The present invention relates to a vehicle door locking device and a vehicle door locking set.
For example, Patent Document 1 discloses a vehicle door latch device including a housing, a fork (a latch), a pole (a ratchet), an open lever, and a control lever provided with an inertia lever (see FIGS. 2, 3, 5, and 6 of Patent Document 1). Here, the inertia lever is disposed above the open lever. An inertia force larger than a set value acts on the inertia lever so that the inertia lever swings from a first position to a second position and comes into contact with the housing, whereby one or more levers from among the open lever and the control lever is restricted.
In addition, Patent Document 2 discloses a vehicle door latch device including a latch capable of engaging with a striker, a ratchet capable of mating with the latch, an open lever for causing an operation to release the ratchet, and an impact release preventive mechanism that is disposed below the ratchet and that inhibits rotation of the ratchet in order to prevent a door from opening when the open lever is rotated at an excessive speed due to a collision accident, etc. Here, the impact release preventive mechanism is formed of a movable element having an influence on operation of the ratchet.
Patent Document 1: JP5948786B
Patent Document 2: JP2004-204490A
However, for each of the vehicle door latch devices disclosed in Patent Documents 1 and 2, there is a possibility that a failure may occur during the motion of an inertia lever due to dust or water that enters through a striker intrusion and that may remain and adhere to the inertia lever.
In view of the above problem, an object of the present invention is to provide a vehicle door locking device in which a failure may occur during motion of an inertia lever is can be reduced.
A first vehicle door locking device of the present invention includes: a case fixed to a door that opens and closes an opening on one end side in a width direction of a vehicle body; a latch that is swingable relative to the case, that locks a striker fixed to the vehicle body when having a latching orientation in conjunction with opening and closing of the door, and that releases the locking when being shifted from the latching orientation to an unlatching orientation; a ratchet that is swingable relative to the case, that, when having a first orientation, comes into contact with the latch and holds the latch in the latching orientation, and that, when being shifted from the first orientation to a second orientation, leaves the latch and shifts the latch from the latching orientation to the unlatching orientation; an outer handle lever that is swingably supported by the case, that is connected to an outer handle, and that is rotated in conjunction with an opening operation of the outer handle; and an inertia part that is swingably supported at a lower portion of the outer handle lever in the case, that maintains the orientation thereof in contact with the case while being urged by an urging member, and that, when an external force of a predetermined magnitude or larger acts thereon from the one end side toward the other end side, the orientation of the case is charged by an inertia force caused by the external force, and thereby restricts rotation of the outer handle lever.
In a second vehicle door locking device of the present invention according to the above vehicle door locking device, an other vehicle door locking device is disposed in an opening on the other end side in the width direction of the vehicle body, the other vehicle door locking device including: an other case fixed to an other door that opens and closes the opening on the other end side; an other latch that is swingable relative to the other case, that locks a striker fixed to the vehicle body when having a latching orientation in conjunction with opening and closing of the other door, and that releases the locking when being shifted from the latching orientation to an unlatching orientation; an other ratchet that is swingable relative to the other case, that, when having a first orientation, comes into contact with the other latch and holds the other latch in the latching orientation, and that, when being shifted from the first orientation to a second orientation, leaves the other latch and shifts the other latch from the latching orientation to the unlatching orientation; an other outer handle lever that is swingably supported by the other case, that is connected to an other outer handle, and that is rotated in conjunction with an opening operation of the other outer handle; and an other inertia part that is swingably supported at a lower portion of the other outer handle lever in the other case, that maintains the orientation thereof in contact with the other case while being urged by an other urging member, and that, when an external force of a predetermined magnitude or larger acts thereon from the other end side toward the one end side, the orientation of the case is changed by an inertia force caused by the external force, and thereby restricts rotation of the other outer handle lever. The inertia part and the other inertia part include respective swing shafts, respective inertia levers each swingable about a position other than the center of gravity, and respective weights attached to the inertia levers, such that the swing shafts, the inertia levers, and the weights respectively have the same shapes. The inertia part and the other inertia part are different from each other as regards attachment positions of the weights on the corresponding inertia levers.
In a third vehicle door locking device of the present invention according to the above vehicle door locking device, the inertia part has a symmetric relationship with the other inertia part, when viewed from a longitudinal direction of the vehicle body.
In a fourth vehicle door locking device of the present invention according to the above vehicle door locking device, the case, the latch, the ratchet, and the outer handle lever have symmetric relationships with the other case, the other latch, the other ratchet, and the other outer handle lever, respectively, when viewed from a longitudinal direction of the vehicle body.
A vehicle door locking set of the present invention includes: any one of the first to fourth vehicle door locking device; and other vehicle door locking device disposed in an opening on the other end side in the width direction of the vehicle body, the other vehicle door locking device including an other case fixed to an other door that opens and closes the opening on the other end side, an other latch that is swingable relative to the other case, that locks a striker fixed to the vehicle body when having a latching orientation in conjunction with opening and closing of the other door, and that releases the locking when being shifted from the latching orientation to an unlatching orientation, an other ratchet that is swingable relative to the other case, that, when having a first orientation, comes into contact with the other latch and holds the other latch in the latching orientation, and that, when being shifted from the first orientation to a second orientation, leaves the other latch and shifts the other latch from the latching orientation to the unlatching orientation, an other outer handle lever that is swingably supported by the other case, that is connected to an other outer handle, and that is rotated in conjunction with an opening operation of the other outer handle, and an other inertia part that is swingably supported at a lower portion of the other outer handle lever in the other case, that maintains the orientation thereof in contact with the other case while being urged by an other urging member, and that, when an external force of a predetermined magnitude or larger acts thereon from the other end side toward the one end side, the orientation of the case is changed by an inertia force caused by the external force, and thereby restricts rotation of the other outer handle lever.
In the vehicle door locking device of the present embodiment, the possibility that failure may occur during motion of the inertia lever can be reduced. Further, in the vehicle door locking set of the present embodiment, the possibility that failure may occur during motion of the respective inertia levers of the vehicle door locking device and the other vehicle door locking device can be reduced.
<Outline>
Hereinafter, vehicle door locking set 10 (see
Vehicle door locking set 10 (hereinafter, referred to as door locking set 10) of the present embodiment has a function of locking, relative to vehicle body CB (see
Further, as illustrated in
Moreover, in the present embodiment, left side device 10A and right side device 10B are configured to be substantially symmetric to each other. In the explanation below, the configuration of left side device 10A is first described. Next, the difference in configuration between right side device 10B and left side device 10A is described.
Note that, in the present embodiment, the width direction of vehicle body CB (or the vehicle) is denoted by reference character W. One end side in the width direction (the left side in the width direction) is denoted by reference character +W, and the other end side (the right side) is denoted by reference character −W. The height direction of vehicle body CB (or the vehicle) is denoted by reference character H. The upper side in the height direction is denoted by reference character +H, and the lower side in the height direction is denoted by reference character −H.
<Left Side Device>
As illustrated in
[Housing]
As illustrated in
As illustrated in
[Latch Mechanism]
As illustrated in
[Latch]
Latch 30A of the present embodiment has a function of locking striker ST when having a latching orientation and when releasing locking of striker ST to an unlatching orientation from the latching orientation, in conjunction with opening/closing of left door LD. Here, the term “locking” means positioning an object while being in contact with the object. Thus, the expression “releasing locking” meanskeeping an object that is to be shifted in a state in which the object is not positioned. Moreover, the term “latching orientation” means an orientation (see the orientation of latch 30A in left side device 10A in
As described above and as illustrated in
Moreover, a torsion coil spring (not illustrated) is disposed in the outer circumference of swing shaft 32A. One end portion of the torsion coil spring is fixed to body 25A3, and the other end portion is fixed to latch 30A. The orientation of latch 30A is determined while being held by ratchet 40A (described later) in a state of being always urged in a counterclockwise direction by the torsion coil spring when viewed from the front.
[Ratchet]
Ratchet 40A of the present embodiment has a function of, when having a first orientation, coming into contact with latch 30A and holding latch 30A, and of, when being shifted from the first orientation to a second orientation, leaving latch 30A and shifting the orientation of latch 30A from the latching orientation to the unlatching orientation. Here, the term “first orientation” means an orientation for holding latch 30A in the latching orientation (see the orientation of ratchet 40A of left side device 10A in
As illustrated in
As illustrated in
Ratchet 40A has formed therein a through hole 44A2 into which a part of lever ratchet 56A (see
[Ratchet Operating Mechanism]
Ratchet operating mechanism 50A of the present embodiment is connected to an outer handle (not illustrated). Ratchet operating mechanism 50A has a function for shifting the orientation of ratchet 40A from the first orientation to the second orientation as a result of rotation of the outer handle lever 52A (described later) by an opening operation of the outer handle.
As illustrated in
Outer handle lever 52A of the present embodiment has a function of directly receiving a force of the outer handle (not illustrated). As illustrated in
Here, the outer handle (not illustrated) is connected with an open member (not illustrated). The open member is connected with left end 52A2 of outer handle lever 52A, when viewed from the front. In conjunction with an opening operation of the outer handle, outer handle lever 52A swings at a predetermined angle about swing shaft 52A1. Here, the predetermined angle is set to 10° as one example. As illustrated in
Open link 54A of the present embodiment has a function of transmitting, to lever ratchet 56A at a time of unlocking, a force which outer handle lever 52A directly receives from the outer handle (not illustrated). A through hole (not illustrated) is formed in a lower portion of open link 54A, and right end 52A4 of outer handle lever 52A is engaged in the through hole. When open link 54A moves in the height direction from the normal position thereof (see
As illustrated in
As described above, when outer handle lever 52A is rotated counterclockwise from the normal position (see
[Inertia Part]
Inertia part 60A of the present embodiment has a function of, when an external force of a predetermined magnitude or larger acts on vehicle body CB from the left side to the right side in the width direction of vehicle body CB, restricting motion of outer handle lever 52A and motion of an open link 54A of ratchet operating mechanism 50A upon orientation change of inertia part 60A by an inertia force caused by the external force. Here, one example of an external force of the predetermined magnitude or larger is an external force of 15G or larger.
As described above, inertia part 60A of the present embodiment is swingably supported by swing shaft 62A which is fixed to a portion, in case 20A1, below swing shaft 52A1 that supports outer handle lever 52A. That is, inertia part 60A of the present embodiment is disposed below outer handle lever 52A (at a lower portion of ratchet operating mechanism 50A), as illustrated in
Inertia lever 64A is a member having, when viewed from the front, an isosceles trapezoid shape which is long in the height direction thereof and the four corners of which are largely round chamfered. Through hole 64A1 is formed at a side having the narrower width in the longitudinal direction thereof. Further, inertia lever 64A is fixed to case 20A1, that is, is swingably supported by swing shaft 62A which is integrated with case 20A1. Inertia lever 64A is supported, at a position other than the gravity center thereof, by swing shaft 62A so as to be swingable about swing shaft 62A. That is, inertia lever 64A is swingable with the axis set at the position other than the gravity center. Moreover, weight 66A is attached to a portion which is on a side, of inertia lever 64A, opposite, in the longitudinal direction, to the side where swing shaft 62A is fixed, and which is a portion on one side in the lateral direction. Specifically, a pair of through holes 64A2 are formed on both sides, in the lateral direction, of the opposite side portion of inertia lever 64A, and weight 66A is fixed in through hole 64A2 on the right side (the inner side in the width direction of vehicle body CB), when viewed from the front, of the pair of through holes 64A2.
Torsion coil spring 68A is disposed in the outer circumference of swing shaft 62A positioned between inertia lever 64A and case 20A1. One end portion of torsion coil spring 68A is fixed to case 20A1, and the other end portion is fixed to inertia lever 64A. As illustrated in
Accordingly, it can be said that inertia lever 64A (inertia part 60A) of the present embodiment is swingably supported at a lower portion of outer handle lever 52A in case 20A1. For example, when an external force of the predetermined magnitude or larger acts from the left side, relative to inertia lever 64A, to the right side in the width direction due to a certain cause, an inertia force caused by the external force causes inertia lever 64A of the present embodiment to swing at the predetermined angle counterclockwise when viewed form the front. Weight 66A of inertia part 60A is set such that, in a case where inertia lever 64A has the normal orientation (see
As described above, an external force of the predetermined magnitude or larger is an external force of 15G or larger as one example. However, an inertia force caused by the external force can be adjusted according to the type (the size, the weight, etc.) of weight 66A and the type (the spring constant, etc.) of torsion coil spring 68A. That is, in inertia part 60A of the present embodiment, an inertia force thereof can be adjusted by a change in the types of either or both of weight 66A and torsion coil spring 68A.
<Right Side Device>
Next, differences between right side device 10B and left side device 10A are described with reference to the drawings.
As illustrated in
As illustrated in
The reference characters of the components of right side device 10B and sections of the components are defined by replacing “A” of the corresponding components and sections of left side device 10A with “B” (see
Further, the relationship between inertia part 60A and inertia part 60B is as follows. That is, inertia lever 64B having weight 66B attached thereto is realized by inverting inertia lever 64A and attaching weight 66A from the rear surface side similarly into through hole 64A2 into which weight 66A is attached. Inertia lever 64B may be realized by attaching weight 66A to through hole 64A2 without inverting inertia lever 64A.
The configuration of door locking set 10 has been described above.
<Operations>
Next, operations of door locking set 10 (left side device 10A and right side device 10B) of the present embodiment are described with reference to the drawings. First, an operation when an occupant opens left door LD (right door RD) in normal use of the vehicle is described. Next, an operation when a side collision is generated from left door LD side or right door RD side relative to the vehicle.
[Operation when an Occupant Opens Left Door LD (Right Door RD) in Normal Use of the Vehicle]
First, just for the purpose of changing the orientation of open link 54A of left door LD, an occupant establishes an unlocked state and performs an opening operation (a door opening operation) on the outer handle (not illustrated). Accordingly, outer handle lever 52A rotates from the normal position (see
The operation to open right door RD is as follows. That is, in conjunction with the same operation of right side device 10B as that of left side device 10A, latch 30B in the latching orientation is shifted to the unlatching orientation. As a result, the occupant pulls right door RD to the outside (the right side) in the width direction of vehicle body CB, whereby the occupant successfully opens right door RD.
[Operation when a Side Collision is Generated from the Left Door Side Relative to the Vehicle]
Hereinafter, an operation of left side device 10A when a side collision is generated from left door LD side relative to the vehicle is described with reference to the drawings.
When an external force of the predetermined magnitude or larger acts on vehicle body CB from the left side to the right side relative to vehicle body CB as a result of a side collision generated from left door LD side, an inertia force caused by the external force acts, in a direction opposite to that of the external force, on inertia part 60A (see
[Operation when a Side Collision is Generated from the Right Door Side Relative to the Vehicle]
An operation of right side device 10B when a side collision is generated from the right door RD side relative to the vehicle, is the same as the aforementioned operation of left side device 10A. That is, when an external force of the predetermined magnitude or larger acts, from the right side to the left side in the width direction of the vehicle body CB, on vehicle body CB as a result of a side collision generated from the right door RD side, an inertia force caused by the external force acts, in a direction opposite to that of the external force, on inertia part 60B that is positioned in the normal orientation (see
The operations of door locking set 10 (left side device 10A and right side device 10B) of the present embodiment have been described above.
<Effects>
Hereinafter, effects of door locking set 10 and left side device 10A of the present embodiment are described with reference to the drawings.
[First Effect]
As described above, each of the vehicle door locking devices disclosed in Patent Documents 1 and 2, there is a possibility that failure may occur during the motion of the inertia lever due to dust or water that enters through a striker intrusion and may remain and adhere to the inertia lever.
On the other hand, inertia part 60A of left side device 10A of the present embodiment is disposed below outer handle lever 52A, as illustrated in
As described above, right side device 10B of the present embodiment has a symmetric relationship with left side device 10A (see
[Second Effect]
In addition, inertia part 60A included in left side device 10A of the present embodiment includes inertia lever 64A that swings about swing shaft 62A and weight 66A attached to inertia lever 64A, as illustrated in
Therefore, in left side device 10A of the present embodiment, an inertia force to act on inertia part 60A can be adjusted through changing the type of weight 66A attached to inertia lever 64A. For example, in left side device 10A, the swinging condition of inertia 60A of left side device 10A can be set through changing the type of weight, taking into consideration such as the configuration and the strength of the left door. Note that the second effect is also provided by right side device 10B.
[Third Effect]
In addition, inertia part 60A included in left side device 10A of the present embodiment includes inertia lever 64A that swings about swing shaft 62A and torsion coil spring 68A that urges inertia lever 64A, as illustrated in
Therefore, in left side device 10A of the present embodiment, in order to an inertia force to act on inertia part 60A, the inertia force can be adjusted through type change of torsion coil spring 68A attached to inertia lever 64A. For example, in left side device 10A, the swinging condition of inertia 60A of left side device 10A can be set by changing the type of torsion coil spring 68A, taking into consideration of other conditions such as the configuration and the strength of the left door. Note that the third effect is also provided by right side device 10B.
[Fourth Effect]
In addition, inertia part 60A included in left side device 10A of the present embodiment has the same configuration, i.e., the same shape as that of inertia part 60B included in right side device 10B (see
Specifically, inertia lever 64A having weight 66A attached thereto is realized by inverting inertia lever 64B and attaching weight 66B from the rear surface side similarly into through hole 64B2. More specifically, in the present embodiment, inertia part 60A has a symmetric relationship with inertia part 60B (see
Therefore, in left side device 10A or right side device 10B of the present embodiment, by use of inertia lever 64A and weight 66A (or inertia lever 64B and weight 66B) of one of left side device 10A and right side device 10B of the present embodiment, the other device can be configured to provide the aforementioned first effect with ease or at low cost. Accordingly, door locking set 10 of the present embodiment can be configured to provide the aforementioned first effect with ease or at low cost.
[Fifth Effect]
In addition, when viewed from the front, housing 20A, (latch 30A and ratchet 40A included in) latch mechanism 25A, ratchet operating mechanism 50A, and the torsion coil spring that urges these components, which are included in left side device 10A of the preset embodiment, have a symmetric relationship with housing 20B, (latch 30B and ratchet 40B included in) latch mechanism 25B, ratchet operating mechanism 50B, and the torsion coil spring that urges these components, which are included in right side device 10B, respectively (see
Therefore, by use of one of left side device 10A and right side device 10B of the present embodiment, the other device can be configured to provide the aforementioned first effect with ease or at low cost. Accordingly, door locking set 10 of the present embodiment can be configured to provide the aforementioned first effect with ease or at low cost.
The present invention has been described above by exemplifying the aforementioned embodiment. However, embodiments within the technical scope of the present invention are not limited to the aforementioned embodiment. For example, embodiments described below are also within the technical scope of the present invention.
For example, as one example of doors having door locking set 10 attached thereto, the doors for respectively opening and closing openings AP1, AP2 on the front side of vehicle body CB that configures the vehicle having two-row seats have been described in the present embodiment. However, the doors having door locking set 10 attached thereto do not need to open and close openings AP1, AP2 on the front side of vehicle body CB. For example, such doors may be for opening and closing openings on the rear side of vehicle body CB.
Further, in the description of the present embodiment, portions, of inertia part 60A and inertia part 60B, which come into contact with outer handle levers 52A, 52B, are not inertia levers 64A, 64B, but weights 66A, 66B, respectively. However, a member, of inertia part 60A, which comes into contact with outer handle lever 52A may be inertia lever 64A as long as rotation of outer handle lever 52A at the predetermined angle or larger can be restricted as a result of change in orientation of the member that was caused to swing due to an external force of the predetermined magnitude or larger applied from the left side to the right side in the width direction of vehicle body CB. Also, a member, of inertia part 60B, which comes into contact with outer handle lever 52B may be inertia lever 64B as long as rotation of outer handle lever 52B at the predetermined angle or larger can be restricted as a result of change in orientation the member that was swing due to an external force of the predetermined magnitude or larger applied from the right side to the left side in the width direction of vehicle body CB.
Moreover, in the description of the present embodiment, inertia levers 64A, 64B are urged by the respective torsion coil springs. However, members other than the torsion coil springs may be used as long as the members can urge the levers in respective predetermined circumferential directions (rotational directions). For example, tension springs may be used.
Furthermore, in the description of the present embodiment, housing 20A, (latch 30A and ratchet 40A included in) latch mechanism 25A, ratchet operating mechanism 50A, and the torsion coil spring that urges these components, which are included in left side device 10A of the present embodiment, have a symmetric relationship with housing 20B, (latch 30B and ratchet 40B included in) latch mechanism 25B, ratchet operating mechanism 50B, and the torsion coil spring that urges these components, which are included in right side device 10B, respectively (see
Moreover, in the description of the present embodiment, inertia part 60A included in left side device 10A of the present embodiment has the same configuration, i.e., the same shape as that of inertia part 60B included in right side device 10B (see
Furthermore, in the description of the present embodiment, one end side in the width direction of vehicle body CB (or the vehicle) is defined as the left side whereas the other end side is defined as the right side. Further, in the description, left side device 10A is one example of a vehicle door locking device and right side device 10B is one example of the other vehicle door locking device under this condition. However, a condition contrary to the aforementioned condition, i.e., a condition in which the one end side in the width direction of vehicle body CB (or the vehicle) is defined as the right side whereas the other side is defined as the left side may be set. Left side device 10A is one example of the other vehicle door locking device and right side device 10B is one example of a vehicle door locking device under this condition.
Moreover, in the description of the present embodiment, left side device 10A and right side device 10B are configured to have a substantially symmetric (mirror-image) relationship (see
Here, in a modification of the present embodiment below, when a side collision is generated from the left door LD side relative to the vehicle, left side device 10A can prevent left door LD from opening and right side device 10B can prevent right door RD from opening. That is, while the portions of right side device 10B except for inertia part 60B are symmetric with those of left side device 10A, inertia lever 64A (hereinafter, referred to as inertia lever A) having weight 66A attached thereto in left side device 10A is supported by swing shaft 62B of right side device 10B in the same direction as that in left side device 10A. Further, inertia lever 64A attached to right side device 10B is urged by torsion coil spring 68A in the same direction as that in left side device 10A. In this case, when outer handle lever 52B is shifted from the orientation in
With the aforementioned configuration in the present modification, when a side collision is generated from the left door LD side of the vehicle, inertia part 60A of left side device 10A is changed to the orientation in
Accordingly, in the present modification, when a side collision is generated from the left door LD side relative to the vehicle, left side device 10A can prevent left door LD from opening and right side device 10B can prevent right door RD from opening.
Moreover, in a modification of the present embodiment below, when a side collision is generated from the right door RD side relative to the vehicle, left side device 10A can prevent left door LD from opening and right side device 10B can prevent right door RD from opening. That is, while the portions of left side device 10A except for inertia part 60A are symmetric with those of right side device 10B, inertia lever 64B (hereinafter, referred to as inertia lever B) having weight 66B attached thereto in right side device 10B is supported by swing shaft 62A of left side device 10A in the same direction as that in right side device 10B. Further, inertia lever 64B attached to left side device 10A is urged by torsion coil spring 68B in the same direction as that in right side device 10B. In this case, when outer handle lever 52A is shifted from the orientation in
With the aforementioned configuration, in the present modification, when a side collision is generated from the right door RD side relative to the vehicle, inertia part 60B of right side device 10B is shifted to the orientation in
Accordingly, in the present modification, when a side collision is generated from the right door RD side relative to the vehicle, left side device 10A can prevent left door LD from opening and right side device 10B can prevent right door RD from opening.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/021269 | 6/8/2017 | WO | 00 |