The present disclosure relates generally to compartment closure assemblies for motor vehicles, such as side doors, liftgates, tailgates, trunk lids, engine hoods, and the like. More specifically, aspects of this disclosure relate to vehicle door locking systems and control algorithms for governing use of passenger door assemblies.
Many current production motor vehicles, such as the modern-day automobile, are originally equipped with various compartment closure assemblies that are movably mounted to the vehicle body to provide access to the vehicle's assorted compartments. Driver-side and passenger-side vehicle doors, for example, can be opened and closed to allow user access for entering and exiting the passenger compartment. In contrast, the engine hood (or “bonnet” in some countries) extends over and covers the vehicle's engine compartment to prevent theft or damage of engine and/or motor components, depending on powertrain type. A traditional trunk compartment, on the other hand, is a large storage bin located at the rear of the vehicle and covered by a trunk lid that is hinged underneath the passenger compartment's rear deck. By comparison, pickup trucks and other cargo transport vehicles (e.g., sport utility vehicles (SUV), cargo vans, box trucks, etc.) may be typified by a rear cargo compartment that is closed off at the tail end by a hinged liftgate, tailgate, or door assembly.
Vehicle door assemblies are oftentimes equipped with a locking mechanism that is designed, for example, to prevent the door from inadvertently opening during operation of the vehicle and to inhibit unauthorized access when the vehicle is unattended. Many of these locking mechanisms may be operated from the inside of the vehicle by manipulating a lock knob or button located next to the window frame, packaged along an upper portion of an interior door trim panel. There are a variety of additional ways to lock and unlock a vehicle door, including using a key, a power lock switch, an electronic human machine interface (HMI) on the outside of the door, or by using a remote keyless system, such as an electronic key fob. When unlocked, either manually or through an electronic interface, the door assembly may be opened for entry and egress through operation of a door handle or activation of an automated door system (e.g., a pneumatic, hydraulic, or motor-driven device for automatically opening and closing power liftgates, power side doors, etc.).
During operation of a vehicle door assembly, a foreign object may unexpectedly enter and obstruct the opening or closing path of the door. To obviate the likelihood of damage to the vehicle and object, most power-actuated vehicle door assemblies include protectionary mechanisms, oftentimes in the form of an “anti-pinch” switch, that operate to reverse or stop the motion of the door assembly upon contact with the foreign object. While these features serve to minimize damage to the vehicle and object, they require that the door assembly be moving and physically contact the object before activating. As a preventative security measure, some vehicles employ a proximity sensor to detect the presence of objects obstructing the path of the vehicle door assembly, and responsively disable the door assembly's automated driving system. These proximity sensor systems, however, are typically limited to detecting objects within the path of the door assembly. In addition, both of the foregoing systems operate by regulating the automated door's driving mechanism and, thus, would not function with passenger door assemblies that are not equipped with the requisite automation hardware and software.
Disclosed herein are foreign object detection systems and control logic for governing use of vehicle door assemblies, methods for making and methods for using such systems, and motor vehicles equipped with a vehicle door assembly and foreign object detection (FOD) capabilities to regulate operation of the door assembly. By way of example, and not limitation, there is presented a novel vehicle door lock control algorithm designed to prevent impact between an opening side door of a stopped or slowed vehicle and an object traversing alongside the vehicle and bound to intersect the door's swing radius. Upon sensing a vulnerable object approaching the vehicle, or sensing the vulnerable object's presence within the door's swing radius for a calibrated window of time (e.g., approximately 10 seconds), the control algorithm will automatically lock or retain locked the vehicle door's locking mechanism. For instance, the vehicle door lock control algorithm overrides an automatic door unlock feature that normally unlocks the vehicle side doors when the vehicle is shifted into park position. To open one of the side doors, a user may then be required and, optionally, prompted to deactivate the vehicle door lock control algorithm, e.g., with a double pull of the inside door handle. An audible and/or visual warning may be generated to warn the user of an impending impact between the vehicle door and the object.
Attendant benefits for at least some of the disclosed concepts include improved FOD capabilities that enable rapid warning of the vehicle's occupant(s) if they attempt to open a vehicle door when there is an oncoming object. Disclosed vehicle door lock control algorithms also help to delay the vehicle door from being opened when an oncoming object is detected to thereby preclude a potential impact condition. On the other hand, disclosed control logic protects occupant egress from the vehicle in the event of electrical power loss or electrical component failure, as it does not block manual override and mechanical unlocking/unlatching via inside handle actuation. These features, in turn, help to improve customer confidence levels towards vehicle foreign object detection and impact prevention systems.
Aspects of the present disclosure are directed to control algorithms for detecting foreign objects proximate a vehicle closure assembly, and attendant logic for regulating operation of the closure assembly to avoid inadvertent contact with a detected object. Disclosed, for example, is a method for regulating operation of a locking mechanism of a motor vehicle's door assembly. The vehicle door assembly is movably mounted to the vehicle body to transition between closed and open positions to respectively cover and uncover an opening to a vehicle compartment. The method includes, in any order and in any combination with any of the disclosed features: determining, via a vehicle controller, an operating status of a vehicle door lock control protocol that governs use of the locking mechanism (e.g., controller receives activation/deactivation input through an electronic driver information center (DIC)); responsive to the operating status being active, the vehicle controller receives, from one or more sensing devices, one or more sensor signals indicative of a location and/or velocity of an object within the sensor's supervision field, which includes a protected door zone for the door assembly; if the object is located inside the protected zone or the object's velocity is aimed towards the protected zone, the vehicle controller responsively determines whether the door locking mechanism is locked or unlocked; if the locking mechanism is in a locked state, the controller responsively outputs a command signal to the locking mechanism to maintain the locked state, e.g., until the object passes or exits the protected door zone; if, however, the locking mechanism is in an unlocked state, the controller responsively outputs a command signal to the locking mechanism to transition to the locked state and to maintain the locked state. The method may further include the vehicle controller receiving a user override request to override the door lock control protocol, and responsively commanding the locking mechanism to transition from the locked state to the unlocked state. If the motor vehicle includes an automatic door unlock feature that automatically unlocks the locking mechanism when the vehicle powertrain is shifted into park mode, the command signal to maintain the locked state may include an override command that disables the automatic door unlock feature.
Other aspects of the present disclosure are directed to motor vehicles with a vehicle closure assembly and foreign object detection capabilities to regulate operation of the closure assembly to preclude a potential impact condition. A “motor vehicle,” as used herein, may include any relevant vehicle platform, such as passenger vehicles (internal combustion engine (ICE), hybrid, full electric, fuel cell, fully or partially autonomous, etc.), commercial vehicles, industrial vehicles, tracked vehicles, off-road and all-terrain vehicles (ATV), farm equipment, boats, airplanes, etc. In the same vein, a “closure assembly,” as used herein, may include any relevant vehicle component, such as an occupant side door (sliding or hinged), a liftgate, a tailgate, a cargo compartment door, etc. A motor vehicle is disclosed that includes a vehicle body with a passenger compartment, and a vehicle door assembly movably mounted to the vehicle body to selectively transition between closed and open positions to respectively cover and uncover an access opening to the passenger compartment. The vehicle door assembly includes a locking mechanism for selectively locking the door assembly in the closed position. A proximity sensor mounted to the vehicle body is operable to detect objects within the sensor's supervision field. The supervision field includes a protected door zone that envelopes the swing radius of the vehicle door assembly. The supervision field may also include a rear projected area adjacent a rear quarter panel of the vehicle, and/or a forward projected area adjacent a front fender panel of the vehicle.
The motor vehicle also includes a vehicle controller, such as a programmable electronic control unit (ECU), that communicates with the door locking mechanism and the proximity sensor. The vehicle controller is programmed to: receive a sensor signal from the proximity sensor indicative of a location and/or velocity of an object within the sensor's supervision field; if the object's location is inside the protected door zone or the object's velocity is directed towards the protected door zone, determine whether the locking mechanism is locked or unlocked; if it is determined that the locking mechanism is in a locked state, output a command signal to the locking mechanism to maintain the locked state; and, if it is determined that the locking mechanism is in an unlocked state, output a command signal to the locking mechanism to transition to the locked state and to maintain the locked state.
Additional aspects of the present disclosure are directed to non-transitory, computer readable media storing instructions executable by at least one of one or more processors of one or more in-vehicle electronic control units. These instructions, when executed, cause the ECU(s) to perform various operations, which may include, in any order and in any combination with any features presented in this disclosure: determining an operating status of a vehicle door lock control protocol operable to govern use of the locking mechanism; responsive to the operating status of the vehicle door lock control protocol being active, receiving a sensor signal from a sensing device indicative of a location and/or a velocity of an object within a sensor supervision field, which includes a protected zone of the vehicle door assembly; responsive to a determination that the object location is inside the protected zone or the object velocity is directed towards the protected zone, determining whether the locking mechanism is in a locked state or an unlocked state; responsive to a determination that the locking mechanism is in the locked state, outputting a command signal to the locking mechanism to maintain this locked state; and, responsive to a determination that the locking mechanism is in the unlocked state, outputting a command signal to the locking mechanism to transition to the locked state and to maintain the locked state.
The above summary is not intended to represent every embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of representative embodiments and representative modes for carrying out the present disclosure when taken in connection with the accompanying drawings and the appended claims. Moreover, this disclosure expressly includes any and all combinations and subcombinations of the elements and features presented above and below.
The present disclosure is amenable to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the novel aspects of this disclosure are not limited to the particular forms illustrated in the appended drawings. Rather, the disclosure is to cover all modifications, equivalents, combinations, subcombinations, permutations, groupings, and alternatives falling within the scope and spirit of the disclosure as defined by the appended claims.
This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings and will herein be described in detail representative embodiments of the disclosure with the understanding that these illustrated examples are to be considered an exemplification of the disclosed principles and do not limit the broad aspects of the disclosure to the representative embodiments. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed: the singular includes the plural and vice versa; the words “and” and “or” shall be both conjunctive and disjunctive; the word “all” means “any and all”; the word “any” means “any and all”; and the words “including” and “comprising” and “having” and synonyms thereof mean “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, may be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
Referring now to the drawings, wherein like reference numbers refer to like features throughout the several views, there is shown in
The driver-side and passenger-side door assemblies 14 of
With continuing reference to
To help prevent unwanted or otherwise inadvertent contact between an opening door assembly 14 and an oncoming object (e.g., shown schematically at 11 in
By monitoring regions fore and aft of the vehicle body 12, as well as those regions immediately adjacent the vehicle's front fender panels, rear quarter panels, and side doors, the FOD system can generate system alerts for objects within a protected zone PZ (shown with cross-hatching in
With reference now to the flow chart of
Method 100 of
During active operation of the vehicle door lock control protocol, an onboard vehicle controller will receive sensor signals from one or more sensing devices operatively arranged to detect foreign objects that are about to enter, that are entering, or that have already entered the sensor's/s' supervision field. ECU 44 of
Contemporaneous with or immediately after detecting a foreign object and establishing that this object is likely to collide with an opening vehicle door 14—the detected object is located inside a door assembly's protected zone PZ or the detected object's velocity is directed at a protected zone PZ (Block 103=YES)—the method 100 responsively implements decision block 109 to determine whether the locking mechanism of the likely impacted door or doors is/are in a locked state. If all relevant locking mechanisms are in the locked state (Block 109=YES), the method 100 proceeds to process block 111 with processor-executable instructions that cause a vehicle controller to transmit a command signal to the locking mechanism(s) to maintain the locked state, e.g., for a calibrated minimum period of time and/or until the object passes or exits the protected door zone. On the other hand, if the locking mechanism is in an unlocked state (Block 109=NO), the method 100 proceeds to process block 113, with instructions that cause a vehicle controller to transmit a command signal to the locking mechanism(s) to transition to the locked state, and then to process block 111, with instructions to maintain the locked state. In so doing, the control protocol helps to delay the vehicle door(s) from being opened when a vulnerable object is detected and, thus, helps to preclude a potential impact condition. Optional embodiments may further require, responsive to a positive determination at block 103, e.g., as part of blocks 109, 111, or 113, instructions for a vehicle controller to generate and transmit one or more command signals to a sound generating device (e.g., a vehicle horn or audio speaker) and/or a display device (e.g., a vehicle instrument cluster or center stack display) to generate an audible or visual warning that a vulnerable object is approaching the vehicle or is already obstructing the opening path of one or more vehicle door assemblies.
Some automobile platforms employ a door control module programmed with an automatic door unlock feature that is designed to automatically unlock the driver door or, in some system architectures, all occupant doors when the vehicle's PRNDL shift knob is moved to park, i.e., such that the vehicle powertrain shifts into park mode. In such instances, process block 113 or 115 may optionally require processor-executable instructions that override or otherwise disable the automatic door unlock feature such that the locking mechanism(s) can be shifted into and maintained in the locked state. Likewise, most modern-day vehicle door assemblies are equipped with a manually activated, internally mounted power door lock switch 46 of
After the vehicle door or doors have been automatically locked and retained locked to obviate the likelihood of a door impact condition, an occupant may wish to alight from the vehicle on their own volition. According to the representative control logic set forth in
After issuing the command signals to lock/maintain locked the vehicle door assemblies, the method 100 of
Aspects of this disclosure may be implemented, in some embodiments, through a computer-executable program of instructions, such as program modules, generally referred to as software applications or application programs executed by an on-board vehicle computer. The software may include, in non-limiting examples, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types. The software may form an interface to allow a computer to react according to a source of input. The software may also cooperate with other code segments to initiate a variety of tasks in response to data received in conjunction with the source of the received data. The software may be stored on any of a variety of memory media, such as CD-ROM, magnetic disk, bubble memory, and semiconductor memory (e.g., various types of RAM or ROM).
Moreover, aspects of the present disclosure may be practiced with a variety of computer-system and computer-network configurations, including multiprocessor systems, microprocessor-based or programmable-consumer electronics, minicomputers, mainframe computers, and the like. In addition, aspects of the present disclosure may be practiced in distributed-computing environments where tasks are performed by remote-processing devices that are linked through a communications network. In a distributed-computing environment, program modules may be located in both local and remote computer-storage media including memory storage devices. Aspects of the present disclosure may therefore, be implemented in connection with various hardware, software or a combination thereof, in a computer system or other processing system.
Any of the methods described herein may include machine readable instructions for execution by: (a) a processor, (b) a controller, and/or (c) any other suitable processing device. Any algorithm, software, or method disclosed herein may be embodied in software stored on a tangible medium such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a digital versatile disk (DVD), or other memory devices, but persons of ordinary skill in the art will readily appreciate that the entire algorithm and/or parts thereof could alternatively be executed by a device other than a controller and/or embodied in firmware or dedicated hardware in other manners (e.g., it may be implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), discrete logic, etc.). Further, although specific algorithms are described with reference to flowcharts depicted herein, persons of ordinary skill in the art will readily appreciate that many other methods of implementing the example machine readable instructions may alternatively be used. For example, the order of execution of the blocks may be changed, additional blocks may be added, and/or some of the blocks described may be modified, eliminated, or combined.
While aspects of the present disclosure have been described in detail with reference to the illustrated embodiments, those skilled in the art will recognize that many modifications may be made thereto without departing from the scope of the present disclosure. The present disclosure is not limited to the precise construction and compositions disclosed herein; any and all modifications, changes, and variations apparent from the foregoing descriptions are within the scope of the disclosure as defined in the appended claims. Moreover, the present concepts expressly include any and all combinations and subcombinations of the preceding elements and features.
Number | Name | Date | Kind |
---|---|---|---|
5263762 | Long et al. | Nov 1993 | A |
5955854 | Zhang et al. | Sep 1999 | A |
6173233 | Janutka et al. | Jan 2001 | B1 |
6615121 | Li | Sep 2003 | B2 |
7761209 | Morris et al. | Jul 2010 | B2 |
8280593 | Nakakura et al. | Oct 2012 | B2 |
8938337 | Nakakura et al. | Jan 2015 | B2 |
9174517 | Scheuring et al. | Nov 2015 | B2 |
9447612 | Oakley et al. | Sep 2016 | B2 |
9573446 | Scheuring et al. | Feb 2017 | B2 |
9751462 | Compton | Sep 2017 | B2 |
20030222758 | Willats et al. | Dec 2003 | A1 |
20090033477 | Illium et al. | Feb 2009 | A1 |
20090260289 | Carpenter et al. | Oct 2009 | A1 |
20100076651 | Nakakura et al. | Mar 2010 | A1 |
20100145617 | Okada et al. | Jun 2010 | A1 |
20100228448 | Nakakura et al. | Sep 2010 | A1 |
20120221236 | Zeller et al. | Aug 2012 | A1 |
20120324791 | Parsadayan et al. | Dec 2012 | A1 |
20130085975 | Wellhoefer et al. | Apr 2013 | A1 |
20130104459 | Patel et al. | May 2013 | A1 |
20130113614 | Yopp | May 2013 | A1 |
20130234844 | Yopp | Sep 2013 | A1 |
20140150581 | Scheuring et al. | Jun 2014 | A1 |
20140195109 | Lange | Jul 2014 | A1 |
20150330112 | Van Wiemeersch | Nov 2015 | A1 |
20160002959 | Javadzadeh | Jan 2016 | A1 |
20190017299 | Capalau | Jan 2019 | A1 |
20190055770 | Bars | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190017299 A1 | Jan 2019 | US |