The present invention relates generally to hinges and more particularly to vehicle door hinges.
Vehicle door hinges are typically made from two hinge parts pivotable with respect to one another about a hinge pin. One of the hinge parts is securely mounted to a door and the other to the vehicle body, so that the door can pivot about the hinge pin between an opened and closed position. The two hinge parts are typically made of stamped metal. The stamping process, although widely used in the production of vehicle hinge parts, is expensive compared with other production methods because it entails significant waste of material. When high quality materials are used for the parts, the cost of the wasted material can be significant. Hinges with cast hinge parts have also been used, though cast parts can also be expensive to produce.
In many vehicle hinges, both hinge parts are shaped so that the hinge pin passes perpendicularly through holes drilled in the stamped metal hinge parts. In other vehicle hinges, at least one of the hinge parts is shaped to include a sleeve for receiving the hinge pin longitudinally. For example, one known horizontal axis hinge for a lift gate includes a hinge part stamped from a strip of metal approximately 6 mm thick. A bent portion is formed by stamping an end of the strip of metal around to form a hook, so that the edge almost abuts against the flat section of the strip to form a sleeve for receiving the hinge pin. The edge of the strip of metal is welded to the flat section of the strip at the end of the hook. The inside of the hook portion is machined out to form an inside diameter for fitting the hinge pin, which passes longitudinally through the hook.
A vehicle door hinge faces certain forces during use. For example, for vertical axis hinges for vehicle side doors, the weight of the door and any other vertical forces placed on the door, particularly in the opened position, create forces on the hinge that may cause deflection of the hinge, such as a vertical deflection, or sag. In addition, when the door is in its fully opened position and an additional force in the opening direction is placed on the door, a torque about the axis of the hinge is created. This situation, referred to as an over-open condition, may cause an angular deflection in the hinge.
An object of the present invention is to provide a vehicle door hinge that can be produced at low cost, while still providing acceptable strength characteristics.
The present invention provides a motor vehicle door hinge with a hinge axis including a first hinge part and a second hinge part. The first hinge part has a first arm and a second arm axially spaced from the first arm with the hinge axis passing through the first arm and the second arm. The second hinge part includes a continuous strip of material having a first end, a second end and a bent section between the first end and second end. The bent section is disposed between the first arm and second arm about the hinge axis. The first end of the strip of material has a first section and the second end of the strip of material has a second section. The first section and second section are parallel and fixed relative to each other.
The motor vehicle door hinge of the present invention may also include a hinge pin passing through the hinge axis and connecting the first and second arms to the bent section. A hinge pin insertion component may also be included in the bent section for providing a fixed inner diameter for the hinge pin. The first and second ends of the continuous strip may define a longitudinal opening, so as to provide additional strength and rigidity to the second hinge part. The longitudinal opening is preferably triangular.
An insert may also be provided between the first and second ends to provide additional strength to the hinge part. The first section, second section, and insert may be fixed together, such as by welding. The insert may also be flanged so as to provide further strength to the hinge part. The insert may be made of a different material than the strip of material, such as wherein the insert is made of a certain grade of steel and strip of material is made of a higher grade steel. The first and second sections may also be welded to one another with no insert in between. The bent section and an end of the insert preferably form a cylinder about the hinge axis.
An attachment device, such as a bolt may also be provided for connecting both or either of the first and second hinge parts to the door of the vehicle. The first end may include a first hole and the second end may include a second hole for receiving the attachment device, which passes through the first and second holes. The first hole may be in the first section of the first end and the second hole may be in the second section of the second end. A second attachment device may also be provided and a further hole in the first end for receiving the second attachment device may also be provided.
When the first and second end define a longitudinal opening, the further hole may be located in the first end and open into the longitudinal opening. The second end may include a second further hole for receiving the second attachment device.
The present invention also provides a motor vehicle door hinge with a hinge axis that includes a first hinge part as described above and a second hinge part that includes a first section defining an aperture about the hinge axis between a first end and a second end, and that includes another section defining a longitudinal opening with a longitudinal axis parallel to the hinge axis.
The longitudinal opening may triangular and the second hinge part may include a continuous strip of metal. The hinge may also include a hinge pin.
The present invention also provides a motor vehicle door hinge with a hinge axis that includes a first hinge part as previously described and a second hinge part including a continuous strip of material having a first end, a second end, and a bent section between the first end and the second end. The bent section is disposed between the first arm and second arm about the hinge axis. The second hinge part also includes an insert between the first end and the second end.
In addition, the present invention provides a motor vehicle that includes a vehicle body, a vehicle door and a hinge as described above that connects the door to the body.
Several embodiments of the present invention are elaborated upon below with reference to the accompanying drawings, in which:
A motor vehicle door hinge 1 according to one embodiment of the present invention is shown in FIG. 1. The door hinge 1 includes a first hinge part 10 mounted to vehicle door 71 of vehicle 70. The door hinge 1 preferably is for a passenger side door of a vehicle, but could also be for other vehicle doors, for example as a lift gate.
Second hinge part 20 is mounted to a body portion 72 of vehicle 70 using bolts 40 and 41 or other suitable attachment devices. Hinge pin 3 connects first hinge part 10 to the second hinge part 20 so as to enable the first hinge part 10 to pivot about a hinge axis of the hinge pin 3 relative to second hinge part 20, thereby opening and closing vehicle door 71 relative to the vehicle body 72. The hinge axis may be vertical where the door 71 is a passenger side door, and horizontal where the door 71 is a lift gate. Vertical, as defined herein, means substantially vertical and may include up to several degrees deviation from perfect vertical.
Adjacent to bent section 24, first end 22 of continuous strip 21 includes first section 25, which is disposed parallel to second section 26 of second end 23. The first and second sections 25, 26 are fixed relative to one another, for example by laser welding each section to insert 30. Further toward the bottom of second hinge part 20, first end 22 also includes a third section 27 and second end 23 includes a fourth section 28. Third and fourth sections 27 and 28 are likewise disposed parallel to one another and are fixed to one another. Between the parallel regions—created by first and second sections 25, 26 and third and fourth sections 27, 28—first end 22 and second end 23 diverge from one another to form a longitudinal opening 5. The longitudinal opening 5 between two regions of parallel fixed regions of the strip 21, provides excellent strength characteristics for the hinge part. Preferably, the shape of the opening, which is triangular in this embodiment, may be formed to include surface 38 positioned so as to provide a stop for first hinge part 10 when the door is in the fully opened position. This is shown in FIG. 1. The stop provided by surface 38 may work in conjunction with, or independently from an additional door stop, for example, as provided by a separate door check device.
Insert 30 is disposed between first and second ends 22, 23 of continuous strip 21. In this particular embodiment, insert 30 is disposed adjacent to first end 22 of strip 21 for the entire length of insert 30. The insert 30, which may be made of a metal, such as steel, imparts additional strength and rigidity to second hinge part 20. A first end 33 of insert 30 preferably terminates at the bent section 24 of the continuous strip so as to form a portion of the longitudinal pin aperture 6, which in this embodiment is cylindrical. The insert 30 is fixed relative to the continuous strip 21, preferably by laser welding. Preferably, the insert 30 is at least welded to both the first and second ends, 22, 23, of continuous strip 21 in the region of the first and second sections 25, 26 and in the region of the third and fourth sections 27 and 28. A second end 34 of the insert 30 may terminate so as to be approximately flush with the termination of the first and second ends 22, 23, of the continuous strip 21.
In one preferred embodiment, the second hinge part 20 is mounted to the vehicle body 72 and includes the continuous strip 21 and insert 30, which are each 3 mm thick. The continuous strip 21 is made from 950 grade HSLA steel and the insert 30 is made from 980 HSLA steel. The continuous strip 21 and the insert 31 may be for example 32 mm wide, and are preferably between 30 and 40 mm wide for a vehicle side door. The first hinge part 10 is mounted to a door of the vehicle 71 and is stamped from 5 mm 950 HSLA steel.
In an alternative embodiment, an insert 30a may be used in place of insert 30, which includes flanged portions 31 and 32, as shown in
The second hinge part 20 shown in
Depending on the manufacturing process, the tolerances of an inside diameter of longitudinal pin aperture 6 formed by bending of the continuous strip may be sufficiently tight for the pin 3 without any additional measures. However, to achieve better control of the inside diameter dimension, a hinge pin insertion component 80 or 80a may be provided to be inserted into the pin aperture 6.
According to
Typically, the hinge according to the present invention is used for a vehicle passenger side door, though it can also be used for other vehicle doors, such as a lift gate. For a passenger door, typically two hinges are used to provide adequate support for the door.
It will of course be understood that the present invention has been described above only by way of example and that modifications of details can be made within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1421794 | Mclaughlin | Jul 1922 | A |
3663987 | Hawkins | May 1972 | A |
4141107 | Sheiman et al. | Feb 1979 | A |
4672714 | Bos | Jun 1987 | A |
4949427 | Keller | Aug 1990 | A |
5038436 | Ihrke | Aug 1991 | A |
5598607 | Katagiri | Feb 1997 | A |
5611114 | Wood et al. | Mar 1997 | A |
5632066 | Huong | May 1997 | A |
5867870 | Kluting | Feb 1999 | A |
5906029 | Fox | May 1999 | A |
Number | Date | Country |
---|---|---|
2431592 | Mar 1980 | FR |
1399532 | Jul 1975 | GB |
2077348 | Dec 1981 | GB |
2082671 | Mar 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20040111833 A1 | Jun 2004 | US |