Vehicle event recorder systems and networks having integrated cellular wireless communications systems

Information

  • Patent Grant
  • 9208129
  • Patent Number
    9,208,129
  • Date Filed
    Friday, August 2, 2013
    11 years ago
  • Date Issued
    Tuesday, December 8, 2015
    9 years ago
Abstract
Vehicle event recorder systems are arranged to be in constant communication with remote servers and administrators via mobile wireless cellular networks. Vehicle event recorders equipped with video cameras capture video and other data records of important events relating to vehicle use. These data are then transmitted over special communications networks having very high coverage space but limited bandwidth. A vehicle may be operated over very large region while maintaining continuous communications connections with a remote fixed server. As such, systems of these inventions may be characterized as including a mobile unit having: a video camera; a microprocessor; memory; an event trigger; and mobile wireless transceivers, and a fixed network portion including: mobile wireless cellular network, a protocol translation gateway, the Internet and an application-specific server.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority from U.S. patent application Ser. No. 11/377,167 filed Mar. 16, 2006, entitled “Vehicle Event Recorder Systems And Networks Having Integrated Cellular Wireless Communications Systems,” which is incorporated by reference herein.


BACKGROUND OF THESE INVENTIONS

1. Field


The following inventions disclosure is generally concerned with vehicle event recorder systems and specifically concerned with vehicle event recorder systems having cellular wireless transceivers which couple with wireless communications networks.


2. Prior Art


The inventions presented in U.S. Pat. No. 6,947,817 by inventor Diem for nonintrusive diagnostic tools for testing oxygen sensor operation relates to a diagnostic system for testing a vehicle where such systems include a wireless communications link between a vehicle any remote network of server computers. In particular, a WiFi type access points allowed an analyzer to communicate by way the Internet with a server computer hosting and oxygen sensor SOAP (simple object access protocol) service. In a nutshell, the system relates to smog sensors for automobiles which communicate with remote servers by way of a WiFi communications links.


Video surveillance systems are used to provide video records of events, incidents, happenings, et cetera in locations of special interest. For example, retail banking offices are generally protected with video surveillance systems which provide video evidence in case of robbery. While video surveillance systems are generally used in fixed location scenarios, mobile video surveillance systems are also commonly used today.


In particular, video systems have been configured for use in conjunction with an automobile and especially for use with police cruiser type automobiles. As a police cruiser is frequently quite near the scene of an active crime, important image information may be captured by video cameras installed on the police cruiser. Specific activity of interest which may occur about an automobile is not always associated with crime and criminals. Sometimes events which occur in the environments immediately about an automobile are of interest for reasons having nothing to do with crime. In example, a simple traffic accident where two cars come together in a collision may be the subject of video evidence of value. Events and circumstances leading up to the collision accident may be preserved such that an accurate reconstruction can be created. This information is useful when trying come to a determination as to cause, fault and liability. As such, general use of video systems in conjunction with automobiles is quickly becoming an important tool useful for the protection of all. Some examples of the systems are illustrated below with reference to pertinent documents.


Inventor Schmidt presents in U.S. Pat. No. 5,570,127, a video recording system for a passenger vehicle, namely a school bus, which has two video cameras one for an inside bus view and one for a traffic view, a single recorder, and a system whereby the two cameras are multiplexed at appropriate times, to the recording device. A switching signal determines which of the two video cameras is in communication with the video recorder so as to view passengers on the passenger vehicle at certain times and passing traffic at other times.


Thomas Doyle of San Diego, Calif. and QUALCOMM Inc. also of San Diego, present an invention for a method and apparatus for detecting fault conditions in a vehicle data recording device to detect tampering or unauthorized access, in U.S. Pat. No. 5,586,130. The system includes vehicle sensors for monitoring one or more operational parameters of the vehicle. The fault detection technique contemplates storing a current time value at regular intervals during periods in which the recording device is provided with a source of main power. Inventor Doyle also teaches in the U.S. Pat. No. 5,815,071, a method and apparatus for monitoring parameters of vehicle electronic control units.


A “computerized vehicle log” is presented by Dan Kikinis of Saratoga Calif. in U.S. Pat. No. 5,815,093. The vehicle accident recording system employs a digital camera connected to a controller in nonvolatile memory, and an accident sensing interrupter. The oldest memory is overwritten by the newest images, until an accident is detected at which time the memory is blocked from further overwrites to protect the more vital images, which may include important information about the accident. Mr. Kikinis instructs that in preferred embodiments, the system has a communications port whereby stored images are downloaded after an accident to a digital device capable of displaying images. This feature is described in greater detail in the specification which indicates a wired download to a server having specialized image handling and processing software thereon.


Inventor Mr. Turner of Compton, Calif., no less, teaches an antitheft device for an automotive vehicle having both an audible alarm and visual monitor system. Video monitor operators are responsible for monitoring and handling an emergency situation and informing a 911 emergency station. This system is presented in U.S. Pat. No. 6,002,326.


A vehicle accident video recorder, in particular, a railroad vehicle accident video recorder, is taught by inventors Cox et al. In this system, a method and monitoring unit for recording the status of the railroad vehicle prior to a potential accident is presented. The monitoring unit continuously monitors the status of an emergency brake of the railroad vehicle and the status of a horn of the railroad vehicle. Video images are recorded and captured for a predetermined period of time after detecting that the emergency brake or horn blast has been applied as an event trigger. This invention is the subject of U.S. Pat. No. 6,088,635.


A vehicle crash data recorder is presented by inventor Ferguson of Bellaire, Ohio in U.S. Pat. No. 6,185,490. The apparatus is arranged with a three stage memory to record and retain information. And further it is equipped with a series and parallel connectors to provide instant on-scene access to accident data. It is important to note that Ferguson finds it important to include the possibility of on-site access to the data. Further, that, Ferguson teaches use of a wired connection in the form of a serial or parallel hardwire connector. This teaching of Ferguson is common in many advanced systems configured as vehicle event recorders.


A traffic accident data recorder and traffic accident reproduction system and method is presented as U.S. Pat. No. 6,246,933. A plurality of sensors for registering vehicle operation parameters including at least one vehicle mounted digital video, audio camera is included for sensing storing and updating operational parameters. A rewritable, nonvolatile memory is provided for storing those processed operational parameters and video images and audio signals, which are provided by the microprocessor controller. Data is converted to a computer readable form and read by a computer such that an accident can be reconstructed via data collected.


U.S. Pat. No. 6,298,290 presented by Abe et al, teaches a memory apparatus for vehicle information data. A plurality of sensors including a CCD camera collision center of vehicle speed sensors, steering angle sensor, brake pressure sensor, acceleration sensor, are all coupled to a control unit. Further, the control unit passes information to a flash memory and a RAM memory subject to an encoder. The information collected is passed through a video output terminal. This illustrates another hardwire system and the importance placed by experts in the art on a computer hardware interface. This is partly due to the fact that video systems are typically data intensive and wired systems are necessary as they have bandwidth sufficient for transfers of large amounts of data.


Mazzilli of Bayside, N.Y. teaches in U.S. Pat. No. 6,333,759 a 360° automobile video camera system. A complex mechanical mount provides for a single camera to adjust its viewing angle giving a 360° range for video recording inside and outside of an automotive vehicle.


U.S. Pat. No. 6,389,339 granted to Inventor Just, of Alpharetta, Ga. teaches a vehicle operation monitoring system and method. Operation of a vehicle is monitored with an onboard video camera linked with a radio transceiver. A monitoring service includes a cellular telecommunications network to view a video data received from the transceiver to a home-base computer. These systems are aimed at parental monitoring of adolescent driving. The mobile modem is designed for transmitting live video information into the network as the vehicle travels.


Morgan, Hausman, Chilek, Hubenak, Kappler, Witz, and Wright with their heads together invented an advanced law enforcement and response technology in U.S. Pat. No. 6,411,874 granted Jun. 25, 2002. A central control system affords intuitive and easy control of numerous subsystems associated with a police car or other emergency vehicle. This highly integrated system provides advanced control apparatus which drives a plurality of detector systems including video and audio systems distributed about the vehicle. A primary feature included in this device includes an advanced user interface and display system, which permits high level driver interaction with the system.


Inventor Lambert teaches in U.S. Pat. No. 6,421,080 a “digital surveillance system with pre-event recording”. Pre-event recording is important in accident recording systems, because detection of the accident generally happens after the accident has occurred. A first memory is used for temporary storage. Images are stored in the temporary storage continuously until a trigger is activated which indicates an accident has occurred at which time images are transferred to a more permanent memory.


Systems taught by Gary Rayner in U.S. Pat. Nos. 6,389,340; 6,405,112; 6,449,540; and 6,718,239, each directed to cameras for automobiles which capture video images, both of forward-looking and driver views, and store recorded images locally on a mass storage system. An operator, at the end of the vehicle service day, puts a wired connector into a device port and downloads information into a desktop computer system having specialized application software whereby the images and other information can be played-back and analyzed at a highly integrated user display interface.


It is not possible in the systems Rayner teaches for an administrative operator to manipulate or otherwise handle the data captured in the vehicle at an off-site location without human intervention. It is necessary for a download operator to transfer data captured from the recorder unit device to a disconnected computer system. While proprietary ‘DriveCam’ files can be e-mailed or otherwise transferred through the Internet, those files are in a format with a can only be digested by desktop software running at a remote computer. It is necessary to have the DriveCam desktop application on the remote computer. In order that the files be properly read. In this way, data captured by the vehicles is totally unavailable to some parties having an interest in the data. Namely those parties who do not have access to a computer appropriately arranged with the specific DriveCam application software. A second and major disadvantage is systems presented by Rayner includes necessity that a human operator service the equipment each day in a manual download action.


Remote reporting and manipulation of automobile systems is not entirely new. The following are very important teachings relating to some automobile systems having a wireless communications link component.


Inventors Fan et al, teach inventions of methods and systems for detecting vehicle collision using global positioning system GPS. The disclosure of Jun. 12, 2001 resulted in granted patent having U.S. Pat. No. 6,459,988. A GPS receiver is combined with wireless technology to automatically report accident and third parties remotely located. A system uses the GPS signals to determine when an acceleration value exceeds the preset threshold which is meant to be indicative of an accident having occurred.


Of particular interest include inventions presented by inventors Nagda et al., in the document numbered U.S. Pat. No. 6,862,524 entitled using location data to determine trafficking route information. In this system for determining and disseminating traffic information or route information, traffic condition information is collected from mobile units that provide their location or position information. Further route information may be utilized to determine whether a mobile unit is allowed or prohibited from traveling along a certain route.


A common assignee, @Road Inc., owns the preceding two patents in addition to the following: U.S. Pat. Nos. 6,529,159; 6,552,682; 6,594,576; 6,664,922; 6,795,017; 6,832,140; 6,867,733; 6,882,313; and 6,922,566. As such, @Road Inc., must be considered a major innovator in position technologies arts as they relate to mobile vehicles and remote server computers.


General Motors Corp. teaches in U.S. Pat. No. 6,728,612, an automated telematics test system and method. The invention provides a method and system testing a telematics system in a mobile vehicle a test command from a test center to a call center is based on a test script. The mobile vehicle is continuously in contact by way of cellular communication networks with a remotely located host computer.


Inventor Earl Diem and Delphi Technologies Inc., had granted to them on Sep. 20, 2005, U.S. Pat. No. 6,947,817. The nonintrusive diagnostic tool for sensing oxygen sensor operation include a scheme or an oxygen analyzer deployed in a mobile vehicle communicates by way of an access point to a remotely located server. A diagnostic heuristic is used to analyze the data and confirm proper operation of the sensor. Analysis may be performed by a mainframe computer quickly note from the actual oxygen sensor.


Similar patents including special relationships between mobile vehicles and remote host computers include those presented by various inventors in U.S. Pat. Nos. 6,735,503; 6,739,078; 6,760,757; 6,810,362; 6,832,141; and 6,850,823.


Another special group of inventions owned by Reynolds and Reynolds Holding Inc., is taught first by Lightner et al, in U.S. Pat. No. 6,928,348 issued Aug. 9, 2005. In these inventions, Internet based emission tests are performed on vehicles having special wireless couplings to computer networks. Data may be further transferred to entities of particular interest including the EPA or California Air Resources Board, for example, or particular insurance companies and other organizations concerned with vehicle emissions and environment.


Other patents held by Reynolds and Reynolds Holding Inc., include those relating to reporting of automobile performance parameters to remote servers via wireless links. Specifically, an onboard data bus OBD system is coupled to a microprocessor, by way of a standard electrical connector. The microprocessor periodically receives data and transmits it into the wireless communications system. This information is more fully described in U.S. patent granted Oct. 21, 2003 U.S. Pat. No. 6,636,790. Inventors Lightner et al, present method and apparatus for remotely characterizing the vehicle performance. Data at the onboard data by his periodically received by a microprocessor and passed into a local transmitter. The invention specifically calls out transmission of data on a predetermined time interval. Thus these inventions do not anticipate nor include processing and analysis steps which result in data being passed at time other than expiration of the predetermined time period.


Reynolds and Reynolds Holding Inc., further describes systems where motor vehicles are coupled by wireless communications links to remote host servers in U.S. Pat. No. 6,732,031.


While systems and inventions of the arts are designed to achieve particular goals and objectives, some of those being no less than remarkable, these inventions have limitations which prevent their use in new ways now possible. Inventions of the art are not used and cannot be used to realize the advantages and objectives of the inventions taught here following.


SUMMARY OF THESE INVENTIONS

Comes now, James Plante with inventions of vehicle event recorder systems having integrated cellular wireless communications links.


Vehicle event recorders including those provided with imaging means, are arranged to monitor vehicle use and to collect images of scenes occurring about the vehicle's environments among other vehicle performance and use data. Further, these systems are arranged to collect data associated with a particular moment in time, or an “event” and to preserve that data for post event review.


In accordance with some preferred versions of these inventions, a detailed or ‘complete’ dataset is parsed, compressed and otherwise reduced into a data subset of limited size. Thus, an “abbreviated” dataset is a data subset which may be more readily transmitted on limited bandwidth systems. While an abbreviated dataset is passed into the network in near real time, a complete dataset may be preserved locally for transmission at a later time when a higher bandwidth link becomes available.


As such, vehicle event recorder systems of these inventions are deployed in conjunction with wireless mobile telephone type communications networks. A video camera, vehicle systems transducers, and other measurement systems associated with vehicle use all operate to collect data during the service use of a vehicle. On the occurrence of an “event”, for example, a traffic accident, data is captured and preserved in a special onboard memory. Further, a parsing module is provided to extract the most important information which may be represented in a dataset of reduced size. Accordingly, these systems may be characterized in summary as including vehicle event recorders with a video camera, microprocessor, memory, parsing module, and a mobile wireless communications transceiver; further, those vehicle event recorders in communication with a mobile wireless base station, gateway, Internet and remote application specific server.


OBJECTIVES OF THESE INVENTIONS

It is a primary object of these inventions to provide new vehicle fleet management tools.


It is an object of these inventions to provide vehicle fleet management systems having a video component.


It is a further object to provide vehicle fleet management systems arranged with high performance mobile network connectivity and function.


It is an object of these inventions to provide video based vehicle fleet management systems in conjunction with ubiquitous, always-on, mobile wireless networks.


An object of these inventions includes provision of video based vehicle fleet management systems in conjunction with cellular type wireless networks.


A better understanding can be had with reference to detailed description of preferred embodiments and with reference to appended drawings. Embodiments presented are particular ways to realize these inventions and are not inclusive of all ways possible. Therefore, there may exist embodiments that do not deviate from the spirit and scope of this disclosure as set forth by appended claims, but do not appear here as specific examples. It will be appreciated that a great plurality of alternative versions are possible.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

These and other features, aspects, and advantages of the present inventions will become better understood with regard to the following description, appended claims and drawings where:



FIG. 1 is a schematic diagram of vehicle event recorder systems including a vehicle event recorder in relation with a compound network;



FIG. 2 is a diagram including special detail relating to memory management;



FIG. 3 presents in block diagram, versions of these systems along with special interfaces between some primary system elements;



FIG. 4 diagrams some important secondary elements; and finally



FIG. 5 illustrates a block schematic with specially arranged authentication clients/servers.





GLOSSARY OF SPECIAL TERMS

Throughout this disclosure, reference is made to some terms which may or may not be exactly defined in popular dictionaries as they are defined here. To provide a more precise disclosure, the following terms are presented with a view to clarity so that the true breadth and scope may be more readily appreciated. Although every attempt is made to be precise and thorough, it is a necessary condition that not all meanings associated with each term can be completely set forth. Accordingly, each term is intended to also include its common meaning which may be derived from general usage within the pertinent arts or by dictionary meaning. Where the presented definition is in conflict with a dictionary or arts definition, one must consider context of use and provide liberal discretion to arrive at an intended meaning. One will be well advised to error on the side of attaching broader meanings to terms used in order to fully appreciate the entire depth of the teaching and to understand all intended variations.


Cellular Wireless Communications Networks


The term ‘cellular wireless communications networks’ is intended to include those wireless networks having large coverage areas comprised of cells which further include ‘handoff mechanisms for nodes passing from one cell to another whereby a continuous connection is maintained.


Gateway


A ‘gateway’ is a coupling system used to interface together two independent systems whereby a protocol used on a first system is translated into a protocol used on a second system.


Managed Loop Memory


A ‘managed loop memory’ is a memory system arranged to preserve in detail data captured during a period immediately past with respect to any instant but to overwrite that data with newer data when that data has sufficiently aged in accordance with a predefined expiration definition.


Vehicle Environments


The environment in and about a vehicle includes those spaces interior or exterior with respect to the car body. That is to say, traffic ahead of, behind, towards the sides of, and inside the driver compartment are all included as vehicle environments.


Communications Port


Includes for example: cellular transceiver; WiFi; Network Interface card; serial port such as RS-232; among others.


PREFERRED EMBODIMENTS OF THESE INVENTIONS

In accordance with each of preferred embodiments of these inventions, vehicle event recorders with integrated cellular wireless communications systems are provided. It will be appreciated that each of embodiments described include an apparatus and that the apparatus of one preferred embodiment may be different than the apparatus of another embodiment presented in an alternative example.


Combinations of vehicle event recorders coupled with mobile telephone communications networks, the Internet, and special application-specific servers and databases form the basis of best modes of these inventions. In particular, a vehicle event recorder is comprised of a video camera, a mobile wireless type radio transceiver and microprocessor. The video camera is arranged to have a field-of-view including environments about a vehicle in which the recorder is installed—generally a forward-looking viewpoint and sometimes a vehicle driver compartment viewpoint. The video camera runs continuously while a vehicle is in use capturing images of scenes occurring about the vehicle. In the event of a traffic accident or some other physical anomaly, a video series including frames from before and after the accident are captured by way of a special memory management system. A microprocessor is electronically coupled to the mobile telephone transceiver whereby it can transmit/receive data to/from further into a network where it may couple with a remote server running application specific software. The wireless transceiver operates to convert electronic signals from the microprocessor into electromagnetic signals for free space transmission. These electromagnetic signals are received at either of the base stations belonging to the spatially distributed cells and converted back into electronic signals. Those electronic signals may be further transmitted via packet networks to remote servers for additional analysis and processing.


While vehicle event recorder arrangements have been suggested in conjunction with wireless communications networks, namely in U.S. patent application Ser. No. 11/299,028, that disclosure is hereby incorporated herein by explicit reference, those systems are limited with respect to the space in which download actions can be executed. In those systems, a vehicle performs its assigned service and thereafter returns to a download location; i.e. the vehicle enters a specially arranged space such that the vehicle is near to a WiFi transceiver base station or ‘access point’. Such proximity condition is detected, and in response to detection of that condition a data transfer action causes data to be passed to the remote server. These systems require a vehicle to return to an approved download space in order that an authorized network connection be made. It is generally not possible to transfer data while the vehicle is active in the duty of its assignment.


In the present inventions, it is a primary feature that a vehicle is in continuous contact with the remote server while it is being used over extremely large regions. This is possible because a vehicle event recorder is coupled to a remoter server via links arranged in wireless cellular communications networks. These are quite distinct from previous wireless networks as they are formed of a great plurality of cooperating base stations well distributed to provide continuous coverage over extended area. A plurality of transmitters each spatially removed from another, each having a communication range which forms a partial overlap with the communication range of at least one other defines a coverage space, the extent of said coverage space being at least a few tens of cubic miles. Further distinction with regard to WiFi wireless systems which may include a plurality of transmitters all coupled to form a single network, cellular networks, more specifically those arranged as mobile telephone systems, include special handoff mechanisms whereby a mobile transceiver which passes from one cell to another cell maintains a seemingly continuous connection. In this way, the coverage space in which a connection may be maintained to extend over many hundreds of square miles.


To further improve range, wireless systems arranged as cellular networks use electromagnetic radiation of particular frequency and specialized antennae suitable for long-range transmissions. These electromagnetic signals are arranged, both in frequency and protocol, to cooperate with common mobile telecommunications networks. For example, these signals may be arranged in the frequency band between about 750 MHz and 2000 MHz. Some common cellular networks are build about the frequency bands having a center frequency at 900 MHz or 1800 MHz. For example, in a GSM frequency band is divided into 124 carrier frequencies, or subbands, spaced 200 kHz apart in a frequency division multiple access FDMA scheme. Each subband may be further divided into a time-sharing scheme, or TDMA time division multiple access system.


As the particular nature of vehicle event recorder systems and their use in fleet vehicles demands network connections which may be maintained continuously over very large ranges, the combination of a vehicle event recorder head with a cellular type wireless network should be viewed as particularly beneficial and cooperative in a synergistic way. The combination of vehicle event recorders with wireless cellular networks provides fantastic benefit. Among which includes continuing communication between a remote server and a vehicle during a service today. However, this combination is also accompanied by some disadvantage. The bandwidth of wireless cellular networks is not sufficiently adequate whereby high-resolution real-time video may be uploaded from an in-vehicle system. Accordingly, it is sometimes necessary to provide special means for forming datasets of reduced size which may be more readily transmitted over limited bandwidth networks such as common wireless cellular networks.


In a first of such systems, a vehicle event recorder head includes a local memory which is well managed in view of an overwrite scheme which discards unnecessary data of low value while preserving high value data for transmission to the remote server. In other systems, a complete dataset may be abbreviated with the abbreviated portion subject to instant transmission and the complete dataset subject to non real-time transmission, but rather subject to a delayed transmission at times when network resources become more available. Thus, a high priority dataset and lower priority dataset may be formed in conjunction with a single event. The high priority dataset is of limited or reduced size and subject to instant transmission, the low priority dataset may be considerably larger but more permissive with respect to transmission delay.


These concepts and others are more readily understood in view of the following discussion with reference to numerals which is directed to FIGS. 1 through 5. Particularly, the diagram of FIG. 1 illustrates vehicle event recorder systems in a schematic presentation. A vehicle event recorder head 1, includes as primary. elements a video camera 2, a wireless communications transceiver 3, and a computer microprocessor 4. These elements arranged in a common housing may be mounted conveniently within a vehicle for example, on the interior, near the dashboard behind the windshield. The combination including: a video camera; processor; mobile wireless communications link, prepared as a single unit suitable for integration with the vehicle is sometimes and herein called a ‘vehicle event recorder head’ or the ‘head unit’. So long as a vehicle remains within the coverage space of the cellular network, images collected by the video camera may be processed by the microprocessor and transmitted through the cellular network to remote servers. A distribution of various cellular base stations 5 forms a coverage space 6 which may extend many tens of cubic miles. A plurality of these base stations operate in conjunction with one another by way of ‘handoff mechanisms to form the ‘cellular’ arrangement 7. A vehicle passing from one cell to another cell seamlessly transfers communication from a first a base station to a second base station without ever having lost connection 8 to the network. In this way, data from a vehicle event recorder may be continuously transferred into the network even at times when a vehicle passes from a first cell to another. Thus very large continuous coverage areas are provided such that a vehicle event recorder mounted in a vehicle is continuously in contact with a remote server throughout the service day. Such advantage cannot be available in wired or fixed wireless systems having in comparison—severely limited range.


It is important to point out that an arrangement of these architectures includes a protocol translator between those communications protocols of wired networks and those communications protocols preferred on mobile wireless networks. Thus these vehicle event recorder systems may be considered as including a compound communications network comprised of a wireless side 8 and a wired side 9 with a protocol translator or ‘gateway’ 10 there between. Further these compound networks may also include the Internet 11 which may be connected 12 to remote server 13, and still further to a mass storage database 14.


Experts in the field will surely appreciate that a high-resolution video camera generates far too much data than which can be transmitted in real-time over a common wireless mobile cellular communications network. It is for this reason that in some versions a special memory system be adopted whereby high-resolution video can be collected and pre-processed before transmission over the wireless link. In a first scheme, a managed loop memory is arranged to receive video frames while simultaneously discarding older frames in accordance with a strategy which preserves most valuable data. Since only ‘most valuable’ data is transmitted, a limited communications link is not totally consumed by an unprocessed video stream.


In FIG. 2 it can be it further appreciated that a vehicle event recorder head 21 is comprised of a video camera 22, a microprocessor 23, a wireless mobile communications transceiver 24, an advanced two-stage memory 25 comprising a managed-loop memory 26, and a flash-type memory buffer 27. Although video is continuously captured by the video camera and transferred to the managed loop memory portion, only on a toggle action of the event trigger 28 is data transferred from the loop to the flash memory buffer. The data set which is transferred to the flash memory buffer, may be considerably reduced in size when compared to an unprocessed continuous video stream. One will gain a further appreciation of these memory management arrangements, which are fully disclosed in detail in U.S. patent application filed Dec. 7, 2005 entitled: “Memory Management in Event Recording Systems” which is hereby incorporated into this disclosure by explicit reference.


While memory management techniques described above are considered preferred best modes, is explicitly noted and anticipated herein that many other schemes might be usefully deployed to reduce a continuous data stream collected by a video camera to an abbreviated dataset more suitable for transmission over limited bandwidth communications links. Accordingly, we consider a system architecture depicted in FIG. 3. A vehicle event recorder head 31 is comprised of the microprocessor 32, communications transceiver 33, video camera 34 having field of view 35, dataset manager 36, and mass data storage buffer 37. The dataset manager is arranged to receive video data and to process received data to produce an abbreviated dataset which has a reduced amount of data in comparison to a data heavy continuous video stream. Once a dataset manager produces an abbreviated dataset in the vehicle event recorder head, that abbreviated dataset may be transmitted by mobile communications transceiver into the cellular network 38, and further through a wired network and to remote server 39.



FIG. 4 illustrates another important element of these systems. Due to the specific physical nature of cellular communications networks, certain transmission protocols are required. However, wired networks have different characteristics, and thus different transmission protocols are used with those networks. When a compound network is formed of a wireless portion and a wired portion, a system must be put in place to translate from one protocol to another and perform the reverse operation for data traffic going in an opposing direction. This protocol translator is sometimes and herein called a ‘gateway’. FIG. 4 illustrates a system having a gateway protocol translator between a wired portion and a wireless portion of a compound communications network. A vehicle event recorder head 41, includes video camera 42, microprocessor 43, and cellular transceiver 44. The cellular transceiver 44 may transmit and receive data messages in accordance with protocols used with wireless cellular networks such as W-CDMA, EvDO, GPRS, EDGE, PCS, CDMA, and GSM, among others.


Wireless cellular network 45 may include a base station 46. The base station may have special gateway module 47 arranged to translate protocols associated wireless networks into protocols used more commonly with wired networks such as the Internet 48. High speed wired type networks most commonly deploy transmission protocols such as those including: TCP/IP, UDP, XML, HTML data exchange formats among others. In this way, a vehicle event recorder system of these inventions includes a vehicle event recorder head in communication with a compound network including a wireless portion and a wired portion coupled together by way of a protocol gateway. In preferred versions, the wireless portion of these networks is arranged as a cellular mobile wireless network commonly used with mobile telephones. In preferred versions, the wired portion of the network includes the Internet which supports remote location and widely available access to a system server.


Finally, FIG. 5 illustrates yet another important feature of these systems. As these systems are primarily directed to vehicle fleet management strategy, fleet member authentication client and server modules are to be included as part of a vehicle event recorder head and remote server respectively. A fleet member authentication client is a module which provides handshaking and identification functionality such that a particular vehicle event recorder associated with a particular vehicle, or vehicle and user/driver, to present itself as such to the fleet member authentication server module. In this way, a single remote server may be in communication with a plurality of vehicles and groups of vehicles all associated with a particular vehicle fleet. The remote server can thereafter manage event data received from various vehicles and sort it as part of the particular fleet and further manage access to the data with regard to particular fleet administrator. In the figure, vehicle event recorder head 51, includes video camera 52, microprocessor 53, and wireless transceiver 54. In addition vehicle event recorder head is integrated with a fleet member authentication client module 55. When in communication with a remote server, the authentication module presents an identity scheme which is transmitted by cellular network 56 and further by wired network 57. The remote server 58 is integrated with a fleet member authentication server module 59. Calls from particular vehicle event recorders are received by the server and processed in accordance with their association with a specific fleet known to the server.


While in general a vehicle event recorder head is arranged to automatically connect wirelessly to the network in response to an event trigger, other actions may be arranged to initiate a data transfers. One such action includes that which occurs remote from the vehicle event recorder head. A systems administrator might initiate a request for information from a particular vehicle while operating in the field. The request is transmitted from the remote server, and hits the vehicle event recorder head to trigger a data transfer in agreement with the request. The request may be for a ‘present instant’ dataset which is generated at a vehicle event recorder head in real-time. Alternatively the request may be for a dataset associated with a prior instant; that dataset having been stored in a local memory. In either case, these systems are meant to include data-transfer actions and which are initiated by an administrator operating from a remote server station or other remote location.


In some versions of these inventions, it is necessary throttle data transmission in accordance with network congestion considerations. When a wireless cellular telephone network is very busy, the system resources should be allocated to those applications which require real-time data exchange. For example, a voice conversation is a real-time application that requires receipt of data without delay. However in most instances, data collected by a vehicle event recorder is not subject to compromise when it is received at a remote server with some reasonable delay. Accordingly, these systems are arranged such that the vehicle event recorder head is responsive in its data transmission activity as directed from an indicator provided by the network, the indicator being indicative of network capacity or network congestion. This function, among others may be taken up at a dataset manager.


While an ‘Internet Server’ is a general purpose server which can provide hosting and HTML response services to any requesting agent, the servers described here are not general purpose Internet servers. Rather, these servers include application-specific code. This code is particularly arranged with a view to support of vehicle event recorder systems. That is to say, servers are predefined in their function. Such that they are responsive to calls made by cooperating vehicle event recorder heads which have a priori knowledge of the existence of the server and the functions enabled therein. Thus proprietary calls and responses may be exchanged between an authorized vehicle event recorder head and a remote server suitable for receiving such calls from those authorized vehicle event recorders.


By way of example one such important function includes authentication services. In these systems, it is important that only authorized vehicle event recorder units be allowed to communicate with specific servers arranged to receive their communications. Thus both servers and vehicle event recorders are arranged with authentication modules. An authentication client is part of a vehicle event recorder unit; and an authentication server is part of the remote server suite of functionality. Thus, special relationships are formed between vehicle event recorders and associated remote servers. In this way, special fleet administration including fleet messaging may be established. Vehicle event recorders may operate in groups of cooperating units, these groups having further associations with entities such as business divisions or other logical groupings.


One will now fully appreciate how highly mobile vehicle event recorders are coupled to remote servers by way of wireless cellular communications networks to provide continuous links over greatly extended communications spaces. Although the present inventions have been described in considerable detail with clear and concise language and with reference to certain preferred versions thereof including best modes anticipated by the inventors, other versions are possible. Therefore, the spirit and scope of the invention should not be limited by the description of the preferred versions contained therein, but rather by the claims appended hereto.

Claims
  • 1. A vehicle event recorder system configured to couple with a vehicle, the system comprising: a camera configured to acquire visual information representing a vehicle environment, the vehicle environment including spaces in and around an interior and an exterior of the vehicle;one or more vehicle systems transducers configured to generate output signals conveying vehicle usage information, the one or more vehicle systems transducers forming at least part of an on-board databus system, the vehicle usage information including information related to one or more of a drive-train, a transmission, an engine, brakes, or lights of the vehicle;a managed loop memory configured to electronically store information;a buffer memory configured to electronically store information;a transceiver configured to wirelessly transmit information to a remotely located server via a cellular communication network; anda microprocessor configured to: effectuate storage of the visual information and the vehicle usage information in the managed loop memory;responsive to physical anomaly event triggers, transfer the visual information and the vehicle usage information electronically stored by the managed loop memory to the buffer memory in detailed complete datasets that correspond to individual physical anomaly event triggers;compress and/or parse the detailed complete datasets into abbreviated datasets such that the abbreviated datasets comprise less bytes of data than the detailed complete datasets;effectuate storage of the abbreviated datasets in the buffer memory, andfacilitate wireless transmission of the detailed complete datasets and the abbreviated datasets via the transceiver, wherein transmission of the abbreviated datasets is prioritized over the detailed complete datasets such thata high priority individual abbreviated dataset associated with a single vehicle physical anomaly event trigger is transmitted instantly via the cellular communication network, and thena lower priority individual detailed complete dataset associated with the same physical anomaly event trigger event is transmitted responsive to a higher bandwidth link becoming available.
  • 2. The vehicle event recorder of claim 1, wherein the microprocessor is configured such that the single physical anomaly event trigger is associated with one or more of a vehicle accident, swerving, or hard braking.
  • 3. The vehicle event recorder of claim 1, wherein the microprocessor is configured such that the lower priority individual detailed complete dataset includes visual information and vehicle usage information from before and after the single physical anomaly event trigger.
  • 4. The vehicle event recorder of claim 1, wherein the microprocessor is configured to facilitate transmission of one or more of the detailed complete datasets or the abbreviated datasets to the remotely located server via the transceiver responsive to electronic requests from the remotely located server.
  • 5. A method for transmitting information from a vehicle event recorder system to a remotely located server, the vehicle event recorder system including a managed loop memory and a buffer memory both configured to store information, the vehicle event recorder system configured to couple with a vehicle, the method comprising: acquiring visual information representing a vehicle environment, the vehicle environment including spaces in and around an interior and an exterior of the vehicle;generating output signals conveying vehicle usage information, the vehicle usage information including information related to one or more of a drive-train, a transmission, an engine, brakes, or lights of the vehicle;effectuating storage of the visual information and the vehicle usage information in the managed loop memory;responsive to physical anomaly event triggers, transferring the visual information and the vehicle usage information electronically stored by the managed loop memory to the buffer memory in detailed complete datasets that correspond to individual physical anomaly event triggers;compressing and/or parsing the detailed complete datasets into abbreviated datasets such that the abbreviated datasets comprise less bytes of data than the detailed complete datasets;effectuating storage of the abbreviated datasets in the buffer memory, andfacilitating wireless transmission of the detailed complete datasets and the abbreviated datasets to the remotely located server via a cellular communication network, wherein transmission of the first abbreviated datasets is prioritized over the detailed complete datasets such that a high priority individual abbreviated dataset associated with a single physical anomaly event trigger is transmitted instantly via the cellular communication network, and thena lower priority individual detailed complete dataset associated with the same physical anomaly event trigger is transmitted responsive to a higher bandwidth link becoming available.
  • 6. The method of claim 5, wherein the single physical anomaly event trigger is associated with one or more of a vehicle accident, swerving, or hard braking.
  • 7. The method of claim 5, wherein the lower priority individual detailed complete dataset includes visual information and vehicle usage information from before and after the first physical anomaly event trigger.
  • 8. The method of claim 5, further comprising facilitating transmission of one or more of the detailed complete datasets or the abbreviated datasets to the remotely located server responsive to electronic requests from the remotely located server.
  • 9. A vehicle event recorder system configured to couple with a vehicle, the system comprising: a camera configured to acquire visual information from a vehicle environment, the vehicle environment including spaces in and around an interior and an exterior of the vehicle;one or more vehicle systems transducers configured to generate output signals conveying vehicle usage information, the one or more vehicle systems transducers forming at least part of an on-board databus system, the vehicle usage information including information related to one or more of a drive-train, a transmission, an engine, brakes, or lights of the vehicle;an electronic memory configured to electronically store information;a transceiver configured to wirelessly transmit information to a remotely located server via a cellular communication network; anda microprocessor configured to: effectuate storage of the visual information and the vehicle usage information in the electronic memory in detailed complete datasets that correspond to individual physical anomaly event triggers;compress and/or parse the detailed complete datasets into abbreviated datasets such that the abbreviated datasets comprise less bytes of data than the detailed complete datasets; andfacilitate the wireless transmission of the detailed complete datasets and the abbreviated datasets via the transceiver;wherein transmission of the abbreviated datasets is prioritized over the detailed complete datasets such that a high priority individual abbreviated dataset associated with a single physical anomaly event trigger is transmitted instantly via the cellular communication network, and thena lower priority individual detailed complete dataset associated with the same physical anomaly event trigger is transmitted responsive to a higher bandwidth link becoming available.
  • 10. The vehicle event recorder of claim 9, wherein the microprocessor includes a download module configured to determine the amount of available bandwidth in the cellular communication network and facilitate transmission of the datasets to the remote server via the transceiver based on the determination and the amount of data bytes in the datasets.
  • 11. A method for transmitting information from a vehicle event recorder system to a remotely located server, the vehicle event recorder system configured to couple with a vehicle, the method comprising: acquiring visual information from a vehicle environment, the vehicle environment including spaces in and around an interior and an exterior of the vehicle;generating output signals conveying vehicle usage information, the vehicle usage information including information related to one or more of a drive-train, a transmission, an engine, brakes, or lights of the vehicle;effectuating electronic storage of the visual information and the vehicle usage information in detailed complete datasets that correspond to individual physical anomaly event triggers;compressing and/or parsing the detailed complete datasets into abbreviated datasets such that the abbreviated datasets comprise less bytes of data than the detailed complete datasets; andfacilitating wireless transmission of the detailed complete datasets and the abbreviated datasets to the remotely located server via a cellular communication network; wherein transmission of the abbreviated datasets is prioritized over the detailed complete datasets such that a high priority individual abbreviated dataset associated with a single physical anomaly event trigger is transmitted instantly via the cellular communication network, and thena lower priority individual detailed complete dataset associated with the same physical anomaly event trigger is transmitted responsive to a higher bandwidth link becoming available.
US Referenced Citations (752)
Number Name Date Kind
673203 Freund Apr 1901 A
673795 Hammer May 1901 A
673907 Johnson May 1901 A
676075 McDougall Jun 1901 A
679511 Richards Jul 1901 A
681036 Burg Aug 1901 A
681283 Waynick Aug 1901 A
681998 Swift Sep 1901 A
683155 Thompson Sep 1901 A
683214 Mansfield Sep 1901 A
684276 Lonergan Oct 1901 A
685082 Wood Oct 1901 A
685969 Campbell Nov 1901 A
686545 Selph Nov 1901 A
689849 Brown Dec 1901 A
691982 Sturgis Jan 1902 A
692834 Davis Feb 1902 A
694781 Prinz Mar 1902 A
2943141 Knight Jun 1960 A
3634866 Meyer Jan 1972 A
3781824 Caiati Dec 1973 A
3812287 Lemelson May 1974 A
3885090 Rosenbaum May 1975 A
3992656 Joy Nov 1976 A
4054752 Dennis Oct 1977 A
4258421 Juhasz Mar 1981 A
4271358 Schwarz Jun 1981 A
4276609 Patel Jun 1981 A
4280151 Tsunekawa Jul 1981 A
4281354 Conte Jul 1981 A
4401976 Stadelmayr Aug 1983 A
4409670 Herndon Oct 1983 A
4420773 Toyoda Dec 1983 A
4425097 Owens Jan 1984 A
4456931 Toyoda Jun 1984 A
4489351 d'Alayer de Costemore Dec 1984 A
4496995 Colles Jan 1985 A
4500868 Tokitsu Feb 1985 A
4528547 Rodney Jul 1985 A
4533962 Decker Aug 1985 A
4558379 Hutter Dec 1985 A
4588267 Pastore May 1986 A
4593313 Nagasaki Jun 1986 A
4621335 Bluish Nov 1986 A
4625210 Sagl Nov 1986 A
4630110 Cotton Dec 1986 A
4632348 Keesling Dec 1986 A
4638289 Zottnik Jan 1987 A
4646241 Ratchford Feb 1987 A
4651143 Yamanaka Mar 1987 A
4671111 Lemelson Jun 1987 A
4718685 Kawabe Jan 1988 A
4754255 Sanders Jun 1988 A
4758888 Lapidot Jul 1988 A
4763745 Eto Aug 1988 A
4785474 Bernstein Nov 1988 A
4789904 Peterson Dec 1988 A
4794566 Richards Dec 1988 A
4804937 Barbiaux Feb 1989 A
4806931 Nelson Feb 1989 A
4807096 Skogler Feb 1989 A
4814896 Heitzman Mar 1989 A
4837628 Sasaki Jun 1989 A
4839631 Tsuji Jun 1989 A
4843463 Michetti Jun 1989 A
4843578 Wade Jun 1989 A
4853856 Hanway Aug 1989 A
4853859 Morita Aug 1989 A
4866616 Takeuchi Sep 1989 A
4876597 Roy Oct 1989 A
4883349 Mittelhauser Nov 1989 A
4896855 Furnish Jan 1990 A
4926331 Windle May 1990 A
4930742 Schofield Jun 1990 A
4936533 Adams Jun 1990 A
4939652 Steiner Jul 1990 A
4942464 Milatz Jul 1990 A
4945244 Castleman Jul 1990 A
4949186 Peterson Aug 1990 A
4980913 Skret Dec 1990 A
4987541 Levente Jan 1991 A
4992943 Mccracken Feb 1991 A
5012335 Cohodar Apr 1991 A
5027104 Reid Jun 1991 A
5046007 Mccrery Sep 1991 A
5050166 Cantoni Sep 1991 A
5056056 Gustin Oct 1991 A
5057820 Markson Oct 1991 A
5096287 Kakinami Mar 1992 A
5100095 Haan Mar 1992 A
5111289 Lucas May 1992 A
5140434 Van Aug 1992 A
5140436 Blessinger Aug 1992 A
5140438 Kurahashi et al. Aug 1992 A
5144661 Shamosh Sep 1992 A
5178448 Adams Jan 1993 A
5185700 Bezos Feb 1993 A
5196938 Blessinger Mar 1993 A
5223844 Mansell Jun 1993 A
5224211 Roe Jun 1993 A
5262813 Scharton Nov 1993 A
5283433 Tsien Feb 1994 A
5294978 Katayama Mar 1994 A
5305214 Komatsu Apr 1994 A
5305216 Okura Apr 1994 A
5308247 Dyrdek May 1994 A
5309485 Chao May 1994 A
5311197 Sorden May 1994 A
5321753 Gritton Jun 1994 A
5327288 Wellington Jul 1994 A
5330149 Haan Jul 1994 A
5343527 Moore Aug 1994 A
5353023 Mitsugi Oct 1994 A
5361326 Aparicio Nov 1994 A
5387926 Bellan Feb 1995 A
5388045 Kamiya Feb 1995 A
5388208 Weingartner Feb 1995 A
5404330 Lee Apr 1995 A
5408330 Squicciarini Apr 1995 A
5422543 Weinberg Jun 1995 A
5430431 Nelson Jul 1995 A
5430432 Camhi Jul 1995 A
5435184 Pineroli Jul 1995 A
5445024 Riley Aug 1995 A
5445027 Zoerner Aug 1995 A
5446659 Yamawaki Aug 1995 A
5455625 Englander Oct 1995 A
5455716 Suman Oct 1995 A
5465079 Bouchard Nov 1995 A
5473729 Bryant Dec 1995 A
5477141 Naether Dec 1995 A
5495242 Kick Feb 1996 A
5495243 Mckenna Feb 1996 A
5497419 Hill Mar 1996 A
5499182 Ousborne Mar 1996 A
5504482 Schreder Apr 1996 A
5513011 Matsumoto Apr 1996 A
5515285 Garrett May 1996 A
5521633 Nakajima May 1996 A
5523811 Wada Jun 1996 A
5526269 Ishibashi Jun 1996 A
5530420 Tsuchiya Jun 1996 A
5532678 Kin Jul 1996 A
5537156 Katayama Jul 1996 A
5539454 Williams Jul 1996 A
5541590 Nishio Jul 1996 A
5544060 Fujii Aug 1996 A
5546191 Hibi Aug 1996 A
5546305 Kondo Aug 1996 A
5548273 Nicol Aug 1996 A
5552990 Ihara Sep 1996 A
5559496 Dubats Sep 1996 A
5568211 Bamford Oct 1996 A
5570087 Lemelson Oct 1996 A
5570127 Schmidt Oct 1996 A
5574424 Nguyen Nov 1996 A
5574443 Hsieh Nov 1996 A
D376571 Kokat Dec 1996 S
5581464 Woll Dec 1996 A
5586130 Doyle Dec 1996 A
5590948 Moreno Jan 1997 A
5596382 Bamford Jan 1997 A
5600775 King Feb 1997 A
5608272 Tanguay Mar 1997 A
5610580 Lai Mar 1997 A
5612686 Takano Mar 1997 A
5631638 Kaspar May 1997 A
5638273 Coiner Jun 1997 A
5642106 Hancock Jun 1997 A
5646856 Kaesser Jul 1997 A
5652706 Morimoto Jul 1997 A
RE35590 Bezos Aug 1997 E
5654892 Fujii Aug 1997 A
5659355 Barron Aug 1997 A
5666120 Kline Sep 1997 A
5667176 Zamarripa Sep 1997 A
5669698 Veldman Sep 1997 A
5671451 Takahashi Sep 1997 A
5677979 Squicciarini Oct 1997 A
5680117 Arai Oct 1997 A
5680123 Lee Oct 1997 A
5686889 Hillis Nov 1997 A
5689442 Swanson Nov 1997 A
5696705 Zykan Dec 1997 A
5706362 Yabe Jan 1998 A
5706909 Bevins Jan 1998 A
5712679 Coles Jan 1998 A
5717456 Rudt Feb 1998 A
5719554 Gagnon Feb 1998 A
5781145 Williams Jul 1998 A
5784007 Pepper Jul 1998 A
5784021 Oliva Jul 1998 A
5784521 Nakatani Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker Aug 1998 A
5793308 Rosinski Aug 1998 A
5793420 Schmidt Aug 1998 A
5793739 Tanaka Aug 1998 A
5793985 Natarajan Aug 1998 A
5794165 Minowa Aug 1998 A
5797134 Mcmillan Aug 1998 A
5798458 Monroe Aug 1998 A
5800040 Santo Sep 1998 A
5802545 Coverdill Sep 1998 A
5802727 Blank Sep 1998 A
5805079 Lemelson Sep 1998 A
5813745 Fant Sep 1998 A
5815071 Doyle Sep 1998 A
5815093 Kikinis Sep 1998 A
5819198 Peretz Oct 1998 A
5825284 Dunwoody Oct 1998 A
5825412 Hobson Oct 1998 A
5844505 Van Dec 1998 A
5877897 Schofield Mar 1999 A
5896167 Omae Apr 1999 A
5897606 Miura Apr 1999 A
5899956 Chan May 1999 A
5901806 Takahashi May 1999 A
5914748 Parulski Jun 1999 A
5919239 Fraker Jul 1999 A
5926210 Hackett Jul 1999 A
5928291 Jenkins Jul 1999 A
5938321 Bos Aug 1999 A
5946404 Bakshi Aug 1999 A
5948038 Daly Sep 1999 A
5959367 Ofarrell Sep 1999 A
5978017 Tino Nov 1999 A
6002326 Turner Dec 1999 A
6006148 Strong Dec 1999 A
6008723 Yassan Dec 1999 A
6008841 Charlson Dec 1999 A
6009370 Minowa Dec 1999 A
6011492 Garesche Jan 2000 A
6028528 Lorenzetti Feb 2000 A
6037860 Zander Mar 2000 A
6037977 Peterson Mar 2000 A
6049079 Noordam Apr 2000 A
6060989 Gehlot May 2000 A
6064792 Fox May 2000 A
6067488 Tano May 2000 A
6076026 Jambhekar Jun 2000 A
6084870 Wooten Jul 2000 A
6088635 Cox Jul 2000 A
6092008 Bateman Jul 2000 A
6092193 Loomis Jul 2000 A
6100811 Hsu Aug 2000 A
6111254 Eden Aug 2000 A
6118768 Bhatia Sep 2000 A
6122738 Millard Sep 2000 A
6141611 Mackey Oct 2000 A
6144296 Ishida Nov 2000 A
6147598 Murphy Nov 2000 A
6151065 Steed Nov 2000 A
6163338 Johnson Dec 2000 A
6163749 McDonough Dec 2000 A
6167186 Kawasaki Dec 2000 A
6181373 Coles Jan 2001 B1
6185490 Ferguson Feb 2001 B1
6195605 Tabler Feb 2001 B1
6200139 Clapper Mar 2001 B1
6208919 Barkesseh Mar 2001 B1
6211907 Scaman Apr 2001 B1
6218960 Ishikawa Apr 2001 B1
6246933 Baque Jun 2001 B1
6246934 Otake Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6253129 Jenkins Jun 2001 B1
6259475 Ramachandran Jul 2001 B1
6263265 Fera Jul 2001 B1
6298290 Abe Oct 2001 B1
6300875 Schafer Oct 2001 B1
6333759 Mazzilli Dec 2001 B1
6337622 Sugano Jan 2002 B1
6349250 Hart Feb 2002 B1
6353734 Wright Mar 2002 B1
6356823 Iannotti Mar 2002 B1
6360147 Lee Mar 2002 B1
6366207 Murphy Apr 2002 B1
6389339 Just May 2002 B1
6389340 Rayner May 2002 B1
6405112 Rayner Jun 2002 B1
6405132 Breed Jun 2002 B1
6408232 Cannon Jun 2002 B1
6411874 Morgan Jun 2002 B2
6421080 Lambert Jul 2002 B1
6434510 Callaghan Aug 2002 B1
6449540 Rayner Sep 2002 B1
6456321 Ito et al. Sep 2002 B1
6459988 Fan Oct 2002 B1
6470241 Yoshikawa Oct 2002 B2
6472771 Frese Oct 2002 B1
6493650 Rodgers Dec 2002 B1
6505106 Lawrence Jan 2003 B1
6507838 Syeda-Mahmood Jan 2003 B1
6516256 Hartmann Feb 2003 B1
6518881 Monroe Feb 2003 B2
6525672 Chainer Feb 2003 B2
6529159 Fan Mar 2003 B1
6535804 Chun Mar 2003 B1
6552682 Fan Apr 2003 B1
6556905 Mittelsteadt Apr 2003 B1
6559769 Anthony May 2003 B2
6575902 Burton Jun 2003 B1
6580983 Laguer-Diaz Jun 2003 B2
6594576 Fan Jul 2003 B2
6611740 Lowrey Aug 2003 B2
6611755 Coffee Aug 2003 B1
6624611 Kirmuss Sep 2003 B2
6629029 Giles Sep 2003 B1
6629030 Klausner Sep 2003 B2
6636791 Okada Oct 2003 B2
6664922 Fan Dec 2003 B1
6679702 Rau Jan 2004 B1
6684137 Takagi Jan 2004 B2
6694483 Nagata Feb 2004 B1
6701234 Vogelsang Mar 2004 B1
6714894 Tobey Mar 2004 B1
6718239 Rayner Apr 2004 B2
6721640 Glenn Apr 2004 B2
6728612 Carver Apr 2004 B1
6732031 Lightner et al. May 2004 B1
6732032 Banet et al. May 2004 B1
6735503 Ames May 2004 B2
6737954 Chainer May 2004 B2
6738697 Breed May 2004 B2
6739078 Morley May 2004 B2
6741168 Webb May 2004 B2
6745153 White Jun 2004 B2
6747692 Patel Jun 2004 B2
6748305 Klausner Jun 2004 B1
6760757 Lundberg Jul 2004 B1
6762513 Landgraf Jul 2004 B2
6795017 Puranik Sep 2004 B1
6795111 Mazzilli Sep 2004 B1
6795759 Doyle Sep 2004 B2
6798743 Ma Sep 2004 B1
6804590 Sato et al. Oct 2004 B2
6810362 Adachi Oct 2004 B2
6812831 Ikeda Nov 2004 B2
6819989 Maeda Nov 2004 B2
6831556 Boykin Dec 2004 B1
6832140 Fan Dec 2004 B2
6832141 Skeen Dec 2004 B2
6836712 Nishina Dec 2004 B2
6842762 Raithel Jan 2005 B2
6847873 Li Jan 2005 B1
6850823 Eun Feb 2005 B2
6859695 Klausner Feb 2005 B2
6862524 Nagda Mar 2005 B1
6865457 Mittelsteadt Mar 2005 B1
6867733 Sandhu Mar 2005 B2
6873261 Anthony Mar 2005 B2
6882313 Fan Apr 2005 B1
6894606 Forbes May 2005 B2
6895248 Akyol May 2005 B1
6898492 De Leon May 2005 B2
6898493 Ehrman May 2005 B2
6919823 Lock Jul 2005 B1
6922566 Puranik Jul 2005 B2
6928348 Lightner Aug 2005 B1
6931309 Phelan Aug 2005 B2
6947817 Diem Sep 2005 B2
6950122 Mirabile Sep 2005 B1
6954223 Miyazawa Oct 2005 B2
6988034 Marlatt Jan 2006 B1
7012632 Freeman Mar 2006 B2
7020548 Saito Mar 2006 B2
7023333 Blanco Apr 2006 B2
7039510 Gumpinger May 2006 B2
7076348 Bucher Jul 2006 B2
7079927 Tano Jul 2006 B1
7082359 Breed Jul 2006 B2
7082382 Rose et al. Jul 2006 B1
7088387 Freeman Aug 2006 B1
7095782 Cohen et al. Aug 2006 B1
7098812 Hirota Aug 2006 B2
7100190 Johnson Aug 2006 B2
7113853 Hecklinger Sep 2006 B2
7117075 Larschan Oct 2006 B1
7119832 Blanco Oct 2006 B2
7155321 Bromley Dec 2006 B2
7177738 Diaz Feb 2007 B2
7209833 Isaji Apr 2007 B2
7239252 Kato Jul 2007 B2
7265663 Steele Sep 2007 B2
7272179 Siemens et al. Sep 2007 B2
7308341 Schofield Dec 2007 B2
7317974 Luskin Jan 2008 B2
7348895 Lagassey Mar 2008 B2
7349027 Endo Mar 2008 B2
7370261 Winarski May 2008 B2
7382933 Dorai Jun 2008 B2
7386376 Basir Jun 2008 B2
7389178 Raz Jun 2008 B2
7457693 Olsen Nov 2008 B2
7471189 Vastad Dec 2008 B2
7536457 Miller May 2009 B2
7561054 Raz Jul 2009 B2
7623754 McKain Nov 2009 B1
7659827 Gunderson Feb 2010 B2
7667731 Kreiner et al. Feb 2010 B2
7702442 Takenaka Apr 2010 B2
7725216 Kim May 2010 B2
7768548 Silvernail et al. Aug 2010 B2
7804426 Etcheson Sep 2010 B2
7821421 Tamir Oct 2010 B2
7853376 Peng Dec 2010 B2
7940250 Forstall May 2011 B2
7974748 Goerick Jul 2011 B2
8068979 Breed Nov 2011 B2
8113844 Huang Feb 2012 B2
8140358 Ling Mar 2012 B1
8239092 Plante Aug 2012 B2
8311858 Everett Nov 2012 B2
8314708 Gunderson Nov 2012 B2
8321066 Becker Nov 2012 B2
8417562 Siemens Apr 2013 B1
8508353 Cook Aug 2013 B2
8538696 Cassanova Sep 2013 B1
8564426 Cook Oct 2013 B2
8564446 Gunderson Oct 2013 B2
8571755 Plante Oct 2013 B2
8606492 Botnen Dec 2013 B1
8635557 Geise Jan 2014 B2
8676428 Richardson Mar 2014 B2
8744642 Nemat-Nasser Jun 2014 B2
8775067 Cho Jul 2014 B2
8803695 Denson Aug 2014 B2
8849501 Cook Sep 2014 B2
8855847 Uehara Oct 2014 B2
8868288 Plante Oct 2014 B2
8880279 Plante Nov 2014 B2
8892310 Palmer Nov 2014 B1
8989959 Plante Mar 2015 B2
8996240 Plante Mar 2015 B2
20010005217 Hamilton Jun 2001 A1
20010005804 Rayner Jun 2001 A1
20010018628 Jenkins Aug 2001 A1
20010020204 Runyon Sep 2001 A1
20010052730 Baur Dec 2001 A1
20020019689 Harrison Feb 2002 A1
20020027502 Mayor Mar 2002 A1
20020029109 Wong Mar 2002 A1
20020035422 Sasaki Mar 2002 A1
20020044225 Rakib Apr 2002 A1
20020059453 Eriksson May 2002 A1
20020061758 Zarlengo May 2002 A1
20020067076 Talbot Jun 2002 A1
20020087240 Raithel Jul 2002 A1
20020091473 Gardner Jul 2002 A1
20020105438 Forbes Aug 2002 A1
20020107619 Klausner Aug 2002 A1
20020111725 Burge Aug 2002 A1
20020111756 Modgil Aug 2002 A1
20020118206 Knittel Aug 2002 A1
20020120374 Douros Aug 2002 A1
20020135679 Scaman Sep 2002 A1
20020138587 Koehler Sep 2002 A1
20020163532 Thomas Nov 2002 A1
20020169529 Kim Nov 2002 A1
20020169530 Laguer-Diaz Nov 2002 A1
20020183905 Maeda Dec 2002 A1
20030016753 Kim Jan 2003 A1
20030028298 Macky Feb 2003 A1
20030053433 Chun Mar 2003 A1
20030055557 Dutta Mar 2003 A1
20030065805 Barnes Apr 2003 A1
20030067541 Joao Apr 2003 A1
20030079041 Parrella Apr 2003 A1
20030080713 Kirmuss May 2003 A1
20030080878 Kirmuss May 2003 A1
20030081121 Kirmuss May 2003 A1
20030081122 Kirmuss May 2003 A1
20030081127 Kirmuss May 2003 A1
20030081128 Kirmuss May 2003 A1
20030081934 Kirmuss May 2003 A1
20030081935 Kirmuss May 2003 A1
20030095688 Kirmuss May 2003 A1
20030112133 Webb Jun 2003 A1
20030125854 Kawasaki Jul 2003 A1
20030144775 Klausner Jul 2003 A1
20030154009 Basir et al. Aug 2003 A1
20030158638 Yakes Aug 2003 A1
20030177187 Levine Sep 2003 A1
20030187704 Hashiguchi Oct 2003 A1
20030191568 Breed Oct 2003 A1
20030195678 Betters et al. Oct 2003 A1
20030214585 Bakewell Nov 2003 A1
20030220835 Barnes Nov 2003 A1
20030222880 Waterman Dec 2003 A1
20040008255 Lewellen Jan 2004 A1
20040033058 Reich Feb 2004 A1
20040039503 Doyle Feb 2004 A1
20040039504 Coffee Feb 2004 A1
20040044452 Bauer Mar 2004 A1
20040044592 Ubik Mar 2004 A1
20040054444 Abeska Mar 2004 A1
20040054513 Laird Mar 2004 A1
20040054689 Salmonsen Mar 2004 A1
20040064245 Knockeart Apr 2004 A1
20040070926 Boykin Apr 2004 A1
20040083041 Skeen Apr 2004 A1
20040088090 Wee May 2004 A1
20040103008 Wahlbin May 2004 A1
20040103010 Wahlbin May 2004 A1
20040104842 Drury Jun 2004 A1
20040111189 Miyazawa Jun 2004 A1
20040138794 Saito Jul 2004 A1
20040145457 Schofield et al. Jul 2004 A1
20040153244 Kellum Aug 2004 A1
20040153362 Bauer Aug 2004 A1
20040167689 Bromley Aug 2004 A1
20040179600 Wells Sep 2004 A1
20040181326 Adams Sep 2004 A1
20040184548 Kerbiriou Sep 2004 A1
20040203903 Wilson Oct 2004 A1
20040209594 Naboulsi Oct 2004 A1
20040210353 Rice Oct 2004 A1
20040230345 Tzamaloukas Nov 2004 A1
20040230370 Tzamaloukas Nov 2004 A1
20040230373 Tzamaloukas Nov 2004 A1
20040230374 Tzamaloukas Nov 2004 A1
20040233284 Lesesky Nov 2004 A1
20040236474 Chowdhary Nov 2004 A1
20040236476 Chowdhary Nov 2004 A1
20040243285 Gounder Dec 2004 A1
20040243308 Irish Dec 2004 A1
20040243668 Harjanto Dec 2004 A1
20040254689 Blazic Dec 2004 A1
20040254698 Hubbard Dec 2004 A1
20050021199 Zimmerman Jan 2005 A1
20050043869 Funkhouser Feb 2005 A1
20050060070 Kapolka Mar 2005 A1
20050060071 Winner Mar 2005 A1
20050065716 Timko Mar 2005 A1
20050073585 Ettinger Apr 2005 A1
20050078423 Kim Apr 2005 A1
20050088291 Blanco Apr 2005 A1
20050099498 Lao May 2005 A1
20050100329 Lao May 2005 A1
20050102074 Kolls May 2005 A1
20050125117 Breed Jun 2005 A1
20050131585 Luskin Jun 2005 A1
20050131595 Luskin Jun 2005 A1
20050131597 Raz Jun 2005 A1
20050136949 Barnes Jun 2005 A1
20050137757 Phelan Jun 2005 A1
20050137796 Gumpinger Jun 2005 A1
20050146458 Carmichael Jul 2005 A1
20050149238 Stefani Jul 2005 A1
20050149259 Cherveny Jul 2005 A1
20050159964 Sonnenrein Jul 2005 A1
20050166258 Vasilevsky Jul 2005 A1
20050171692 Hamblen Aug 2005 A1
20050174217 Basir Aug 2005 A1
20050182538 Phelan Aug 2005 A1
20050182824 Cotte Aug 2005 A1
20050185052 Raisinghani Aug 2005 A1
20050185936 Lao Aug 2005 A9
20050192749 Flann Sep 2005 A1
20050197748 Hoist Sep 2005 A1
20050200714 Marchese Sep 2005 A1
20050203683 Olsen Sep 2005 A1
20050206741 Raber Sep 2005 A1
20050212920 Evans Sep 2005 A1
20050216144 Baldassa Sep 2005 A1
20050228560 Doherty Oct 2005 A1
20050233805 Okajima Oct 2005 A1
20050251304 Cancellara Nov 2005 A1
20050258942 Manasseh Nov 2005 A1
20050264691 Endo Dec 2005 A1
20050283284 Grenier Dec 2005 A1
20060001671 Kamijo Jan 2006 A1
20060007151 Ram Jan 2006 A1
20060011399 Brockway Jan 2006 A1
20060015233 Olsen Jan 2006 A1
20060022842 Zoladek Feb 2006 A1
20060025897 Shostak Feb 2006 A1
20060030986 Peng Feb 2006 A1
20060040239 Cummins Feb 2006 A1
20060047380 Welch Mar 2006 A1
20060053038 Warren Mar 2006 A1
20060055521 Blanco Mar 2006 A1
20060057543 Roald Mar 2006 A1
20060058950 Kato Mar 2006 A1
20060072792 Toda Apr 2006 A1
20060078853 Lanktree Apr 2006 A1
20060092043 Lagassey May 2006 A1
20060095175 deWaal et al. May 2006 A1
20060095199 Lagassey May 2006 A1
20060095349 Morgan May 2006 A1
20060103127 Lie May 2006 A1
20060106514 Liebl May 2006 A1
20060111817 Phelan May 2006 A1
20060122749 Phelan Jun 2006 A1
20060142913 Coffee Jun 2006 A1
20060147187 Takemoto Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060168271 Pabari Jul 2006 A1
20060178793 Hecklinger Aug 2006 A1
20060192658 Yamamura Aug 2006 A1
20060200008 Moore-Ede Sep 2006 A1
20060209090 Kelly et al. Sep 2006 A1
20060209840 Paatela Sep 2006 A1
20060212195 Veith Sep 2006 A1
20060226344 Werth Oct 2006 A1
20060229780 Underdahl Oct 2006 A1
20060242680 Johnson Oct 2006 A1
20060247833 Malhotra Nov 2006 A1
20060253307 Warren Nov 2006 A1
20060259218 Wu Nov 2006 A1
20060261931 Cheng Nov 2006 A1
20070001831 Raz Jan 2007 A1
20070005404 Raz Jan 2007 A1
20070027583 Tamir Feb 2007 A1
20070027726 Warren Feb 2007 A1
20070035632 Silvernail Feb 2007 A1
20070043487 Krzystofczyk Feb 2007 A1
20070120948 Fujioka May 2007 A1
20070124332 Ballesty May 2007 A1
20070127833 Singh Jun 2007 A1
20070132773 Plante Jun 2007 A1
20070135979 Plante Jun 2007 A1
20070135980 Plante Jun 2007 A1
20070136078 Plante Jun 2007 A1
20070142986 Alaous Jun 2007 A1
20070143499 Chang Jun 2007 A1
20070150138 Plante Jun 2007 A1
20070150140 Seymour Jun 2007 A1
20070173994 Kubo Jul 2007 A1
20070179691 Grenn Aug 2007 A1
20070183635 Weidhaas Aug 2007 A1
20070208494 Chapman Sep 2007 A1
20070216521 Guensler Sep 2007 A1
20070219685 Plante Sep 2007 A1
20070219686 Plante Sep 2007 A1
20070241874 Okpysh Oct 2007 A1
20070244614 Nathanson Oct 2007 A1
20070257781 Denson Nov 2007 A1
20070257782 Etcheson Nov 2007 A1
20070257804 Gunderson Nov 2007 A1
20070257815 Gunderson Nov 2007 A1
20070260677 Demarco Nov 2007 A1
20070268158 Gunderson Nov 2007 A1
20070271105 Gunderson Nov 2007 A1
20070273480 Burkman Nov 2007 A1
20070279214 Buehler Dec 2007 A1
20070299612 Kimura Dec 2007 A1
20080035108 Ancimer Feb 2008 A1
20080059019 Delia Mar 2008 A1
20080071827 Hengel Mar 2008 A1
20080111666 Plante May 2008 A1
20080122603 Plante May 2008 A1
20080143834 Comeau Jun 2008 A1
20080147267 Plante et al. Jun 2008 A1
20080157510 Breed Jul 2008 A1
20080167775 Kuttenberger Jul 2008 A1
20080169914 Albertson Jul 2008 A1
20080177436 Fortson Jul 2008 A1
20080211779 Pryor Sep 2008 A1
20080234920 Nurminen Sep 2008 A1
20080252412 Larsson Oct 2008 A1
20080252485 Lagassey Oct 2008 A1
20080269978 Shirole Oct 2008 A1
20080281485 Plante Nov 2008 A1
20080309762 Howard et al. Dec 2008 A1
20080319604 Follmer Dec 2008 A1
20090009321 McClellan Jan 2009 A1
20090043500 Satoh Feb 2009 A1
20090043971 Kim Feb 2009 A1
20090051510 Follmer Feb 2009 A1
20090138191 Engelhard May 2009 A1
20090157255 Plante Jun 2009 A1
20090216775 Ratliff et al. Aug 2009 A1
20090224869 Baker Sep 2009 A1
20090290848 Brown Nov 2009 A1
20090299622 Denaro Dec 2009 A1
20090312998 Berckmans Dec 2009 A1
20090326796 Prokhorov Dec 2009 A1
20100030423 Nathanson Feb 2010 A1
20100045451 Periwal Feb 2010 A1
20100057342 Muramatsu Mar 2010 A1
20100063672 Anderson Mar 2010 A1
20100063850 Daniel Mar 2010 A1
20100070175 Soulchin Mar 2010 A1
20100085193 Boss Apr 2010 A1
20100085430 Kreiner et al. Apr 2010 A1
20100087984 Joseph Apr 2010 A1
20100100315 Davidson Apr 2010 A1
20100153146 Angell Jun 2010 A1
20100157061 Katsman Jun 2010 A1
20100191411 Cook Jul 2010 A1
20100220892 Kawakubo Sep 2010 A1
20100250021 Cook Sep 2010 A1
20100250060 Maeda Sep 2010 A1
20100268415 Ishikawa Oct 2010 A1
20100312464 Fitzgerald Dec 2010 A1
20110035139 Konlditslotis Feb 2011 A1
20110043624 Haug Feb 2011 A1
20110060496 Nielsen Mar 2011 A1
20110077028 Wilkes Mar 2011 A1
20110091079 Yu-Song Apr 2011 A1
20110093159 Boling Apr 2011 A1
20110112995 Chang May 2011 A1
20110121960 Tsai May 2011 A1
20110125365 Larschan May 2011 A1
20110130916 Mayer Jun 2011 A1
20110153367 Amigo Jun 2011 A1
20110161116 Peak Jun 2011 A1
20110173015 Chapman Jul 2011 A1
20110213628 Peak Sep 2011 A1
20110224891 Iwuchukwu Sep 2011 A1
20110251752 DeLarocheliere Oct 2011 A1
20110254676 Marumoto Oct 2011 A1
20110273568 Lagassey Nov 2011 A1
20110283223 Vattinen et al. Nov 2011 A1
20110304446 Basson Dec 2011 A1
20120021386 Anderson Jan 2012 A1
20120035788 Trepagnier Feb 2012 A1
20120041675 Juliver Feb 2012 A1
20120046803 Inou Feb 2012 A1
20120071140 Oesterling Mar 2012 A1
20120078063 Moore-Ede Mar 2012 A1
20120100509 Gunderson Apr 2012 A1
20120109447 Yousefi May 2012 A1
20120150436 Rossano Jun 2012 A1
20120190001 Knight Jul 2012 A1
20120210252 Fedoseyeva Aug 2012 A1
20120277950 Plante Nov 2012 A1
20130004138 Kilar Jan 2013 A1
20130006469 Green Jan 2013 A1
20130021148 Cook Jan 2013 A1
20130030660 Fujimoto Jan 2013 A1
20130073114 Nemat-Nasser Mar 2013 A1
20130096731 Tamari Apr 2013 A1
20130197774 Denson Aug 2013 A1
20130274950 Richardson Oct 2013 A1
20130332004 Gompert et al. Dec 2013 A1
20130345927 Cook Dec 2013 A1
20140025254 Plante Jan 2014 A1
20140046550 Palmer Feb 2014 A1
20140047371 Palmer Feb 2014 A1
20140098228 Plante Apr 2014 A1
20140152828 Plante Jun 2014 A1
20140226010 Molin Aug 2014 A1
20140279707 Joshua Sep 2014 A1
20140280204 Avery Sep 2014 A1
20140335902 Guba Nov 2014 A1
20150035665 Plante Feb 2015 A1
20150057836 Plante Feb 2015 A1
20150105934 Palmer Apr 2015 A1
20150134226 Palmer May 2015 A1
Foreign Referenced Citations (57)
Number Date Country
2469728 Dec 2005 CA
2692415 Aug 2011 CA
2692415 Aug 2011 CA
4416991 Nov 1995 DE
20311262 Sep 2003 DE
202005008238 Sep 2005 DE
102004004669 Dec 2005 DE
0708427 Apr 1996 EP
0840270 May 1998 EP
0848270 May 1998 EP
1170697 Jan 2002 EP
1324274 Jul 2003 EP
1355278 Oct 2003 EP
1427165 Jun 2004 EP
1818873 Aug 2007 EP
2104075 Sep 2009 EP
2268608 Jan 1994 GB
2402530 Dec 2004 GB
2451485 Feb 2009 GB
2447184 Jun 2011 GB
2446994 Aug 2011 GB
58085110 May 1983 JP
S5885110 May 1983 JP
62091092 Apr 1987 JP
S6291092 Apr 1987 JP
S62166135 Jul 1987 JP
02056197 Feb 1990 JP
H0256197 Feb 1990 JP
H04257189 Sep 1992 JP
H05137144 Jun 1993 JP
5294188 Nov 1993 JP
H08124069 May 1996 JP
H09163357 Jun 1997 JP
H09272399 Oct 1997 JP
10076880 Mar 1998 JP
H1076880 Mar 1998 JP
2002191017 Jul 2002 JP
8809023 Nov 1988 WO
9005076 May 1990 WO
9427844 Dec 1994 WO
9600957 Jan 1996 WO
9701246 Jan 1997 WO
9726750 Jul 1997 WO
9937503 Jul 1999 WO
9940545 Aug 1999 WO
9962741 Dec 1999 WO
0007150 Feb 2000 WO
0028410 May 2000 WO
0048033 Aug 2000 WO
0077620 Dec 2000 WO
0123214 Apr 2001 WO
0125054 Apr 2001 WO
0146710 Jun 2001 WO
03045514 Jun 2003 WO
2006022824 Mar 2006 WO
2007067767 Jun 2007 WO
2011055743 May 2011 WO
Non-Patent Literature Citations (185)
Entry
U.S. Appl. No. 11/377,167, Final Office Action dated Nov. 8, 2013.
Adaptec published and sold its VideoOh! DVD software USB 2.0 Edition in at least Jan. 24, 2003.
Ambulance Companies Use Video Technology to Improve Driving Behavior, Ambulance Industry Journal, Spring 2003.
Amended Complaint for Patent Infringement, Trade Secret Misappropriation, Unfair Competition and Conversion in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California, Document 34, filed Oct. 20, 2011, pp. 1-15.
Amendment filed Dec. 23, 2009 during prosecution of U.S. Appl. No. 11/566,424.
Answer to Amended Complaint; Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 47, filed Dec. 13, 2011, pp. 1-15.
U.S. Appl. No. 11/296,906, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/297,669, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/297,889, filed Dec. 8, 2005, File History.
U.S. Appl. No. 11/298,069, filed Dec. 9, 2005, File History.
U.S. Appl. No. 11/299,028, filed Dec. 9, 2005, File History.
U.S. Appl. No. 11/593,659, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/593,682, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/593,882, filed Nov. 7, 2006, File History.
U.S. Appl. No. 11/595,015, filed Nov. 9, 2006, File History.
U.S. Appl. No. 11/637,754, filed Dec. 13, 2006, File History.
U.S. Appl. No. 11/637,755, filed Dec. 13, 2006, File History.
Bill, ‘DriveCam-FAQ’, Dec. 12, 2003.
Bill Siuru, ‘DriveCam Could Save You Big Bucks’, Land Line Magazine, May-Jun. 2000.
Chris Woodyard, ‘Shuttles save with DriveCam’, Dec. 9, 2003.
Dan Carr, Flash Video Template: Video Presentation with Navigation, Jan. 16, 2006, http://www.adobe.com/devnet/fiash/articles/vidtemplate—mediapreso—flash8.html.
David Cullen, ‘Getting a real eyeful’, Fleet Owner Magazine, Feb. 2002.
David Maher, ‘DriveCam Brochure Folder’, Jun. 6, 2005.
David Maher, “DriveCam Brochure Folder”, Jun. 8, 2005.
David Vogeleer et al., Macromedia Flash Professional 8Unleashed (Sams Oct. 12, 2005).
Del Lisk, ‘DriveCam Training Handout Ver4’, Feb. 3, 2005.
Drivecam, Inc., User's Manual for Drivecam Video Systems' Hindsight 20/20 Software Version 4.0 (2003).
DriveCam, Inc.'s Infringement Contentions Exhibit A, U.S. Pat. No. 6,389,340, Document 34.1, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,804,426, Document 34.2, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,659,827, Document 34.3, Oct. 20, 2011.
DriveCam, Inc.'s Infringement Contentions Exhibit D, Document 34.4, Oct. 20, 2011.
DriveCam—Illuminator Data Sheet, Oct. 2, 2004.
Drivecam.com as retrieved by the Internet Wayback Machine as of Mar. 5, 2005.
DriveCam Driving Feedback System, Mar. 15, 2004.
Driver Feedback System, Jun. 12, 2001.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 53, filed Dec. 20, 2011, pp. 1-48.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 1, 2012, pp. 86-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 3, 2012, pp. 86-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Exhibit A, Document 55, filed Jan. 3, 2012, pp. 49-103.
Franke, U., et al., Autonomous Driving Goes Downtown, IEEE Intelligent Systems, 13(6):40-48 (1988); Digital Object Identifier 10.1109/5254.736001.
Gallagher, B., et al., Wireless Communications for Vehicle Safety: Radio Link Performance and Wireless Connectivity Methods, Vehicular Technology Magazine, IEEE, 1(4):4-24 (2006); Digital Object Identifier 10.1109/MVT.2006.343641.
Gandhi, T., et al., Pedestrian Protection Systems: Issues, Survey, and Challenges, IEEE Transactions on Intelligent Transportation Systems, 8(3):413-430 (2007); Digital Object Identifier 10.1109/TITS.2007.903444.
Gary and Sophia Rayner, Final Report for Innovations Deserving Exploratory Analysis (IDEA) Intelligent Transportation Systems (ITS) Programs' Project 84, I-Witness Black Box Recorder, San Diego, CA. Nov. 2001.
GE published its VCR User's Guide for Model VG4255 in 1995.
Glenn Oster, ‘Hindsight 20/20 v4.0 Software Installation’, 1 of 2, Jun. 20, 2003.
Glenn Oster, ‘HindSight 20/20 v4.0 Software Installation’, 2 of 2, Jun. 20, 2003.
Glenn Oster, ‘Illuminator Installation’, Oct. 3, 2004.
Hans Fantel, Video; Search Methods Make a Difference in Picking VCR's, NY Times, Aug. 13, 1989.
I/O Port Racing Supplies' website discloses using Traqmate's Data Acquisition with Video Overlay system in conjunction with professional driver coaching sessions (available at http://www.ioportracing.com/Merchant2/merchant.mvc?Screen=CTGY&Categorys- ub.—Code=coaching)., printed from site on Jan. 11, 2012.
Interior Camera Data Sheet, Oct. 26, 2001.
International Search Report and Written Opinion issued in PCT/US07/68325 on Feb. 27, 2008.
International Search Report and Written Opinion issued in PCT/US07/68328 on Oct. 15, 2007.
International Search Report and Written Opinion issued in PCT/US07/68329 on Mar. 3, 2008.
International Search Report and Written Opinion issued in PCT/US07/68332 on Mar. 3, 2008.
International Search Report and Written Opinion issued in PCT/US07/68334 on Mar. 5, 2008.
International Search Report for PCT/US2006/47055, Mailed Mar. 20, 2008 (2 pages).
International Search Report issued in PCT/US2006/47042 mailed Feb. 25, 2008.
J. Gallagher, ‘Lancer Recommends Tech Tool’, Insurance and Technology Magazine, Feb. 2002.
Jean (DriveCam vendor), ‘DC Data Sheet’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘DriveCam brochure’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘Feedback Data Sheet’, Nov. 6, 2002.
Jean (DriveCam vendor), ‘Hindsight 20-20 Data Sheet’, Nov. 4, 2002.
Jessyca Wallace, ‘Analyzing and Processing DriveCam Recorded Events’, Oct. 6, 2003.
Jessyca Wallace, ‘Overview of the DriveCam Program’, Dec. 15, 2005.
Jessyca Wallace, ‘The DriveCam Driver Feedback System’, Apr. 6, 2004.
Joint Claim Construction Chart, U.S. Pat. No. 6,389,340, ‘Vehicle Data Recorder’ for Case No. 3:11-CV-00997-H-RBB, Document 43-1, filed Dec. 1, 2011, pp. 1-33.
Joint Claim Construction Chart in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 11-CV-0997-H (RBB), for the Southern District of California, Document 43, filed Dec. 1, 2011, pp. 1-2.
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, ‘Vehicle Data Reporter’ for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10.
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, “Vehicle Data Reporter” for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10.
Joint Claim Construction Worksheet in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 44, filed Dec. 1, 2011, pp. 1-2.
Joint Motion for Leave to Supplement Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-cv-00997-H-RBB, Document 29, filed Oct. 12, 2011, pp. 1-7.
Julie Stevens, ‘DriveCam Services’, Nov. 15, 2004.
Julie Stevens, ‘Program Support Roll-Out & Monitoring’, Jul. 13, 2004.
Jung, Sang-Hack, et al., Egomotion Estimation in Monocular Infra-red Image Sequence for Night Vision Applications, IEEE Workshop on Applications of Computer Vision (WACV '07), Feb. 2007, pp. 8-8; Digital Object Identifier 10.1109/WACV.2007.20.
JVC Company of America, JVC Video Cassette Recorder HR-IP820U Instructions (1996).
Kamijo, S., et al., A Real-Time Traffic Monitoring System by Stochastic Model Combination, IEEE International Conference on Systems, Man and Cybernetics, 4:3275-3281 (2003).
Kamijo, S., et al., An Incident Detection System Based on Semantic Hierarchy, Proceedings of the 7th International IEEE Intelligent Transportation Systems Conference, 2004, Oct. 3-6, pp. 853-858; Digital Object Identifier 10.1109/ITSC.2004.1399015.
Karen, ‘Downloading Options to HindSight 20120’, Aug. 6, 2002.
Karen, ‘Managers Guide to the DriveCam Driving Feedback System’, Jul. 30, 2002.
Kathy Latus (Latus Design), ‘Case Study-Cloud 9 Shuttle’, Sep. 23, 2005.
Kathy Latus (Latus Design), ‘Case Study-Lloyd Pest Control’, Jul. 19, 2005.
Kathy Latus (Latus Design), ‘Case Study—Time Warner Cable’, Sep. 23, 2005.
Ki, Yong-Kul, et al., A Traffic Accident Detection Model using Metadata Registry, Proceedings of the Fourth International Conference on Software Engineering Research, Management and Applications; Aug. 9-11, 2006 pp. 255-259 Digital Object Identifier 10.1109/SERA.2006.8.
Kitchin, Charles. “Understanding accelerometer scale factor and offset adjustments.” Analog Devices (1995).
Lin, Chin-Teng et al., EEG-based drowsiness estimation for safety driving using independent component analysis; IEEE Transactions on Circuits and Systems-I: Regular Papers, 52(12):2726-2738 (2005); Digital Object Identifier 10.1109/TCSI.2005.857555.
Lisa Mckenna, ‘A Fly on the Windshield?’, Pest Control Technology Magazine, Apr. 2003.
Miller, D.P., Evaluation of Vision Systems for Teleoperated Land Vehicles. Control Systems Magazine, IEEE, 8(3):37-41 (1988); Digital Identifier 10.1109/37.475.
Munder, S., et al., Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models, IEEE Transactions on Intelligent Transportation Systems, 9(2):333-343 (2008); Digital Identifier 10.1109/TITS.2008.922943.
Panasonic Corporation, Video Cassette Recorder (VCR) Operating Instructions for Models No. PV-V4020/PV-V4520.
Passenger Transportation Mode Brochure, May 2, 2005.
Patent Abstracts of Japan vol. 007, No. 180 (P-215), Aug. 9, 1983 & JP 58 085110 A (Mitsuhisa Ichikawa), May 21, 1983.
Patent Abstracts of Japan vol. 011, No. 292 (E-543), Sep. 19, 1987 & JP 62 091092 A (OK ENG:KK), Apr. 25, 1987.
Patent Abstracts of Japan vol. 012, No. 001 (M-656), Jan. 6, 1988 & JP 62 166135 A (Fuji Electric Co Ltd), Jul. 22, 1987.
Patent Abstracts of Japan vol. 014, No. 222 (E-0926), May 10, 1990 & JP 02 056197 A (Sanyo Electric Co Ltd), Feb. 26, 1990.
Patent Abstracts of Japan vol. 017, No. 039 (E-1311), Jan. 25, 1993 & JP 04 257189 A (Sony Corp), Sep. 11, 1992.
Patent Abstracts of Japan vol. 017, No. 521 (E-1435), Sep. 20, 1993 & JP 05 137144 A (Kyocera Corp), Jun. 1, 1993.
Patent Abstracts of Japan vol. 1996, No. 09, Sep. 30, 1996 & JP 08 124069 A (Toyota Motor Corp), May 17, 1996.
Patent Abstracts of Japan vol. 1997, No. 10, Oct. 31, 1997 & JP 09 163357 A (Nippon Soken Inc), Jun. 20, 1997.
Patent Abstracts of Japan vol. 1998, No. 02, Jan. 30, 1998 & JP 09 272399 A (Nippon Soken Inc), Oct. 21, 1997.
Patent Abstracts of Japan vol. 1998, No. 8, Jun. 30, 1998 & JP 10 076880 A (Muakami Corp), Mar. 24, 1998.
PCT/US2010/022012, Invitation to Pay Additional Fees with Communication of Partial International Search, Jul. 21, 2010.
Peter G. Thurlow, Letter (including exhibits) Regarding Patent Owner's Response to Initial Office Action in Ex Parte Reexamination, Mar. 27, 2012.
Quinn Maughan, ‘DriveCam Enterprise Services’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Managed Services’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Standard Edition’, Jan. 5, 2006.
Quinn Maughan, ‘DriveCam Unit Installation’, Jul. 21, 2005.
Quinn Maughan, ‘Enterprise Services’, Apr. 17, 2006.
Quinn Maughan, ‘Enterprise Services’, Apr. 7, 2006.
Quinn Maughan, ‘Hindsight Installation Guide’, Sep. 29, 2005.
Quinn Maughan, ‘Hindsight Users Guide’, Jun. 7, 2005.
Ronnie Rittenberry, ‘Eyes on the Road’, Jul. 2004.
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 14, 2011.
The DriveCam, Nov. 6, 2002.
The DriveCam, Nov. 8, 2002.
Traqmate GPS Data Acquisition's Traqmate Data Acquisition with Video Overlay system was used to create a video of a driving event on Oct. 2, 2005 (available at http://www.trackvision.net/phpBB2/viewtopic.php?t=51&sid=1184fbbcbe3be5c87ffa0f2ee6e2da76), printed from site on Jan. 11, 2012.
U.S. Appl. No. 12/691,639, entitled ‘Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring’, filed Jan. 21, 2010.
U.S. Appl. No. 11/377,157, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Parallel Communications Links”.
U.S. Appl. No. 11/377,167, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Integrated Cellular Wireless Communications Systems”.
USPTO Final Office Action for U.S. Appl. No. 11/297,669, mailed Nov. 7, 2011, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, mailed Jun. 27, 2014, 24 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Apr. 2, 2009, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Nov. 6, 2009, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/297,669, mailed Apr. 28, 2011, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/299,028, mailed Apr. 24, 2008, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Nov. 19, 2007, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Nov. 25, 2011, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Sep. 11, 2008, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, mailed Jun. 5, 2008, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, mailed Dec. 1, 2010, 12 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, mailed Dec. 20, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed May 20, 2014, 19 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,907, Mailed Mar. 22, 2007 (17 pages).
USPTO Non-final Office Action mailed Aug. 27, 2009 during prosecution of U.S. Appl. No. 11/566,424.
USPTO Non-Final Office Action mailed Nov. 27, 2013 in U.S. Appl. No. 13/957,810, filed Aug. 2, 2013.
Veeraraghavan, H., et al., Computer Vision Algorithms for Intersection Monitoring, IEEE Transactions on Intelligent Transportation Systems, 4(2):78-89 (2003); Digital Object Identifier 10.1109/TITS.2003.821212.
Wijesoma, W.S., et al., Road Curb Tracking in an Urban Environment, Proceedings of the Sixth International Conference of Information Fusion, 1:261-268 (2003).
Written Opinion issued in PCT/US07/68328 on Oct. 15, 2007.
Written Opinion of the International Searching Authority for PCT/US2006/47042. Mailed Feb. 25. 2008 (5 pages).
Written Opinion of the International Searching Authority for PCT/US2006/47055, Mailed Mar. 20, 2008 (5 pages).
Inovate Motorsports, OT-1 16 Channel OBD-II Interface User Manual, Version 1.0, Nov. 28, 2007, pp. 3, 4, 21 & 27.
Trivinci Systems, LLC, Race-Keeper Systems User Guide, Jan. 2011, v1, 1.02, pp. 34 and 39.
USPTO Non-Final Office Action for U.S. Appl. No. 14/036,299, mailed Aug. 12, 2014.
“DriveCam, Inc's Disclosure of Proposed Constructions and Extrinsic Evidence Pursuant to Patent L.R. 4.1.a & 4.1.b” Disclosure and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Nov. 8, 2011, 35 pages.
“DriveCam Driving Feedback System”, DriveCam brochure, Jun. 12, 2001, 2 pages.
“DriveCam Driving Feedback System” DriveCam brochure, Mar. 15, 2004 , 4 pages.
“DriveCam Passenger Transportation Module”, DriveCam brochure, Oct. 26, 2001, 2 pages.
“DriveCam Video Event Data Recorder”, DriveCam brochure, Nov. 6, 2002, 2 pages.
“Responsive Claim Construction and Identification of Extrinsic Evidence of Defendani/Counterclaimant SmartDrive Systems, Inc.” Claim Construction and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 15, 2011, 20 pages.
“Sonic MyDVD 4.0: Tutorial: Trimming video segments”. Tutorial for software bundled with Adaptec VideoOh! DVD USB 2.0 Edition, 2003, 13 pages.
“User's Manual for DriveCam Video Systems' HindSight 20/20 Software Version 4.0” DriveCam Manual, San Diego, 2003, 54 pages.
Canadian Office Action issued in Application No. 2,632,685 dated Jan. 30, 2015; 5 pages.
Dan Maher, “DriveCam Taking Risk Out of Driving”, DriveCam brochure folder, Jun. 6, 2005, 6 pages.
Del Lisk, “DriveCam Training Seminar” Handout, 2004, 16 pages.
European Examination Report issued in EP 07772812.9 on Jan. 22, 2015; 5 pages.
JEAN (DriveCam vendor) “DriveCam Driving Feedback System”, DriveCam brochure, Nov. 6, 2002, 2 pages.
Notice of Allowance Allowance for U.S. Appl. No. 14/036,299, mailed Mar. 20, 2015, xx pages.
Notice of Allowance Application for U.S. Appl. No. 11/566,424, mailed Feb. 26, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Dec. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Feb. 13, 2015, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Feb. 25, 2014, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, mailed Nov. 18, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/377,167, mailed Apr. 1, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/800,876, mailed Apr. 19, 2012, 8 pages.
USPTO Final Office Action for U.S. Appl. No. 11/296,906, mailed Aug. 8, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Dec. 5, 2014, 23 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Jul. 18, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, mailed Nov. 7, 2013, 14 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, mailed Jun. 27, 2014, 22 pages.
USPTO Final Office Action for U.S. Appl. No. 14/036,299, mailed Feb. 24, 2015, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Apr. 8, 2014, 19 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, mailed Jun. 12, 2012, 13 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Apr. 7, 2014, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Aug. 18, 2014, 5 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, mailed Sep. 10, 2012, 10 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, mailed Jun. 27, 2013, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed Jun. 14, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, mailed Mar. 27, 2013, 16 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 13/957,810, mailed Apr. 17, 2015, 6 pages.
USPTO Non-final Office Action for U.S. Appl. No. 13/957,810, mailed Nov. 27, 2013, 18 pages.
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011. (29 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011. (47 pgs.).
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011. (6 pgs.).
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc.' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011. (13 pgs.).
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 12, 2011. (3 pgs.).
Notice of Allowance for U.S. Appl. No. 13/957,810, mailed Jun. 8, 2015, 10 pages.
Related Publications (1)
Number Date Country
20130317711 A1 Nov 2013 US
Continuations (1)
Number Date Country
Parent 11377167 Mar 2006 US
Child 13957810 US