise and ends up in the state of
When the operator removes his/her hand from the lever 3 in this state, the circular face 27a of the first shaft tip section 27 is pressed to the inner peripheral face of the bearing hole 16 by the eccentric force of the return spring 4, while the lever 3 is rotated clockwise by the biasing force of the return spring 4, and thereby the state of
Thus, in the door handle apparatus of the present embodiment, even when the lever 3 rotates and a part of the first shaft tip section 27 reaches the first guide rail 17 in the case of rotating operation of the lever 3 during mounting work, a part of the second shaft tip section 28 does not yet reach the second guide rail 18 which is formed so as to be narrower than the first guide rail 27.
Accordingly, even when the first and second tip sections 27 and 28 are suddenly operated so that they escape in the direction of the first and second guide rail 17 and 18, the held state of the second shaft tip section 28 by the bearing hole 16 is maintained in the large range, which makes it possible to prevent the first and second tip sections 27 and 28 from escaping from the bearing hole 16 of the bearing section 11. Moreover, even when the second shaft tip section 28 is formed with a small width, the shaft section 23 is held in the bearing hole 16 by the first shaft tip section 27 which is wider than the second shaft tip section 28, and therefore the strength of the shaft section 23 will not be compromised.
Moreover, it becomes possible to achieve furthermore effective prevention of the dropout of the shaft section 23 from the bearing section 11 by providing the return spring 4 which biases the lever 3 in a rotation direction around the shaft section 23 and which has engaging sections on both ends engaged so that eccentric force may act in a direction in which the first shaft tip section 27 is distanced from the first guide rail 17.
Further, it becomes possible to prevent at least the first shaft tip section 27 from being placed at the position where the first shaft tip section 27 can drop out of the first guide rail 17 by just inserting the first shaft tip section 27 into the first guide rail 17 and moving it in the crossing direction. In short, it becomes possible to implement the structure which offers resistance to dropout only by mounting the shaft section 23 so as to be rotatably supported by the bearing hole 16. The state of being unable to drop out is maintained by the eccentric force of the return spring 4. Therefore, even as the lever 3 rotates to a rotating position for mounting operation, the shaft section 23 of the lever 3 does not drop out from the bearing hole 6, and therefore the rotating position for mounting the lever 3 can be set in the normal operation range of the lever 3. As a result, it becomes possible to enhance the design flexibility.
Furthermore, as the lever 3 rotates and one edge 27f in the circular face 27a of the first shaft tip section 27 reaches the first guide rail 17, the held sate of one edge 27f of the first shaft tip section 27 is canceled. In this case, if one edge 28f of the second shaft tip section 28 is structured so as not to enter into the second guide rail 18, the second shaft tip section is still put in the state of being held in the inner peripheral face of the bearing hole 16, and therefore the second shaft tip section 28 is prevented from dropping into the second guide rail 18. In short, it becomes possible to make the shaft section 23 hardly drop out of the bearing section 11.
In the above embodiment, the second shaft tip section 28 is provided so as to project generally in a dogleg shape from the end face of the first shaft tip section 27 in the direction of the rotating shaft. However, without being limited to this structure, the second shaft tip section 28 may be structured, for example, as a projection 28A provided along a part of the circumference surface of the first shaft tip section 27 as shown in
Number | Date | Country | Kind |
---|---|---|---|
2007-125751 | May 2007 | JP | national |