The present disclosure relates to a vehicle driving assembly with transversely placed single power source, connected to the vehicle front axle or rear axle, for driving the vehicle.
In current purely electrical driven or mixed power new energy automobiles, the dynamic characteristics of the electric motors being used cannot meet the requirements of the entire vehicle, especially the requirements of speed ratio and moment. As new energy automobiles need to face increasingly complicated operating conditions and road conditions, the users' expectations on comfortable and endurance mileage of new energy automobiles keep increasing, and new energy automobiles of simple electric motor direct driving mode, electric-motor-connected-to-speed-reducer mode or fuel-electricity hybrid mode cannot satisfy demands of the developing new energy automobile industry.
In current vehicle power assemblies, power source, clutch, gearbox or speed reducer, and driving shaft are generally longitudinally arranged, so these vehicle power assemblies are relatively long and large, and not applicable to some small vehicles requiring a compact structure.
Furthermore, in current purely electrical driven or mixed power new energy automobiles, speed reducers cannot use conventional friction clutches due to the large shock of the rotor shaft of electric motor (the rotor shaft and the input shaft are not integrated). The clutch being used can only be hard connected and does not have cushioning effect, so it cannot satisfy the requirements of new energy automobiles.
In the existing automobiles of electric motor direct driving mode, the power system does not have clutch function, so the conventional inertia friction synchronizers cannot be used, the transmission cannot shift gears, and only one speed ratio can be chosen. The startup and stop of the entire vehicle can only rely on the startup and stop of the electric motor, which affects the performance of the electric motor.
In view of the above problems in the prior art, the present disclosure provides a vehicle driving assembly with transversely placed single power source, to solve the problem of the existing power assemblies that the transmission is performed in a single speed ratio, and they cannot adapt to complicated road conditions and operating conditions.
Additionally, the present disclosure is to solve the problems of the existing power assemblies that the longitudinal dimension is large, so they cannot be used in vehicles with a compact structure, and that the number of gears in the transmission is large and thus the transmission structure is complicated.
To achieve the above objects, the technical solutions of the present disclosure are realized as follows:
A vehicle driving assembly with transversely placed single power source, connected to a vehicle axle half shafts, the vehicle driving assembly comprises a power source and an automatic transmission, the automatic transmission is provided with an input shaft, the power source is connected to the input shaft, and a differential is provided at a joint of the automatic transmission and the vehicle axle half shafts;
in the automatic transmission, a first intermediate shaft is provided parallel to the input shaft, a second intermediate shaft is provided in the direction coaxial with the input shaft, a third intermediate shaft is provided in the direction coaxial with the first intermediate shaft, a first clutch is provided between the first intermediate shaft and the third intermediate shaft, and a second clutch is provided between the input shaft and the second intermediate shaft; and
the input shaft is provided with a first gear, the first intermediate shaft is provided with a second gear, and the first gear and the second gear are engaged to transmit power; the second intermediate shaft is provided with a third gear, the third intermediate shaft is provided with a fourth gear, and the third gear and the fourth gear are engaged to transmit power; and the third intermediate shaft is further provided with a fifth gear, the differential is provided with a sixth gear, and the fifth gear and the sixth gear are engaged to transmit power.
Optionally, when the first clutch is in engagement, the power source transmits power to the vehicle axle half shafts via successively the input shaft, the first gear, the second gear, the first intermediate shaft, the third intermediate shaft, the fifth gear, the sixth gear and the differential.
Optionally, the engaged transmission ratio of the first gear to the second gear is i1, the engaged transmission ratio of the fifth gear to the sixth gear is i3, and when the first clutch is in engagement, the engaged transmission ratio in the automatic transmission is i1×i3.
Optionally, when the second clutch is in engagement, the power source transmits power to the vehicle axle half shafts via successively the input shaft, the second intermediate shaft, the third gear, the fourth gear, the third intermediate shaft, the fifth gear, the sixth gear and the differential.
Optionally, the engaged transmission ratio of the third gear to the fourth gear is i2, the engaged transmission ratio of the fifth gear to the sixth gear is i3, and when the second clutch is in engagement, the engaged transmission ratio in the automatic transmission is i2×i3.
Optionally, the power source is an electric motor or the combination of an engine and an ISG electric motor.
Optionally, the power source is the combination of an engine and an ISG electric motor, and a torsional shock absorber is provided between the engine and the ISG electric motor.
Optionally, the vehicle axle half shafts including front axle half shafts or rear axle half shafts.
Optionally, the first clutch and the second clutch are face tooth clutches.
Optionally, the face tooth clutches are of electromagnetic driving type, or hydraulic driving type, or pneumatic driving type, or electrical driving type.
The present disclosure employing the above structure configurations has the following advantages:
The vehicle power assembly of the present disclosure is connected to the rear axle half shaft or the front axle half shaft of the vehicle. The vehicle driving assembly can realize transmission of two speed ratios, and the transmission modes are flexible and can satisfy the demands of the entire vehicle for running under different road conditions. When the vehicle climbs a slope with a heavy load, the larger speed ratio transmission can be chosen to increase the driving force of the entire vehicle and overcome the defect of insufficient driving force of the entire vehicle. When the entire vehicle is cruising, the smaller speed ratio transmission can be chosen to satisfy the requirement of the entire vehicle for high speed running, save energy, and increase the endurance mileage of vehicle.
The design of the torsional shock absorber in combination with the face tooth clutches can minimize kinetic energy loss, and overcomes the defect of traditional friction clutches that their lives are too short because they cannot withstand the dynamic shock of the electric motor.
The vehicle driving assembly with transversely placed single power source provided by the present disclosure shortens the longitudinal dimension of the driving assembly, and is suitable for vehicles of a compact structure; moreover, since the number of gears being used is small, the transmission structure is simplified.
The above description is merely an overview of technical solutions of the present disclosure. In order to more apparently understand the technical solutions of the present disclosure and implement them in accordance with the contents of specification, and to more readily understand above and other objectives, features and advantages of the present disclosure, particular embodiments of the present disclosure are provided hereinafter.
Various other advantages and merits will become apparent to those having ordinary skill in the art by reading through the detailed description of the following preferred embodiments. Accompanying drawings are merely included for the purpose of illustrating the preferred embodiments and should not be considered as limiting of the present disclosure. Further, throughout the drawings, like reference signs are used to denote like elements. In the drawings:
In the drawings:
Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although the accompanying drawings display the exemplary embodiments of the present disclosure, it should be understood that the present disclosure may be implemented in various forms and not limited by the embodiments set forth herein. Instead, these embodiments are provided to facilitate those skilled in the art more thoroughly understand the present disclosure, and completely convey the scope of the present disclosure to them.
As shown in
In the first embodiment of the present disclosure, the power source is an electric motor 70, and the rotor shaft of the electric motor 70 and the input shaft 20 are integrated.
In the automatic transmission 10, a first intermediate shaft 31 is provided parallel to the input shaft, a second intermediate shaft 32 is provided in the direction coaxial with the input shaft 20, a third intermediate shaft 33 is provided in the direction coaxial with the first intermediate shaft 31, a first clutch 41 is provided between the first intermediate shaft 31 and the third intermediate shaft 33, and a second clutch 42 is provided between the input shaft 20 and the second intermediate shaft 32.
The input shaft 20 is provided with a first gear 11, the first intermediate shaft 31 is provided with a second gear 12, and the first gear 11 and the second gear 12 are engaged to transmit power; the second intermediate shaft 32 is provided with a third gear 13, the third intermediate shaft 33 is provided with a fourth gear 14, and the third gear 13 and the fourth gear 14 are engaged to transmit power; the third intermediate shaft 33 is further provided with a fifth gear 15, the differential 50 is provided with a sixth gear 16, and the fifth gear 15 and the sixth gear 16 are engaged to transmit power.
It can be known from the above that, the transmission of the vehicle driving assembly of the first embodiment of the present disclosure is different from traditional transmissions in the layout mode of input shaft, intermediate shaft and output shaft. Thereby the longitudinal dimension of the driving assembly is shortened, which makes it suitable for vehicles with a compact structure; moreover, since the number of gears being used is small, the transmission process is simplified.
The power transmission mode of the driving assembly is as follows:
When the first clutch 41 is in engagement, the power source transmits power to the vehicle axle half shaft via successively the input shaft 20, the first gear 11, the second gear 12, the first intermediate shaft 31, the third intermediate shaft 33, the fifth gear 15, the sixth gear 16 and the differential 50. If the engaged transmission ratio of the first gear 11 to the second gear 12 is set to i1, and the engaged transmission ratio of the fifth gear 15 to the sixth gear 16 is set to i3, when the first clutch 41 is in engagement, the engaged transmission ratio in the automatic transmission 10 is i1×i3; this is the first operating condition.
When the second clutch 42 is in engagement, the power source transmits power to the vehicle axle half shaft via successively the input shaft 20, the second intermediate shaft 32, the third gear 13, the fourth gear 14, the third intermediate shaft 33, the fifth gear 15, the sixth gear 16 and the differential 50. If the engaged transmission ratio of the third gear 13 to the fourth gear 14 is set to i2, and the engaged transmission ratio of the fifth gear 15 to the sixth gear 16 is set to i3, when the second clutch 42 is in engagement, the engaged transmission ratio in the automatic transmission 10 is i2×i3; this is the second operating condition.
When the first clutch 41 and the second clutch 42 are simultaneously released, the vehicle is shifted into neutral.
The magnitudes of transmission ratios i1, i2 and i3 can be changed by changing size or tooth number of the gears, and thus the transmission ratio of the automatic transmission 10 is changed.
It can be known from the above that, the vehicle driving assembly can realize transmission of two speed ratios, and the automatic transmission can realize electrically controlled automatic gear shift between two positions of gears according to a controlling strategy program. The transmission modes are flexible, and can satisfy the demands of the vehicle for running under different road conditions. When the vehicle climbs a slope with a heavy load, the larger speed ratio transmission can be chosen to increase the driving force of the entire vehicle and overcome the defect of insufficient driving force of the entire vehicle. When the entire vehicle is cruising, the smaller speed ratio transmission can be chosen to satisfy the requirement of the entire vehicle for high speed running, energy saving, and increasing the endurance mileage of vehicle.
The first clutch 41 and the second clutch 42 are face tooth clutches comprising a movable fluted disc and a fixed fluted disc, which are engaged to transmit power. The movable fluted disc is provided with end face transmission gears or tooth spaces, and the fixed fluted disc is correspondingly provided with end face tooth spaces or transmission gears. The face tooth clutches, compared with friction clutches, can reduce kinetic energy loss to the largest extent, and overcome the defect of traditional friction clutches that life is too short because they cannot withstand the dynamic shock of the electric motor.
The drive manner of the face tooth clutches may be electromagnetic driving type (driven by electromagnet attraction), hydraulic driving type (driven by a hydraulic mechanism), pneumatic driving type (driven by a pneumatic mechanism), or electrical driving type (driven by an electric motor). The movable fluted disc is driven to axially move and engage with the fixed fluted disc.
When the first clutch 41 and the second clutch 42 of the vehicle driving assembly are electromagnetic jaw clutches, the electromagnetic jaw clutches can enable the power and the entire vehicle to be released and engaged instantly at any moment during power inputting, and thus realizes smooth power switch and increases travelling stability of the vehicle.
In the first embodiment of the present disclosure, the vehicle axle half shafts including front axle half shafts or rear axle half shafts. When the vehicle driving assembly is connected to the front axle half shaft, the vehicle is in front driving mode; when the vehicle driving assembly is connected to the rear axle half shaft, the vehicle is in rear driving mode.
In the second embodiment of the present disclosure, as shown in
Other contents of the second embodiment of the present disclosure are the same as those of the first embodiment, and will not be described repeatedly here.
In the third embodiment of the present disclosure, as shown in
Other contents of the third embodiment of the present disclosure are the same as those of the first embodiment, and will not be described repeatedly here.
The above descriptions are merely preferable embodiments of the present disclosure, and are not used to limit the protection scope of the present disclosure. Any modifications, equivalent substitutions or improvements that are made within the spirit and principle of the present disclosure are all included in the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201611028710.0 | Nov 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/071842 | 1/20/2017 | WO | 00 |