Claims
- 1. A power-operated vehicle door locking assembly for a vehicle door movable between open and closed positions with respect to a vehicle body opening, the vehicle door having inner and outer manually movable actuating members, said power-operated vehicle door locking assembly comprising:a housing assembly constructed and arranged to be mounted in the vehicle door, a door latching assembly carried by said housing assembly constructed and arranged to be moved (1) into a door latching position in response to the engagement of a striker in the vehicle body opening therewith occasioned by a movement of the vehicle door into the closed position thereof so as to latch the door in a closed position within the vehicle body opening and (2) from the door latching position thereof into a door unlatching position to allow the door to be moved into the open position thereof, an outer door latch releasing mechanism constructed and arranged with respect to said housing assembly to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the outer actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said outer door latch releasing mechanism being constructed and, arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said outer door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, an inner door latch releasing mechanism constructed and arranged with respect to said housing assembly to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the inner actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said inner door latch releasing mechanism being constructed and arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said inner door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, separate inner and outer door locking mechanisms connected with said housing assembly, said outer door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and outer door locking positions, said outer door locking mechanism being constructed and arranged with respect to said outer door latch releasing mechanism to disable said outer door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said outer door locking mechanism is in the outer door locking position thereof, said inner door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and inner door locking positions, said inner door locking mechanism being constructed and arranged with respect to said inner door latch releasing mechanism to disable said inner door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said inner door locking mechanism is in the door locking position thereof, and an electrically operable system constructed and arranged to convert a source of electricity on the vehicle into mechanical motion in response to manual electrical energizing actuations, said electrically operable system being constructed and arranged with respect to said inner and outer door locking mechanisms to selectively move (1) said inner door locking mechanism between the inoperative and inner door locking position thereof in response to inner manual electrical energizing actuations and (2) said outer door locking mechanism between the inoperative and outer door locking positions thereof in response to outer manual electrical energizing actuations, the arrangement being such that an outer manual electrical energizing actuation without a corresponding inner manual electrical energizing actuation causes said door latching assembly when in the door latching position thereof to be incapable of being moved into the door unlatching position thereof by said outer door latch releasing mechanism while at the same time said door latching assembly is capable of being moved into the door unlatching position thereof by said inner door latch releasing mechanism, said power-operated vehicle door locking assembly further including a key actuated door locking and unlocking assembly constructed and arranged with respect to said housing assembly to be moved between a locked mode and an unlocked mode in response to the manual movement of a key therein, said key actuated door locking and unlocking assembly being constructed and arranged with respect to said electrically operable system to provide outer electrical energizing actuations for said electrically operable system when moved away from the locked and unlocked modes thereof by manual movements of a key therein, wherein said key actuated door locking and unlocking assembly is constructed and arranged to be manually moved when in said locked mode from a key entering and exiting position in one turning direction into an unlocked position in said unlocked mode and when in said unlocked mode from the key entering and exiting position in an opposite turning direction into a locked position in said locked mode, said outer and inner manual electrical energizing actuations including electric signals generated in response to the manual movement of said key actuated door locking and unlocking assembly out of the key entering and exiting position in either of said turning directions, wherein said key actuated door locking and unlocking assembly is constructed and arranged with respect to said outer and inner door locking mechanisms to effect a mechanical movement thereof in the event of a failure of the electricity source from the locked position thereof to the unlocked position thereof in response to the turning movement of said key actuated door locking and unlocking assembly when in said locked mode in said one direction from the key entering and exiting position thereof into the unlocked position thereof, and wherein said door latching assembly includes a holding and releasing lever movable between holding and releasing positions, said outer door latch releasing mechanism including an outer releasing arm movable from an inoperative position into a releasing position to move said holding and releasing lever from the holding position thereof into the releasing, position thereof, said inner door latch releasing mechanism including an inner releasing arm movable from an inoperative position into a releasing position to move said holding and releasing lever from the holding position thereof into the releasing position thereof.
- 2. A power-operated vehicle door locking assembly as defined in claim 1, wherein said outer door locking mechanism includes an outer cam movable between unlocked and locked positions, said outer cam being constructed and arranged with respect to said outer releasing arm to (1) allow the outer releasing arm to be moved from the inoperative position thereof into the releasing position thereof when said outer cam is in the unlocked position thereof and (2) to move the outer releasing arm from the inoperative position thereof into a disabled position from which said outer releasing arm cannot move into the releasing position thereof, said inner door locking mechanism including an inner cam movable between unlocked and locked positions, said inner cam being constructed and arranged with respect to said inner releasing arm to (1) allow the inner releasing arm to be moved from the inoperative position thereof into the releasing position thereof when said inner cam is in the unlocked position thereof and (2) to move the inner releasing arm from the inoperative position thereof into a disabled position from which said inner releasing arm cannot move into the releasing position thereof.
- 3. A power-operated vehicle door locking assembly for a vehicle door movable between open and closed positions with respect to a vehicle body opening, the vehicle door having inner and outer manually movable actuating members, said power-operated vehicle door locking assembly comprising:a housing assembly constructed and arranged to be mounted in the vehicle door, a door latching assembly carried by said housing assembly constructed and arranged to be moved (1) into a door latching position in response to the engagement of a striker in the vehicle body opening therewith occasioned by a movement of the vehicle door into the closed position thereof so as to latch the door in a closed position within the vehicle body opening and (2) from the door latching position thereof into a door unlatching position to allow the door to be moved into the open position thereof, an outer door latch releasing mechanism constructed and arranged with respect to said housing assembly to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the outer actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said outer door latch releasing mechanism being constructed and, arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said outer door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, an inner door latch releasing mechanism, constructed and arranged with respect to said housing assembly to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the inner actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said inner door latch releasing mechanism being constructed and arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said inner door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, and separate inner and outer door locking mechanisms connected with said housing assembly, said outer door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and outer door locking positions, said outer door locking mechanism being constructed and arranged with respect to said outer door latch releasing mechanism to disable said outer door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said outer door locking mechanism is in the outer door locking position thereof, said inner door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and inner door locking positions, said inner door locking mechanism being constructed and arranged with respect to said inner door latch releasing mechanism to disable said inner door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said inner door locking mechanism is in the door locking position thereof, an electrically operable system constructed and arranged to convert a source of electricity on the vehicle into mechanical motion in response to manual electrical energizing actuations, said electrically operable system being constructed and arranged with respect to said inner and outer door locking mechanisms to selectively move (1) said inner door locking mechanism between the inoperative and inner door locking position thereof in response to inner manual electrical energizing actuations and (2) said outer door locking mechanism between the inoperative and outer door locking positions thereof in response to outer manual electrical energizing actuations, the arrangement being such that an outer manual electrical energizing actuation without a corresponding inner manual electrical energizing actuation causes said door latching assembly when in the door latching position thereof to be incapable of being moved into the door unlatching position thereof by said outer door latch releasing mechanism while at the same time said door latching assembly is capable of being moved into the door unlatching position thereof by said inner door latch releasing mechanism, wherein said door latching assembly includes a holding and releasing lever movable between holding and releasing positions, said outer door latch releasing mechanism including an outer releasing arm movable from an inoperative position into a releasing position to move said holding and releasing lever from the holding position thereof into the releasing position thereof, said inner door latch releasing mechanism including an inner releasing arm movable from an inoperative position into a releasing position to move said holding, and releasing lever from the holding position thereof into the releasing position thereof.
- 4. A power-operated vehicle door locking assembly as defined in claim 3, wherein said outer door locking mechanism includes an outer cam movable between unlocked and locked positions, said outer cam being constructed and arranged with respect to said outer releasing arm to (1) allow the outer releasing arm to be moved from the inoperative position thereof into the releasing position thereof when said outer cam is in the unlocked position thereof and (2) to move the outer releasing arm from the inoperative position thereof into a disabled position from which said outer releasing arm cannot move into the releasing position thereof, said inner door locking mechanism including an inner cam movable between unlocked and locked positions, said inner cam being constructed and arranged with respect to said inner releasing arm to (1) allow the inner releasing arm to be moved from the inoperative position thereof into the releasing position thereof when said inner cam is in the unlocked position thereof and (2) to move the inner releasing arm from the inoperative position thereof into a disabled position from which said inner releasing arm cannot move into the releasing position thereof.
- 5. A power-operated vehicle door locking assembly as defined in claim 4, wherein said electrically operable system includes (1) an outer reversible electric motor constructed and arranged with respect to said outer door locking mechanism to move the same between the inoperative and outer door locking positions thereof and (2) an inner reversible electric motor constructed and arranged with respect to said inner door locking mechanism to move the same between the inoperative and door locking positions thereof.
- 6. A power-operated vehicle door locking assembly as defined in claim 5, wherein said outer door locking mechanism includes a first shaft on which said outer cam is fixed, an outer motion transmitting member constructed and arranged with respect to said housing assembly to be moved between unlocked and locked positions, an outer speed reduction gear train operatively connected between said outer electric motor and said outer motion transmitting member and an outer arm fixed to said first shaft and operatively connected to said outer motion transmitting member, said door locking mechanism includes a second shaft on which said inner cam is fixed, an inner motion transmitting member constructed and arranged with respect to said housing assembly to be moved between unlocked and locked positions, an inner speed reduction gear train operatively connected between said inner electric motor and said inner motion transmitting member, and an inner arm fixed to said second shaft and operatively connected to said inner motion transmitting member.
- 7. A power-operated vehicle door locking assembly as defined in claim 6, wherein said outer and inner speed reduction gear trains include outer and inner worm gears fixed to output shafts of said outer and inner electric motors respectively and outer and inner sector gears meshing with said outer and inner worm gears, the arrangement being such that motion imparted to said sector gears will move said worm gears and motors when said motors are without a source of electricity, said outer and inner motion transmitting members being pivoted to said outer and inner sector gears respectively.
- 8. A power-operated vehicle door locking assembly as defined in claim 6, wherein said outer and inner speed reduction gear trains include outer and inner relatively small outer and inner spur gears fixed to output shafts of said outer and inner electric motors, relatively large outer and inner spur gears meshing with said outer and inner small spur gears respectively, outer and inner pinions fixed to turn said outer and inner relatively large spur gears respectively and outer and inner rack teeth on said outer and inner motion transmitting members respectively, said outer and inner pinions meshing with said outer and inner rack teeth respectively.
- 9. A power-operated vehicle door locking assembly as defined in claim 4, wherein said electrically operable system includes a single motor constructed and arranged to move said outer and inner door locking mechanisms between the unlocked and locked positions thereof, said single motor being operatively connected through a speed reduction gear train to drive a shaft on which said inner and outer cams are fixed through four indexed positions including (1) an indexed position where said outer and inner cams are both in unlocked positions, (2) an indexed position where said outer cam is in a locked position and said inner cam is in an unlocked position, (3) an indexed position in which said outer and inner cams are both in locked positions, and (4) an indexed position in which said outer cam is in an unlocked position and said inner cam is in a locked position.
- 10. A power-operated vehicle door locking system for a vehicle having a plurality of vehicle doors movable between open and closed positions with respect to a corresponding plurality of vehicle body openings, said power-operated vehicle door locking system comprising:a plurality of power-operated vehicle door locking assemblies operatively associated with said plurality of vehicle doors, each one of said plurality of power-operated vehicle door locking assemblies being carried by one of said plurality of vehicle doors and comprising a housing assembly constructed and arranged to be mounted in the vehicle door, a door latching assembly carried by said housing assembly constructed and arranged to be moved (1) into a door latching position in response to the engagement of a striker in the vehicle body opening therewith occasioned by a movement of the vehicle door into the closed position thereof so as to latch the door in a closed position within the vehicle body opening and (2) from the door latching position thereof into a door unlatching position to allow the door to be moved into the open position thereof, an outer door latch releasing mechanism constructed and arranged with respect to said housing assembly to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the outer actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said outer door latch releasing mechanism being constructed and arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said outer door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, an inner door latch releasing mechanism with respect to said housing assembly constructed and arranged to be moved (1) from an inoperative position into a latch releasing position in response to the manual movement of the inner actuating member from an inoperative position into a door releasing position and (2) from the latch releasing position thereof into the inoperative position thereof, said inner door latch releasing mechanism being constructed and arranged with respect to said door latching assembly so that when the vehicle door is in its closed position movement of said inner door latch releasing mechanism from the inoperative position thereof to the latch releasing position thereof moves said door latching assembly from the door latching position thereof to the door unlatching position thereof to allow the door to be moved into its open position, separate inner and outer door locking mechanisms connected with said housing assembly, said outer door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and outer door locking positions, said outer door locking mechanism being constructed and arranged with respect to said outer door latch releasing mechanism to disable said outer door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said outer door locking mechanism is in the door locking position thereof, said inner door locking mechanism being constructed and arranged with respect to said housing assembly to be moved between inoperative and inner door locking positions, said inner door locking mechanism being constructed and arranged with respect to said inner door latch releasing mechanism to disable said inner door latch releasing mechanism from moving from the inoperative position thereof into the latch releasing position thereof when said inner door locking mechanism is in the door locking position thereof, and an electrically operable system constructed and arranged to convert a source of electricity on the vehicle into mechanical motion in response to manual electrical energizing actuations, said electrically operable system being constructed and arranged with respect to said inner and outer door locking mechanisms to selectively move (1) said inner door locking mechanism between the inoperative and inner door locking position thereof in response to inner manual electrical energizing actuations and (2) said outer door locking mechanism between the inoperative and outer door locking positions thereof in response to outer manual electrical energizing actuations, the arrangement being such that an outer manual electrical energizing actuation without a corresponding inner manual electrical energizing actuation causes said door latching assembly when in the door latching position thereof to be incapable of being moved into the door unlatching position thereof by said outer door latch releasing mechanism while at the same time said door latching assembly is capable of being moved into the door unlatching position thereof by said inner door latch releasing mechanism, each one of said power-operated vehicle door locking assemblies further including a key actuated door locking and unlocking assembly constructed and arranged with respect to said housing assembly to be moved between a locked mode and an unlocked mode in response to the manual movement of a key therein, said key actuated door locking and unlocking assembly being constructed and arranged with respect to said electrically operable system to provide outer electrical energizing actuations for said electrically operable system when moved away from the locked and unlocked modes thereof by manual movements of a key therein, wherein said key actuated door locking and unlocking assembly is constructed and arranged to be manually moved when in said locked mode from a key entering and exiting position in one turning direction into an unlocked position in said unlocked mode and when in said unlocked mode from the key entering and exiting position in an opposite turning direction into a locked position in said locked mode, said outer and inner manual electrical energizing actuations including electric signals generated in response to the manual movement of said key actuated door locking and unlocking assembly out of the key entering and exiting position in either of said turning directions, wherein said key actuated door locking and unlocking assembly is constructed and arranged with respect to said outer and inner door locking mechanisms to effect a mechanical movement thereof in the event of a failure of the electricity source from the locked position thereof to the unlocked position thereof in response to the turning movement of said key actuated door locking and unlocking assembly when in said locked mode in said one direction from the key entering and exiting position thereof into the unlocked position thereof, and wherein said door latching assembly includes a holding and releasing lever movable between holding and releasing positions, said outer door latch releasing mechanism including an outer releasing arm movable from an inoperative position into a releasing position to move said holding and releasing lever from the holding position thereof into the releasing position thereof, said inner door latch releasing mechanism including an inner releasing arm movable from an inoperative position into a releasing position to move said holding and releasing lever from the holding position thereof into the releasing position thereof.
- 11. A power-operated vehicle door locking system as defined in claim 10, wherein said electrically operable system includes a crash sensor and wherein each outer door locking mechanism is moved to the inoperative position by the electrically operable system whenever a signal from said crash sensor indicates that a crash has occurred.
- 12. A power-operated vehicle door locking system as defined in claim 11, wherein said electrically operable system further includes a charge storage device which provides sufficient power to said electrically operable system to effect movement of each outer door locking mechanism to the inoperative position even if a power supply to the power-operated vehicle door locking system is interrupted.
- 13. A power-operated vehicle door locking system as defined in claim 10, further comprising a manually actuatable child lock switch electrically connected to said electrically operable system, said electrically operable system being responsive to actuation of said child lock switch by moving at least one of the inner door locking mechanisms to the inner door locking position thereof whenever the child lock switch is actuated.
- 14. A power-operated vehicle door locking system as defined in claim 13, wherein said electrically operable system is further responsive to actuation of the child lock switch by moving at least one of the outer door locking mechanisms to the inoperative position whenever the child lock switch is actuated.
- 15. A power-operated vehicle door locking system as defined in claim 10, wherein said electrically operable system is adapted to receive a status signal indicative of whether a transmission is in a PARK status, said electrically operable system being responsive to said status signal by moving at least one of said outer door locking mechanisms into the door locking position thereof whenever said status signal indicates that said transmission is not in PARK.
- 16. A power-operated vehicle door locking system as defined in claim 10, wherein said electrically operable system is adapted to receive a status signal indicative of whether a transmission is in a drive status, said electrically operable system being responsive to said status signal by moving at least one of said outer door locking mechanisms into the door locking position thereof whenever said status signal indicates that said transmission is in a drive status.
- 17. A power-operated vehicle door locking system as defined in claim 10, further comprising a manually actuatable lock switch electrically connected to said electrically operable system, said electrically operable system being responsive to said manually actuatable lock switch such that a first kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism in at least one of said assemblies into one of four position combinations, said four position combinations including:a first position combination wherein said inner and outer door locking mechanisms are in said inoperative position; a second position combination wherein said inner door locking mechanism is in the door locking position and said outer door locking mechanism is in the inoperative position; a third position combination wherein said outer door locking mechanism is in the door locking position and said inner door locking mechanism is in the inoperative position; and a fourth position combination wherein said inner and outer door locking mechanisms are both in said door locking position.
- 18. A power-operated vehicle door locking system as defined in claim 17, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a second kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one assembly into another one of said four position combinations which is different from that which is achieved by said first kind of actuation.
- 19. A power-operated vehicle door locking system as defined in claim 18, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a third kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one of said assemblies into yet another one of said four position combinations which is different from that which is achieved by said first and second kinds of actuation.
- 20. A power-operated vehicle door locking system as defined in claim 19, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a fourth kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one of said assemblies into a last one of said four position combinations which is different from that which is achieved by said first, second and third kinds of actuation.
- 21. A power-operated vehicle locking system as defined in claim 20, wherein said manually actuatable switch is a single switch, wherein said first kind of actuation involves pressing said single switch in a first direction, said second kind of actuation involves successively pressing said single switch twice in said first direction, said third kind of actuation involves pressing said single switch in a second direction, and said fourth kind of actuation involves successively pressing said single switch twice in said second direction.
- 22. A power-operated vehicle locking system as defined in claim 10, wherein said power-operated vehicle locking system is adapted for a vehicle having two front doors and two rear doors, and wherein said plurality of power-operated vehicle door locking assemblies includes two front door power-operated vehicle door locking assemblies and two rear door power-operated vehicle door locking assemblies.
- 23. A power-operated vehicle door locking system as defined in claim 22, wherein said electrically operable system includes a crash sensor and wherein each outer door locking mechanism is moved to the inoperative position by the electrically operable system whenever a signal from said crash sensor indicates that a crash has occurred.
- 24. A power-operated vehicle door locking system as defined in claim 23, wherein said electrically operable system further includes a charge storage device which provides sufficient power to said electrically operable system to effect movement of each outer door locking mechanism to the inoperative position even if a power supply to the power-operated vehicle door locking system is interrupted.
- 25. A power-operated vehicle door locking system as defined in claim 22, further comprising a manually actuatable child lock switch electrically connected to said electrically operable system, said electrically operable system being responsive to actuation of said child lock switch by moving the inner door locking mechanisms of said two rear door power-operated vehicle door locking assemblies to the inner door locking position thereof whenever the child lock switch is actuated.
- 26. A power-operated vehicle door locking system as defined in claim 25, wherein said electrically operable system is further responsive to actuation of the child lock switch by moving the outer door locking mechanisms of said two rear door power-operated vehicle door locking assemblies to the inoperative position whenever the child lock switch is actuated.
- 27. A power-operated vehicle door locking system as defined in claim 22, wherein said electrically operable system is adapted to receive a status signal indicative of whether a transmission is in a PARK status, said electrically operable system being responsive to said status signal by moving at least one of said outer door locking mechanisms into the door locking position thereof whenever said status signal indicates that said transmission is not in PARK.
- 28. A power-operated vehicle door locking system as defined in claim 22, wherein said electrically operable system is adapted to receive a status signal indicative of whether a transmission is in a drive status, said electrically operable system being responsive to said status signal by moving at least one of said outer door locking mechanisms into the door locking position thereof whenever said status signal indicates that said transmission is in a drive status.
- 29. A power-operated vehicle door locking system as defined in claim 22, further comprising a manually actuatable lock switch electrically connected to said electrically operable system, said electrically operable system being responsive to said manually actuatable lock switch such that a first kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism in at least one of said assemblies into one of four position combinations, said four position combinations including:a first position combination wherein said inner and outer door locking mechanisms are in said inoperative position; a second position combination wherein said inner door locking mechanism is in the door locking position and said outer door locking mechanism is in the inoperative position; a third position combination wherein said outer door locking mechanism is in the door locking position and said inner door locking mechanism is in the inoperative position; and a fourth position combination wherein said inner and outer door locking mechanisms are both in said door locking position.
- 30. A power-operated vehicle door locking system as defined in claim 29, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a second kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one assembly into another one of said four position combinations which is different from that which is achieved by said first kind of actuation.
- 31. A power-operated vehicle door locking system as defined in claim 30, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a third kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one of said assemblies into yet another one of said four position combinations which is different from that which is achieved by said first and second kinds of actuation.
- 32. A power-operated vehicle door locking system as defined in claim 31, wherein said electrically operable system is further responsive to said manually actuatable lock switch such that a fourth kind of actuation of said manually actuatable lock switch causes said electrically operable system to move at least one of said outer door locking mechanism and said inner door locking mechanism of said at least one of said assemblies into a last one of said four position combinations which is different from that which is achieved by said first, second and third kinds of actuation.
- 33. A power-operated vehicle locking system as defined in claim 32, wherein said manually actuatable switch is a single switch, wherein said first kind of actuation involves pressing said single switch in a first direction, said second kind of actuation involves successively pressing said single switch twice in said first direction, said third kind of actuation involves pressing said single switch in a second direction, and said fourth kind of actuation involves successively pressing said single switch twice in said second direction.
- 34. A power-operated vehicle locking system as defined in claim 29, wherein said electrically operable system includes:a motor at each of said assemblies for moving outer and inner door locking mechanisms at respective ones of said assemblies into a selectively chosen one of said four position combinations; a processor capable of selectively activating, based on a programmed operation scheme, each motor to achieve any one of said four position combinations at each vehicle door locking assembly in a manner dependent upon input signals.
- 35. A power-operated vehicle locking system as defined in claim 34, wherein each vehicle door locking assembly includes a position sensor, said input signals including at least one position indicative signal from each position sensor.
- 36. A power-operated vehicle locking system as defined in claim 29, wherein said electrically operable system includes:a first motor at each of said assemblies for individually moving each outer door locking mechanism between said inoperative and said door locking positions; a second motor at each of said assemblies for individually moving each inner door locking mechanism between said inoperative and said door locking positions; a processor capable of selectively activating, based on a programmed operation scheme, each motor to achieve any one of said four position combinations at each vehicle door locking assembly in a manner dependent upon input signals.
- 37. A power-operated vehicle locking system as defined in claim 22, wherein said electrically operable system includes:a motor at each of said assemblies for moving outer and inner door locking mechanisms at respective ones of said assemblies to achieve any combination of said inoperable position, said inner door locking position, and said outer door locking position; a processor capable of selectively activating, based on a programmed operation scheme, each motor to achieve any combination of said inoperable position, said inner door locking position, and said outer door locking position at each vehicle door locking assembly in a manner dependent upon input signals.
- 38. A power-operated vehicle locking system as defined in claim 37, wherein each vehicle door locking assembly includes a position sensor, said input signals including at least one position indicative signal from each position sensor.
- 39. A power-operated vehicle locking system as defined in claim 22, wherein said electrically operable system includes:a first motor at each of said assemblies for individually moving each outer door locking mechanism between said inoperative and said door locking positions; a second motor at each of said assemblies for individually moving each inner door locking mechanism between said inoperative and said door locking positions; a processor capable of selectively activating, based on a programmed operation scheme, each motor to achieve any one of said four position combinations at each vehicle door locking assembly in a manner dependent upon input signals.
Parent Case Info
This is a Continuation of application Ser. No. 09/865,480, filed May 29, 2001 now U.S. Pat. No. 6,341,807, which is a continuation of Ser. No. 09/441,461, filed Nov. 17, 1999, now U.S. Pat. No. 6,254,148, which is a continuation of Ser. No. 09/018,467, filed Feb. 4, 1998, now U.S. Pat. No. 6,102,453, and further claims priority from provisional application No. 60/036,850, filed Feb. 4, 1997.
US Referenced Citations (23)
Foreign Referenced Citations (5)
Number |
Date |
Country |
19605452 |
Feb 1996 |
DE |
0589158 |
Mar 1994 |
EP |
0637655 |
Feb 1995 |
EP |
2254880 |
Oct 1992 |
GB |
WO 9005822 |
May 1990 |
WO |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/036850 |
Feb 1997 |
US |
Continuations (3)
|
Number |
Date |
Country |
Parent |
09/865480 |
May 2001 |
US |
Child |
10/040454 |
|
US |
Parent |
09/441461 |
Nov 1999 |
US |
Child |
09/865480 |
|
US |
Parent |
09/018467 |
Feb 1998 |
US |
Child |
09/441461 |
|
US |