The technical field generally relates to door latches for vehicles, and more particularly relates to electrically-actuated door latches for vehicles.
Automobiles have long utilized door lock mechanisms to prevent unauthorized access to the vehicles. The earliest such mechanisms were purely mechanical in nature. To actuate these purely mechanical mechanisms, a user would manually utilize a lever, a post, and/or a tumbler lock to move the mechanism between a locked state and an unlocked state through a series of linkages. More recently, electric solenoids and/or motors have been added to such mechanical mechanism to allow actuation of the mechanism between states via a switch and/or “key-fob”.
Even more recently, automobiles have been implemented without the manual linkages between levers, posts, and/or tumbler locks and the door lock mechanism. Instead, actuation of the mechanism between locked and unlocked states is purely electrically controlled. However, some issues with this approach have been identified. For instance, it is difficult to ascertain the locked or unlocked state of the door without the lever or post, as these mechanical devices traditionally provided a visual indication of the locked or unlocked state. Accordingly, it is desirable to provide an electric door latch system that provides indication of the locked or unlocked state of the doors.
Legacy mechanical door lock mechanisms also suffer security and convenience issues. For example, if a door is unlocked, an intruder could open the door while the automobile is occupied and stopped. Conversely, if the doors are locked, then a quick exit by a passenger is difficult. Therefore, it is also desirable to provide additional security to the driver and passengers of the vehicle while maintaining ease of egress from the vehicle.
Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
A door latch system for a vehicle is provided. The vehicle includes a body defining an inside and an outside. The vehicle also includes a door having an exterior side associated with the outside of the vehicle and an interior side associated with the outside of the vehicle. In one embodiment, the system includes an electric door latch mechanism movable between a latched position and an unlatched position. An exterior open switch is disposable on the exterior side of the door for receiving an unlatch request from the outside of the vehicle. An interior open switch is disposable on the interior side of the door for receiving an unlatch request from the inside of the vehicle. The system also includes a controller in communication with the exterior open switch, the interior open switch, and the electric door latch mechanism. The controller is configured to assign either a locked state or an unlocked state for each of the open switches. The controller is also configured to control operation of the electric door latch mechanism such that the electric door latch mechanism is commanded to move from the closed position to the open position in response to the unlatch request from the open switches when the respective open switch is in the unlocked state.
A method is provided for operating an electric door latch mechanism of a vehicle. The vehicle includes a body defining an inside and an outside. The vehicle also includes a door having an exterior side associated with the outside of the vehicle and an interior side associated with the outside of the vehicle. The mechanism is movable between a latched position and an unlatched position. An exterior open switch is disposed on the exterior side of the door and an interior open switch disposed on the interior side of the door. A controller is in communication with the switches and the mechanism. In one embodiment, the method includes assigning either a locked state or an unlocked state for each of the open switches. The method also includes receiving an unlatch request signal at the controller from at least one of the switches. The method further includes sending a control signal from the controller to the door control mechanism to move the mechanism from the closed position to the open position in response to receiving the unlatch request from one of the open switches and the respective open switch is in the unlocked state.
The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Referring to the figures, wherein like numerals indicate like parts throughout the several views, a door latch system 200 for a vehicle 100 is shown and described herein.
The vehicle 100 of the illustrated embodiments is an automobile (not separately numbered) having an engine (not shown) coupled to a transmission (not shown) to drive a plurality of wheels (not shown), as is appreciated by those skilled in the art. The transmission of the illustrated embodiments is an automatic transmission which includes a “park” mode and at least one “drive” mode, as is customary. However, the door latch system 200 described herein may be implemented in automobiles having other types of transmissions or other types of vehicles 100 in general.
Referring to
Each door 108 includes an exterior side 110 and an interior side 112. The exterior side 110 generally faces the outside 106 of the vehicle 100 and the interior side 112 generally faces the inside 104 of the vehicle 100. Said another way, the exterior side 110 is associated with the outside 106 of the vehicle 100 and the interior side 112 is associated with the inside 104 of the vehicle 100. Each door 108 further includes an electric door latch mechanism 114. The electric door latch mechanism 114 is movable between a latched position and an unlatched position. For example, the door latch mechanism 114 may include a fork bolt lever (not numbered) engagable with a striker (not shown). The fork bolt lever is securely latched with the fork bolt lever when the door latch mechanism 114 is in the latched position and is released from the fork bolt lever when the door latch mechanism 114 is in the unlatched position. Referring now to
The door latch system 200 includes an exterior open switch 204 and an interior open switch 206. In the illustrated embodiment, as shown in
Each open switch 204, 206 may be operatively connected to a hinged handle (not numbered) such that when a user actuates the handle, the unlatch request is received by the respective open switch 204, 206. Alternatively, the each open switch 204, 206 may be a push button (not numbered). Those skilled in the art will realize other types and styles of switches to implement the interior and exterior open switches 204, 206.
Referring again to
Referring back to
The controller 208 is also in communication with electric door latch mechanism 114. The controller 208 is configured to control movement of the electric door latch mechanism 114 between the latched and unlatched positions. That is, the controller 208 may send a control signal carrying an unlatch command or a latch command to the electric door latch mechanism 114. In the illustrated embodiment, the controller 208 is in communication with the electric motor 202 to control operation of the electric motor 202. The electric door latch mechanism 114 may include a motor starter (not shown) or other drive circuit to control operation of the electric motor 202. Of course, other configurations of the electric door latch mechanism 114 will be realized by those skilled in the art.
The controller 208 is configured to assign either a locked state or an unlocked state for each of the open switches 204, 206. The controller 208 will send the unlatch command to the electric door latch mechanism 114 in response to receiving unlatch request signal from the open switch 204, 206 in the unlocked state. Moreover, the electric door latch mechanism 114 will be commanded to open in response to the unlatch request from the open switches 204, 206 only when the respective open switch 204, 206 is in the unlocked state. Said another way, upon receipt of a control signal carrying an unlatch command from the controller 208, the door latch mechanism 114 will move from the latched position to the unlatched position.
For example, if exterior open switch 204 is assigned to the locked state and the interior open switch 206 is assigned to the unlocked state, then the controller 208 will send the unlatch command to the electric door latch mechanism 114 in response to receiving the unlatch request signal from the interior open switch 206. However, the controller 208 will not send the unlatch command in response to receiving the unlatch request signal from the exterior open switch 204. Accordingly, the door 108 may be unlatched and opened only if the user depresses the interior open switch 206. The door 108 will not be unlatched, and thus will remain closed, if the user depresses the exterior open switch 204.
In another example, if both the exterior and interior open switches 204, 206 are assigned to the unlocked state, then the door 108 may be opened using either of the open switches 204, 206. In yet another example, if both the exterior and interior open switches 204, 206 are assigned to the locked state, then the door 108 may not be unlatched using either of the open switches 204, 206.
The controller 208 of the illustrated embodiment is configured to include an unlocked mode for the entire vehicle 100. In the unlocked mode, each of the open switches 204, 206 for each door 108 is assigned to the unlocked state. The controller 208 of the illustrated embodiment is configured to include a locked mode for the entire vehicle 100. In the locked mode, each of the open switches 204, 206 for each door 108 is assigned to the locked state. A user may select the unlocked mode or the locked mode using a switch (not shown) or a key-fob (not shown) in communication with the controller 208.
The controller 208 of the illustrated embodiment is further configured to include a security mode. In the security mode, the exterior open switch 204 of each door 108 is assigned to the locked state. This prevents unauthorized entry to the vehicle 100 by persons outside of the vehicle 100. In the security mode, the interior open switch 206 of each door 108 may be assigned to the unlocked state. As such, an occupant of the vehicle 100 may still open the door 108 to exit the vehicle, while persons outside of the vehicle 100 are prevented from opening the door 108.
In certain embodiments, the security mode is canceled in response to at least one of the doors 108 being opened by using an interior open switch 206. As such, each of the interior and exterior open switches 204, 206 would be assigned to the unlocked state.
In the illustrated embodiment, the locked or unlocked state of the interior open switch 206 is dependent on the speed of the vehicle 100. Referring again to
In other embodiments, the locked or unlocked state of the interior open switch switch 206 may be dependent on factors other than the speed of the vehicle. For instance, the locked or unlocked state may be dependent on the state of the transmission. For example, the interior open switch 206 may be assigned to the unlocked state when the transmission is put in “park”. As such, when the vehicle 100 is in park, the door 108 is openable using the interior open switch 206. Of course, other factors may be utilized to change the locked or unlocked state of the interior open switch 206 in the security mode.
The controller 208 of the illustrated embodiment is also configured to include a child safety mode. In the child safety mode, the interior open switch 206 of at least one door 108 is assigned to the locked state. For example, the vehicle 100 of the illustrated embodiment includes two front doors 108 and two rear doors 108. The interior open switch 206 of the rear doors 108 is assigned to the locked state. As such, the rear doors 108 may not be opened using the respective interior open switch 206. Instead, the rear doors 108 must be opened using the exterior open switches 204. Thus, the child safety mode may be utilized to prevent a child from exiting or attempting to exit the vehicle 100 without adult supervision.
The modes described above may be combined. For instance, the controller 208 may be configured to execute the security mode and the child safety mode. In this combined mode, the open switches 204, 206 for the two front doors 108 are in the locked state when the vehicle 100 is in motion. When the vehicle is not in motion, i.e., stopped, then the interior open switches 206 are in the unlocked state while the exterior open switches 204 remain in the locked state. However, the open switches 204, 206 for the two rear doors 108 are in the locked state regardless of the velocity of the vehicle 100. The open switches 204, 206 for the two rear doors 108 will only be changed to the unlocked state upon change to the unlocked mode (described above).
The modes described above may be set manually by an operator of the vehicle 100. However, the mode may be automatically set by the controller 208 under certain conditions. For example, during a crash of the vehicle 100, the modes may be automatically assigned and/or automatically changed. The crash may be evidenced, e.g., by the deployment of an airbag (not shown) and/or by activation of various crash sensors (not shown). In one embodiment, the security mode would be set for 15 seconds in response to airbag deployment. This 15 second time delay is utilized as the outside handle is subject to inertia and mechanical deformation, which could cause the door 108 to unlatch. As such, the 15 second time delay helps keep the doors 108 closed in the event of a crash, especially a rollover crash or if multiple impacts are involved. However, while in the security mode, occupants can still exit the vehicle immediately. At the expiration of the 15 seconds, i.e., 15 seconds after the crash, the controller 208 switches to the unlocked mode, such that rescue can be attempted from the outside.
Referring again to
Of course, other techniques may be utilized to show the state of each open switch 204, 206. For example, a light (not shown) may be illuminated to indicate a locked state of one of the open switches 204, 206 while the light may be not illuminated to indicate the unlocked state.
In the illustrated embodiment, the first lamp 214 indicates the locked state and/or the unlocked state of the exterior open switch 204. The second lamp 216 indicates the locked state and/or the unlocked state of the interior open switch 206. As shown in
The system 200 may also include a display (not shown). The display may be utilized to indicate the locked state and/or the unlocked state of each of the switches 204, 206 of each door 108 of the vehicle 100.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the disclosure as set forth in the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5739674 | Kawahara et al. | Apr 1998 | A |
20030216817 | Pudney | Nov 2003 | A1 |
20050197747 | Rappaport et al. | Sep 2005 | A1 |
20080000711 | Spurr | Jan 2008 | A1 |
20080100092 | Gao et al. | May 2008 | A1 |
20100007463 | Dingman et al. | Jan 2010 | A1 |
20100052337 | Arabia, Jr. et al. | Mar 2010 | A1 |
20100230193 | Grider et al. | Sep 2010 | A1 |
20110061927 | Bidinost et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140195109 A1 | Jul 2014 | US |