Vehicle event recording system and method

Abstract
This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
Description
FIELD

This disclosure relates to a system configured to generate a synchronized electronic vehicle event record.


BACKGROUND

Systems configured to record, store, and transmit video, audio, and sensor data associated with a vehicle responsive to an accident involving the vehicle are known. Typically, such systems include an aftermarket video camera as an integral part of the system and detect an accident based on data from sensors such as an accelerometer mounted on the vehicle. Vehicle data and video from an accident are generated and stored locally on a device coupled with the vehicle as a single electronic file associated with the accident.


SUMMARY

One aspect of this disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized electronic vehicle event records may correspond to vehicle events involving a vehicle. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from the vehicle by one or more computing devices. The system may include a control unit coupled with the vehicle configured to detect the vehicle events and transmit vehicle event information that includes vehicle operation information that corresponds to detected vehicle events. The control unit may be configured to communicate with factory installed and/or other (e.g., third party) external vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from the vehicle, the system reduces the amount and/or cost of aftermarket equipment that must be installed in the vehicle for vehicle event monitoring.


In some implementations, the system may include one or more of a communication device, a sensor, the control unit, a video system, a user interface, electronic storage, a remote computing device, and/or other components. In some implementations, the remote computing device may include one or more of a processor, a user interface, electronic storage, and/or other components.


The control unit may be configured to transmit vehicle event information to the remote computing device over a network. The control unit may be coupled with the vehicle. The vehicle event information may include vehicle operation information that corresponds to the detected vehicle events. In some implementations, the control unit may be configured such that the detected vehicle events have individual start times and individual end times, and the vehicle event information includes vehicle operation information for periods of time that last from before and/or about the individual start times until about and/or after the individual end times.


The video system may be configured such that video information captured during the periods of time for the vehicle events is transmitted to the remote computing device over the network separate from the vehicle event information. In some implementations, the control unit may be configured to, responsive to detecting individual vehicle events, cause the video system to transmit video information for periods of time that correspond to the detected vehicle events to the computing device. In some implementations, the control unit may be configured to cause the video system to designate which frames of visual information are associated with the individual periods of time that correspond to the individual vehicle events and cause the video system to separately (from the vehicle event information) transmit the designated visual information to the computing device.


In some implementations, the remote computing system may be configured to receive, over the network, the vehicle event information transmitted from the control unit and the video information transmitted from the video system. The remote computing system may be configured to analyze the received vehicle event information and the received video information and, based on such analysis, correlate vehicle event information for the detected vehicle events with received video information captured during the periods of time for the detected vehicle events. The remote computing system may be configured to generate event records that include or identify the video information captured during the periods of time for the detected vehicle events and the vehicle event information for the detected vehicle events. The remote computing system may be configured to synchronize the vehicle event information and the video information by identifying and correlating corresponding phenomena in the vehicle event information and the video information during the vehicle event.


These and other objects, features, and characteristics of the system and/or method disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a system configured to generate a synchronized electronic vehicle event record.



FIG. 2A illustrates separate transmission of vehicle event information and video information.



FIG. 2B uses a timeline to illustrate detection of a vehicle event and subsequent transmission of vehicle event information and video information to a computing device.



FIG. 3 illustrates a method for generating a synchronized electronic vehicle event record.



FIG. 4 illustrates a method for detecting vehicle events with a detection system that is coupled to a vehicle and transmitting vehicle event information to a remotely located computing device.





DETAILED DESCRIPTION


FIG. 1 illustrates a system 10 configured to generate synchronized electronic vehicle event records. The synchronized electronic vehicle event records may correspond to vehicle events involving a vehicle 12 and/or other vehicles. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from vehicle 12 by one or more computing devices 100. System 10 includes a control unit 20 coupled with vehicle 12 configured to detect the vehicle events and transmit vehicle event information that includes vehicle operation information that corresponds to detected vehicle events. Control unit 20 may be configured to communicate with factory installed and/or other (e.g., third party) external (to system 10) vehicle systems (mechanical systems of the vehicle, electrical systems of the vehicle, safety systems of the vehicle, location determination systems of the vehicle, video systems of the vehicle, etc.) to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. For example, control unit 20 may be configured to cause a video system 16 to transmit video information captured during periods of time that include the detected vehicle events. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from vehicle 12, system 10 reduces the amount and/or cost of aftermarket equipment that must be installed in vehicle 12 for vehicle event monitoring. In some implementations, system 10 may facilitate determination and/or derivation of various vehicle and/or driver performance characteristics that are not determined in real-time and/or by individual sensors 18 and/or control unit 20 alone.


Vehicle(s) 12 may include automobiles, trucks, delivery vehicles, planes, trains, and/or any other type of vehicle where detecting vehicle events and generating synchronized electronic vehicle event records may be useful. In some implementations, system 10 may include one or more of a communication device 14, a sensor 18 (e.g., one or more sensors 18), control unit 20, video system 16, a user interface 22, electronic storage 24, computing device 100, and/or other components. In some implementations, computing device 100 may include one or more of a processor 120, a user interface 132, electronic storage 134, and/or other components.


Communication device 14 may be configured to facilitate communication between vehicle 12, video system 16, control unit 20, computing device 100, other components of system 10, and/or other computing devices. In some implementations, communication device 14 may be a factory and/or other previously installed communication device coupled with vehicle 12. In some implementations, communication device 14 may be an aftermarket device coupled with vehicle 12 as part of control unit 20, for example. Communication device 14 may be configured to facilitate communication between vehicle 12 and/or components of system 10 coupled with vehicle 12, and computing device 100 and/or other computing devices wirelessly via a network such as the internet and/or other networks, for example. In some implementations, communication device 14 may include one or more of a router and/or other devices that facilitate network connectivity, a transceiver, a signal processor, and/or other components. In some implementations, communication device 14 may be configured to transmit and receive communication signals substantially simultaneously. In some implementations, control unit 20 and video system 16 transmit and/or receive information via communication device 14. However, this is not intended to be limiting. In some implementations, control unit 20 and/or video system 16 communicate with computing device 100 directly (e.g., via the network).


Sensors 18 may be configured to generate output signals conveying information related to the operation and/or the context of vehicle 12. One or more sensors 18 may be coupled with vehicle 12. Information related to the operation and/or context of vehicle 12 may include feedback information from one or more of the mechanical systems of vehicle 12, and/or other information. The mechanical systems of vehicle 12 may include, for example, the engine, the drive train, the lighting systems (e.g., headlights, brake lights), the braking system, the transmission, fuel delivery systems, and/or other mechanical systems. The mechanical systems of vehicle 12 may include one or more mechanical sensors, electronic sensors, and/or other sensors that generate the output signals (e.g., seat belt sensors, tire pressure sensors, etc.). In some implementations, at least one of sensors 18 may be a vehicle system sensor included in an ECM system of vehicle 12.


Information related to the operation and/or context of vehicle 12 may include information related to the environment in and/or around vehicle 12. The vehicle environment may include spaces in and around an interior and an exterior of vehicle 12. The information related to the operation and/or context of vehicle 12 may include information related to movement of vehicle 12, an orientation of vehicle 12, a geographic position of vehicle 12, a spatial position of vehicle 12 relative to other objects, a tilt angle of vehicle 12, an inclination/declination angle of vehicle 12, and/or other information. In some implementations, the output signals conveying the information related to the operation and/or context of vehicle 12 may be generated via non-standard aftermarket sensors installed in vehicle 12. The non-standard aftermarket sensor may include, for example, a microphone, an accelerometer, a gyroscope, a geolocation sensor (e.g., a GPS device), a radar detector, a magnetometer, radar (e.g. for measuring distance of leading vehicle), and/or other sensors.


Although sensors 18 are depicted in FIG. 1 as a single element, this is not intended to be limiting. Sensors 18 may include one or more sensors located adjacent to and/or in communication with the various mechanical systems of vehicle 12, in one or more positions (e.g., at or near the front of vehicle 12) to accurately acquire information representing the vehicle environment (e.g. spatial information, orientation information), and/or in other locations. For example, in some implementations, system 10 may be configured such that a first sensor is located near/in communication with a rotating tire of vehicle 12, and a second sensor located on top of vehicle 12 is in communication with a geolocation satellite. In some implementations, sensors 18 are configured to generate output signals continuously during operation of vehicle 12.


Control unit 20 may be configured to transmit vehicle event information to computing device 100 over a network. Control unit 20 may be coupled with vehicle 12. Control unit 20 may be configured to transmit the vehicle event information via communication device 14 and/or without communication device 14. Control unit 20 may be configured to receive vehicle operation information via output signals generated by sensors 18 and detect vehicle events based on the output signals. For example, events may be detected as described in U.S. patent application Ser. No. 14/186,416, filed Feb. 21, 2014, and incorporated herein by reference. The vehicle event information may include vehicle operation information that corresponds to the detected vehicle events. In some implementations, control unit 20 may be configured such that the detected vehicle events have individual start times and individual end times, and the vehicle event information includes vehicle operation information for periods of time that last from before and/or about the individual start times until about and/or after the individual end times. For example, the detected vehicle events may include a first vehicle event that has a first start time and a first end time, and the vehicle event information for the first vehicle event includes vehicle operation information for a period of time that lasts from before and/or about the first start time until about and/or after the first end time.


In some implementations, control unit 20 may be configured such that detecting vehicle events includes determining one or more vehicle parameters of vehicle 12. Control unit 20 may determine the vehicle parameters based on the information conveyed by the output signals from sensors 18, information provided by external systems and/or databases, and/or other information. The one or more vehicle parameters may be related to the operation of vehicle 12, the context of vehicle 12, and/or other information. For example, the one or more vehicle parameters may be related to one or more of an acceleration, a direction of travel, a turn diameter, a vehicle speed, an engine speed (e.g. RPM), a duration of time, a closing distance, a lane departure from an intended travelling lane of the vehicle, a following distance, physical characteristics of vehicle 12 (such as mass and/or number of axles, for example), a tilt angle of vehicle 12, an inclination/declination angle of vehicle 12, whether or not brakes are being applied, a number of times a specific vehicle control system (e.g., the brakes) is activated, a temperature, fuel use, and/or other parameters. In some implementations, control unit 20 may be configured to determine one or more of the vehicle parameters one or more times in an ongoing manner during operation of vehicle 12. In some implementations, control unit 20 may be configured to determine one or more of the vehicle parameters at regular time intervals during operation of vehicle 12. The timing of the vehicle parameter determinations (e.g., in an ongoing manner, at regular time intervals, etc.) may be programmed at manufacture, obtained responsive to user entry and/or selection of timing information via user interface 22 and/or 132, and/or may be determined in other ways.


In some implementations, control unit 20 may be configured such that detecting vehicle events includes obtaining one or more pre-determined vehicle event criteria sets. The pre-determined vehicle event criteria sets may describe individual vehicle events (e.g., such as the first vehicle event described in the example above). The pre-determined vehicle event criteria sets may be programmed at manufacture, obtained by control unit 20 responsive to user entry and/or selection of information related to pre-determined vehicle event criteria sets via user interface 22 and/or 132, obtained from electronic storage 24 and/or 134, and/or may be obtained in other ways. In some implementations, the pre-determined vehicle event criteria sets may be received from external computing systems such as computing device 100 and/or other computing systems.


In some implementations, control unit 20 may be configured such that detecting vehicle events includes detecting vehicle events in real-time or near real-time. Control unit 20 may be configured to detect execution of a specific vehicle event based on the information conveyed by the output signals generated by sensors 18, the vehicle parameters, the pre-determined criteria sets, and/or based on other information. A specific vehicle event may be detected based on the determined vehicle parameters and the obtained pre-determined vehicle event criteria sets by comparing the determined vehicle parameters to the criteria sets. For example, the first vehicle event may be detected responsive to the determined parameters satisfying one or more individual criteria in a first criteria set associated with the first vehicle event. By way of a non-limiting example, control unit 20 may determine that a vehicle operator has tapped his brakes more than X times (e.g., no single trigger) in Y time frame (thus satisfying multiple individual brake tapping criteria as well as a time frame criterion) and trigger a vehicle event because the driver may be drowsy and/or nodding off.


In some implementations, control unit 20 may be mounted to and/or otherwise coupled with vehicle 12. In some implementations, control unit 20 may be and/or include an ECM coupled with operational systems of vehicle 12 such as vehicle sensors (e.g., included in sensors 18), vehicle communication systems (e.g., included in communication device 14), vehicle camera systems (e.g., included in video system 16), and/or other vehicle systems. In some implementations, control unit 20 may include and/or be coupled with a vehicle user interface 22, vehicle electronic storage 24, and/or other components. In some implementations, control unit 20 may include and/or be coupled with an audible alarm. In some implementations, control unit 20 may be operatively coupled with vehicle control systems such as the engine and/or brakes, communication device 14, video system 16, and/or other devices. In some implementations, control unit 20 may be configured to operate based on predetermined and/or preprogrammed algorithms and/or other information stored in electronic storage 24 and/or in other locations. The preprogrammed algorithms and/or other information may cause control unit 20 to function as described herein and/or to perform other functions such as determining and/or generating information related to an operator score, generating alerts and/or other operator feedback (e.g., presented to the operator via user interface 22), and/or performing other functions based on the predetermined algorithms and/or other information stored in electronic storage 24, for example. In some implementations, control unit 20 may be configured to initiate changes in vehicle control systems (e.g., such as reducing engine power and/or applying brakes, turning on/off other systems that should/should not be used while a condition (event) that control unit 20 has detected/determined is ongoing), turn on/off feedback to drivers via a vehicle user interface (e.g., user interface 22) and/or audible alerts, send information to be stored for future evaluation, cause the video system 16 and/or other in-vehicle systems to perform one or more specified functions, facilitate transmission of information via communication device 14 to computing device 100 and/or other computing devices, machines, and/or vehicles, and/or perform other activities.


Video system 16 may be configured to acquire video information representing a vehicle environment. The video information may include visual information from an environment about vehicle 12, information related to an individual device that captures the video information, and/or other information. The vehicle environment may include spaces in and/or around a vehicle. In some implementations, video system 16 may be configured to store the acquired video information locally in electronic memory associated with video system 16, transmit the acquired video information to computing device 100 via communication device 14, transmit the acquired video information directly to computing device 100 (e.g., by directly communicating with computing device 100 via a network), and/or process the acquired video information in other ways. In some implementations, video system 16 may be configured to transmit, over the network, video information captured during periods of time for the detected vehicle events. Video system 16 may be configured such that the video information includes video information for periods of time that last from before and/or about the individual start times of the detected vehicle events until about and/or after the individual end times of the detected vehicle events. Continuing with the example above, the periods of time may include video information for a first period of time for the first vehicle event that lasts from before and/or about the individual start time of the first detected vehicle event until about and/or after the end time of the first vehicle event.


Video system 16 may be configured such that the video information captured during the periods of time for the vehicle events is transmitted to computing device 100 via communication device 14 or without communication device 14 (e.g., directly to computing device 100) separate from the vehicle event information (described above), such that the video information captured during the first period of time is transmitted separate from the vehicle event information for the first vehicle event, for example.


In some implementations, control unit 20 may be configured to, responsive to detecting individual vehicle events, cause video system 16 to transmit video information for periods of time that correspond to the detected vehicle events to computing device 100. The control unit may, for example, communicate locally with video system 16 (e.g. via the vehicle network, Ethernet, Bluetooth, etc.) and/or indirectly through a backend service that is in communication with both control unit 20 and video system. 16. In some implementations, control unit 20 may be configured to cause video system 16 to designate which frames of visual information are associated with the individual periods of time that correspond to the individual vehicle events and cause video system 16 to separately (from the vehicle event information) transmit the designated visual information to computing device 100. In some implementations, control unit 20 may be configured to cause video system 16 to designate a first set of frames of visual information that includes frames for a period of time that lasts from before the start time until after the end time of and individual vehicle event, and a second set of frames of visual information that includes frames for a period of time that lasts from the start time until the end time of the individual vehicle event. These implementations are not intended to be limiting. Control unit 20 may cause video system 16 to designate any frames for transmission that are relevant to an individual vehicle event.


In some implementations, control unit 20 may communicate locally (e.g., within vehicle 12) with video system 16. Control unit 20 may, for example, generate a globally-unique UI (GUID) that identifies the vehicle event, and transmit the GUID along with pre-duration (seconds) and post-duration (seconds) parameters to video system 16. In response, video system 16 may transmit (and/or queue for transmission) a segment of video information that is identified by the GUID and/or represents the segment of time that is bounded by pre-duration and post-duration parameters as they are applied at the point in time that video system 16 received such a message from control unit 20. For example, if the message is received at 5:25:20 PM (per a video system clock) and pre-duration is set to 12 seconds and post-duration is set to 20 seconds, video system 16 may transmit a segment of video information that corresponds to a 5:25:08 PM, 5:25:40 PM interval. A slight difference in local clocks (seconds or milliseconds) between control unit 20 and video system 16 is accounted for as described herein (e.g., analysis, synchronization, etc.). For example, the GUID may also be part of vehicle event record 200. To the extent that the latency of local message transmission is small and to the extent that video system 16 responds to the local message (from control unit 20) relatively quickly, the alignment of the two datasets will be an easier task, but this is not guaranteed (e.g., synchronization step 310 described below may be helpful, but not always necessary).


By way of a non-limiting example, FIG. 2A illustrates separate transmission of vehicle event information 200 and video information 202 via the network to computing device 100. Computing device 100 generates a single synchronized electronic vehicle event record 204 based on separately transmitted vehicle event information 200 and video information 202 (described further below). In this example, control unit 20 has transmitted vehicle event information 200 via communication device 14 and video system 16 has transmitted video information 202 also via communication device 14. But this is not intended to be limiting. As described herein, the transmission of vehicle event information 200 and/or video information 202 made be made directly from control unit 20 and/or video system 16 without the use of communication device 14. In addition, the separate transmissions of vehicle event information 200 and video information 202 may be made substantially simultaneously and/or at different times. For example, control unit 20 may detect a vehicle event and transmit vehicle event information 200, and then video system 16 may transmit video information 202 that corresponds to the same vehicle event. In this example implementation, control unit 20 may, responsive to detecting the vehicle event, cause video system 16 to transmit video information for a period of time that corresponds to the detected vehicle event to computing device 100 such that the transmission from video system 16 happens after the transmission from control unit 20. In some implementations, video system 16 may be instructed to transmit video information for a period of time by computing device 100. This would in turn be in response to computing device 100 receiving vehicle event information and computing device 100 being aware that control unit 20 is not able to transmit local (within vehicle) messages to video system 16. In such cases, computing device 100 may send a remote message to video system 16 to generate and transmit video information that corresponds in time to the vehicle event. (This presumes that video system 16 retains information for an extended period of time (minutes and hours if not days), which is the case with most DVR solutions on the market.)


By way of a second non-limiting example, FIG. 2B uses a timeline 252 to illustrate detection of a vehicle event 250 and subsequent transmission of vehicle event information 200 and video information 202 to computing device 100. As shown in FIG. 2B, sensors 18 generate output signals 254 conveying information related to the operation of vehicle 12 (shown in FIG. 1). Control unit 20 detects vehicle event 250 based on the output signals and/or other information as described herein and provides an indication 256 of the vehicle event to video system 16. Control unit 20 then generates vehicle event information 200 that corresponds to vehicle event 250 and transmits 258 vehicle event information 200 to computing device 100. Responsive to receiving indication 256 from control unit 20, video system 16 generates and/or designates (as described above) video information 202 and then transmits 260 video information 202 to computing device 100. Computing device 100 then generates single synchronized electronic vehicle event record 204 based on separately transmitted vehicle event information 200 and video information 202 (described further below).


Returning to FIG. 1, video system 16 may include systems for compiling and/or collecting video information, for example, video cameras, digital cameras, analog cameras, still cameras, infrared sensors, a VCR, a DVR, non-transitory electronic memory, and/or other video capture devices that acquire visual information. In some implementations, video system 16 may include vehicle system-integrated video capture devices (e.g., devices such as a back-up camera installed in vehicle 12 by the vehicle manufacturer), non-system integrated video capture devices (e.g., third party and/or aftermarket systems installed in vehicle 12), and/or other video capture devices. In some implementations, video system 16 may include video recording devices such as smart phone cameras and/or other devices not physically coupled to the vehicle and/or control unit 20, for example. Such devices may communicate wirelessly with control unit 20, communication device 14, computing device 100, and/or other components of system 10, for example. The visual information may include videos, images, clips, broadcasts, pictures, visual data and/or other visual information representing the vehicle environment. In some implementations, the visual information may include visual information that provides information related to a vehicle's speed, location, heading, and/or other vehicle information. In some implementations, video system 16 may include multiple video capture devices positioned in and/or around and/or otherwise coupled with vehicle 12. In some implementations, these video capture devices may be synchronized together to provide a single coordinated view of the inside and/or the outside of vehicle 12. In some implementations, the video information captured from multiple video capture devices may not be synchronized. In such implementations, the video information may be transmitted to computing device 100, for example, where it may be synchronized with other video and/or non-video data to create video event records (e.g., as described herein).


Although video system 16 is depicted in FIG. 1 as a single element coupled with vehicle 12, this is not intended to be limiting. Video system 16 may include one or more video capture devices located on the interior of vehicle 12, the exterior of vehicle 12, and/or in any location that facilitates communication with communication device 14, control unit 20, computing device 100, and/or other components of system 10.


Computing device 100 may include one or more physical computer processors 120, a user interface 132, electronic storage 134, and/or other components. Computing device 100 may be located remotely from vehicle 12. Computing device 100 may be configured to enable a user to interface with system 10 (e.g., via user interface 132), and/or provide other functionality attributed herein to computing device 100. Computing device 100 may be configured to communicate with communication device 14, control unit 20, video system 16, sensors 18, and/or other components of system 10 that are coupled with vehicle 12 via a network such as the internet, cellular network, Wi-Fi network, Ethernet, and/or other interconnected computer networks. Computing device 100 may facilitate viewing and/or analysis of the information conveyed by the output signals of sensors 18, the information determined by control unit 20, the information recorded by video system 16, the information communicated by communication device 14, and/or other information. By way of non-limiting example, remote computing device 100 may include one or more of a server, a server cluster, desktop computer, a laptop computer, a handheld computer, a tablet computing platform, a NetBook, a Smartphone, a gaming console, and/or other computing platforms.


As described above, in some implementations, computing device 100 may be and/or include a server. The server may include communication lines, or ports to enable the exchange of information with a network, communication device 14, video system 16, sensors 18, control unit 20, and/or other computing platforms. The server may include a plurality of processors, electronic storage, hardware, software, and/or firmware components operating together to provide the functionality attributed herein to computing device 100. For example, the server may be implemented by a cloud of computing platforms operating together as a system server.


Processor 120 may be configured to provide information processing capabilities in computing device 100 and/or system 10 in general. As such, processor 120 may comprise one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor 120 is shown in FIG. 1 as a single entity, this is for illustrative purposes only. In some implementations, processor 120 may comprise a plurality of processing units. These processing units may be physically located within the same device (e.g., computing device 100), or processor 120 may represent processing functionality of a plurality of devices operating in coordination.


As shown in FIG. 1, processor 120 may be configured to execute one or more computer program components. The computer program components may comprise one or more of a communication component 122, an analysis component 124, an event record component 126, a synchronization component 128, and/or other components. Processor 120 may be configured to execute components 122, 124, 126, and/or 128 by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor 120. It should be appreciated that although components 122, 124, 126, and 128 are illustrated in FIG. 1 as being co-located within a single processing unit, in implementations in which processor 120 comprises multiple processing units, one or more of components 122, 124, 126, and/or 128 may be located remotely from the other components. The description of the functionality provided by the different components 122, 124, 126, and/or 128 described herein is for illustrative purposes, and is not intended to be limiting, as any of components 122, 124, 126, and/or 128 may provide more or less functionality than is described. For example, one or more of components 122, 124, 126, and/or 128 may be eliminated, and some or all of its functionality may be provided by other components 122, 124, 126, and/or 128. As another example, processor 120 may be configured to execute one or more additional components that may perform some or all of the functionality attributed below to one of components 122, 124, 126, and/or 128.


In some implementations, computing device 100 (e.g., by way of communication component 122, analysis component 124, event record component 126, and/or synchronization component 128) is configured to “marry” the transmitted vehicle event information and the video information to generate a synchronized electronic vehicle event record for a corresponding vehicle event. As described herein, in some implementations, this generating is performed remotely from vehicle 12.


Communication component 122 may be configured to receive, over the network, the vehicle event information transmitted from control unit 20, and separately, the video information transmitted from video system 16 captured during periods of time for the detected vehicle events. Continuing with the example above, the video information captured during the first period of time (that corresponds to the first vehicle event) is received separate from the vehicle event information for the first vehicle event, for example.


Analysis component 124 may be configured to analyze the received vehicle event information and the received video information. Based on such analysis, analysis component 124 may be configured to correlate vehicle event information for the detected vehicle events with received video information captured during the periods of time for the detected vehicle events. Analysis component 124 may be configured to correlate vehicle event information for the detected vehicle events with received video information captured during the periods of time for the detected vehicle events such that the video information captured during the first period of time is correlated with the vehicle event information for the first vehicle event, for example. In some implementations, correlation may be performed based on the GUID (described above), timestamps captured by video system 16 and/or control unit 20, and/or other information.


Event record component 126 may be configured to generate event records that include and/or identify the video information captured during the periods of time for the detected vehicle events and the vehicle event information for the detected vehicle events. Event record component 126 may be configured such that the event records include a first event record for the first vehicle event, for example. The first event record may include and/or identify the video information captured during the first period of time and the vehicle event information for the first vehicle event.


Synchronization component 128 may be configured to synchronize the vehicle event information and the video information. Synchronization component 128 may be configured to synchronize the vehicle event information and the video information by identifying and correlating corresponding phenomena in the vehicle event information and the video information during the vehicle event. For example, synchronization component 128 may be configured to observe that vehicle speed (from a GPS, a wheel sensor, and/or other sensors) returns to zero (e.g. the vehicle stops) and correlate this to the point at which the difference between consecutive video frames becomes minimal, indicating visually that the vehicle has stopped. Synchronization component 128 may be configured to synchronize the vehicle event information and the video information such that the video information captured during the first period of time is synchronized with the vehicle event information for the first vehicle event, for example.


In some implementations, synchronization component 128 may be configured such that identifying and correlating corresponding phenomena in the vehicle event information and the video information includes identifying and correlating one or more of time information (e.g., a time of day and/or other time stamp determined by control unit 20) associated with the vehicle event information for an individual vehicle event and time information (e.g., a time of day and/or other time stamp determined by video system 16) associated with the video information captured during the period of time that corresponds to the individual vehicle event. In some implementations, synchronization component 128 may be configured such that identifying and correlating corresponding phenomena in the vehicle event information and the video information includes identifying and correlating information indicative of a physical event conveyed by the output signals included in the vehicle event information for an individual vehicle event and information indicative of the same physical event conveyed by the video information captured during the period of time that corresponds to the individual vehicle event.


In some implementations, synchronization may be based on geographical location of a vehicle and/or other keys. By way of non-limiting example, a vehicle's location may be determined and/or recorded at the start of a video data stream. Data in the video data stream may be recorded at some frequency (e.g., x number of data points per second). The vehicle's location may also be recorded in a vehicle data stream at some other frequency (e.g., y data points per second). Synchronization component 128 may then use the vehicle's location to determine where to start synchronizing data from the video stream and the vehicle data stream and align data in different streams based on the frequency information.


In some implementations, responsive to synchronization by synchronization component 128, communication component 122 may be configured to facilitate review of the synchronized event record by a reviewer. The reviewer may be remotely located from vehicle 12 and/or computing device 100, in a review center for example, viewing the synchronized event records in real-time and/or at a later time. The remote reviewer may score operators, provide feedback to operators, develop coaching plans, and/or take other actions based on reviews of synchronized event records, for example.


User interface 22 (coupled with vehicle 12) and/or user interface 132 (included in computing device 100 may be configured to provide an interface between system 10 and users through which the users may provide information to and receive information from system 10. This enables pre-determined profiles, criteria, data, cues, results, instructions, and/or any other communicable items, collectively referred to as “information,” to be communicated between a user and one or more of vehicle 12, communication device 14, video system 16, sensors 18, control unit 20, computing device 100, and/or other components of system 10. By way of a non-limiting example, a user may enter, select, and/or upload predetermined vehicle event criteria using user interface 22 and/or user interface 132.


Examples of interface devices suitable for inclusion in user interface 22 and/or user interface 132 comprise a keypad, buttons, switches, a keyboard, knobs, levers, a display screen, a touch screen, speakers, a microphone, an indicator light, an audible alarm, a printer, a tactile feedback device, and/or other interface devices. In one implementation, user interface 22 and/or user interface 132 comprises a plurality of separate interfaces. In one implementation, user interface 22 comprises at least one interface that is provided integrally with control unit 20.


It is to be understood that other communication techniques, either hard-wired or wireless, are also contemplated by the present disclosure as user interface 22 and/or user interface 132. In some implementations, user interface 22 and/or user interface 132 may be included in a removable storage interface provided by electronic storage 24 (e.g., in control unit 20) and/or electronic storage 134 (e.g., in computing device 100). In these examples, information may be loaded into system 10 wirelessly from a remote location, from removable storage (e.g., a smart card, a flash drive, a removable disk, etc.), and/or other sources that enable the user(s) to customize the implementation of system 10. Other exemplary input devices and techniques adapted for use with system 10 as user interface 22 and/or user interface 132 comprise, but are not limited to, an RS-232 port, RF link, an IR link, modem (telephone, cable, and/or other modems), a cellular network, a Wi-Fi network, a local area network, and/or other devices and/or systems. In short, any technique for communicating information with system 10 is contemplated by the present disclosure as user interface 22 and/or user interface 132.


Electronic storage 24 (coupled with vehicle 12) and/or electronic storage 134 (included in computing device 100) may comprise electronic storage media that electronically stores information. The electronic storage media of electronic storage 24 and/or electronic storage 134 may comprise one or both of system storage that is provided integrally (i.e., substantially non-removable) with system 10 and/or removable storage that is removably connectable to system 10 via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.). Electronic storage 24 and/or 134 may comprise one or more of optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), electrical charge-based storage media (e.g., EEPROM, RAM, etc.), solid-state storage media (e.g., flash drive, etc.), and/or other electronically readable storage media. Electronic storage 24 and/or 134 may store software algorithms (e.g., vehicle event detection algorithms), recorded video event data, information determined by control unit 20 and/or processor 120, information received via user interfaces 22 and/or 132, and/or other information that enables system 10 to function properly. Electronic storage 24 and/or 134 may be (in whole or in part) a separate component within system 10, or electronic storage 24 and/or 134 may be provided (in whole or in part) integrally with one or more other components of system 10 (e.g., control unit 20, processor 120, etc.).



FIG. 3 illustrates a method 300 for generating a synchronized electronic vehicle event record. FIG. 4 illustrates a method 400 for detecting vehicle events with a detection system (which may be coupled to the vehicle) and transmitting vehicle event information to a remotely located computing device. The operations of method 300 and/or 400 presented below are intended to be illustrative. In some implementations, method 300 and/or 400 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of method 300 and/or 400 are illustrated (in FIG. 3 and FIG. 4) and described below is not intended to be limiting. In some implementations, two or more of the operations may occur substantially simultaneously.


In some implementations, method 300 and/or 400 may be implemented in one or more processing devices (e.g., a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information). The one or more processing devices may include one or more devices executing some or all of the operations of method 300 and/or 400 in response to instructions stored electronically on one or more electronic storage mediums. The one or more processing devices may include one or more devices configured through hardware, firmware, and/or software to be specifically designed for execution of one or more of the operations of method 300 and/or 400.


Referring to FIG. 3 and method 300, at an operation 302, vehicle event information may be received over a network. The vehicle event information may be transmitted from a control unit mounted to a vehicle. The control unit may be configured to (i) receive vehicle operation information via output signals generated by sensors coupled with the vehicle, and (ii) detect vehicle events based on the output signals. The vehicle event information may include vehicle operation information that corresponds to the detected vehicle events. The detected vehicle events may include a first vehicle event, for example. In some implementations, the control unit may be configured such that the detected vehicle events have individual start times and individual end times, and the vehicle event information includes vehicle operation information for periods of time that last from before the individual start times until after the individual end times. In some implementations, operation 302 may be performed by one or more physical computer processor components the same as or similar to communication component 122 (shown in FIG. 1 and described herein).


At an operation 304, video information may be received over the network. The video information may be transmitted from a video system mounted to the vehicle. The video information may be captured during periods of time for the detected vehicle events. In some implementations, the video system is configured such that the video information includes video information for periods of time that last from before the individual start times until after the individual end times of vehicle events. The periods of time may include a first period of time for the first vehicle event, for example. The video information may include consecutive frames of visual information representing an environment about the vehicle. The video system may be physically separate and distinct from the control unit. The video information may be transmitted separate from the vehicle event information such that the video information captured during the first period of time is transmitted separate from the vehicle event information for the first vehicle event. In some implementations, the control unit may cause the transmission of the video information responsive to detection of a vehicle event. In some implementations, operation 304 may be performed by one or more physical computer processor components the same as or similar to communication component 122 (shown in FIG. 1 and described herein).


At an operation 306, the received vehicle event information and the received video information may be analyzed and correlated. The correlation may be based on the analysis. The vehicle event information for detected vehicle events may be correlated with received video information captured during the periods of time for the detected vehicle events. The video information captured during the first period of time may be correlated with the vehicle event information for the first vehicle event, for example. In some implementations, operation 306 may be performed by one or more physical computer processor components the same as or similar to analysis component 124 (shown in FIG. 1 and described herein).


At an operation 308, event records may be generated. The generated event records may include and/or identify the video information captured during the periods of time for the detected vehicle events and the vehicle event information for the detected vehicle events. The event records may include a first event record for the first event, for example. The first event record may include and/or identify the video information captured during the first period of time and the vehicle event information for the first vehicle event, for example. In some implementations, operation 308 may be performed by one or more physical computer processor components the same as or similar to event record component 126 (shown in FIG. 1 and described herein).


At an operation 310, the vehicle event information and the video information may be synchronized. Synchronizing the vehicle event information and the video information may include identifying and correlating corresponding phenomena in the vehicle event information and the video information during the vehicle event such that the video information captured during the first period of time is synchronized with the vehicle event information for the first vehicle event, for example. Identifying and correlating corresponding phenomena in the vehicle event information and the video information may include identifying and correlating one or more of first time information associated with the vehicle event information for the first vehicle event and second time information associated with the video information captured during the first period of time; or information indicative of a physical event conveyed by the output signals included in the vehicle event information for the first vehicle event and information indicative of the same physical event conveyed by the video information captured during the first period of time. In some implementations, operation 310 may be performed by one or more physical computer processor components the same as or similar to synchronization component 128 (shown in FIG. 1 and described herein).


Referring to FIG. 4 and method 400, at an operation 402, output signals conveying information related to the operation of a vehicle, the context of the vehicle, and/or other information may be received. Operation 402 may include receiving output signals conveying information related to one or more of mechanical systems of the vehicle, movement of the vehicle, an orientation of the vehicle, a geographic position of the vehicle, a spatial position of the vehicle relative to other objects, and/or other operational/contextual characteristics of the vehicle. In some implementations, operation 402 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 404, one or more vehicle parameters may be determined. The one or more vehicle parameters may be determined based on the output signals and/or other information. The one or more vehicle parameters may be related to the operation of the vehicle, the context of the vehicle, and/or other vehicle parameters. In some implementations, the one or more vehicle parameters may be determined one or more times in an ongoing manner during operation of the vehicle. In some implementations, operation 404 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 406, one or more pre-determined vehicle event criteria sets may be obtained. The one or more pre-determined vehicle event criteria sets may include criteria sets associated with individual vehicle events. The one or more pre-determined criteria sets may include a first pre-determined criteria set for a first vehicle event, for example. The first criteria set may include a first individual criterion and a second individual criterion. In some implementations, the first individual criterion and the second individual criterion for the first pre-determined criteria set may be associated with information conveyed by output signals from at least two different sensors. In some implementations, operation 406 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 408, individual vehicle events may be detected. The detection may be based on the vehicle parameters and the pre-determined criteria sets. Vehicle events may be detected by comparing the determined vehicle parameters to the criteria sets such that, for example, the first vehicle event is detected responsive to the determined parameters satisfying the first individual criterion and the second individual criterion. In some implementations, operation 408 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 410, vehicle event information may be generated. The vehicle event information may include vehicle operation and/or context information for periods of time that correspond to the detected vehicle events. In some implementations, operation 410 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 412, transmission of the vehicle event information may be facilitated. In some implementations, operation 412 may include transmission of vehicle event information that corresponds to the detected vehicle events to a remotely located computing device. In some implementations, operation 412 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


At an operation 414, one or more external vehicle systems may be caused to designate information for transmission. In some implementations, operation 414 includes causing one or more external vehicle systems that generate information about the vehicle to designate information associated with periods of time that correspond to the detected vehicle events for transmission to the remotely located computing device. In some implementations, the one or more external vehicle systems include a video system that is caused to designate which frames of visual information are associated with the periods of time that correspond to the vehicle events and transmit the designated visual information to the remotely located computing device. In some implementations, operation 412 may be performed by a control unit the same as or similar to control unit 20 (shown in FIG. 1 and described herein).


Although the system(s) and/or method(s) of this disclosure have been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred implementations, it is to be understood that such detail is solely for that purpose and that the disclosure is not limited to the disclosed implementations, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present disclosure contemplates that, to the extent possible, one or more features of any implementation can be combined with one or more features of any other implementation.

Claims
  • 1. A system configured to generate vehicle event records for a fleet of vehicles, wherein the fleet of vehicles includes a first vehicle and a second vehicle, the system comprising: a centralized cloud server including one or more physical computer processors located remotely from both the first and the second vehicle, the one or more physical computer processors being configured by computer readable instructions to:receive, over a network during a first transmission, vehicle event information from a control unit mounted to the first vehicle, wherein the vehicle event information indicates vehicle speed of the first vehicle returning to zero, the control unit being configured to i) receive vehicle operation information via output signals generated by sensors coupled with the first vehicle, andii) detect vehicle events based on the output signals,wherein the vehicle event information includes vehicle operation information and first time information that correspond to the detected vehicle events, wherein the detected vehicle events include a first vehicle event, wherein the vehicle event information for the first vehicle event is associated with the first time information;receive, over the network during a second transmission, video information corresponding to the first vehicle event from a video system, the second transmission being separate from the first transmission, wherein the video information includes different information than the vehicle event information, wherein the video information indicates that differences between consecutive frames of visual information outside of the first vehicle have become minimal, the video system including a video camera, the video system being mounted to the first vehicle and being physically separate and distinct from the control unit, wherein the video camera is an aftermarket camera, wherein the video information has been captured during periods of time for the detected vehicle events, the periods of time including a first period of time for the first vehicle event, the video information including second time information and consecutive frames of visual information representing an environment about the first vehicle, wherein the video information for the first vehicle event is associated with the second time information;analyze the vehicle event information received during the first transmission to identify information indicative of a physical event conveyed by the output signals, wherein the physical event occurred in the first period of time;analyze the video information received during the second transmission to identify information indicative of the same physical event;correlate, by the one or more physical computer processors, the vehicle event information received during the first transmission with the video information received during the second transmission based on the analysis of both the vehicle event information and the video information such that the correlating is performed at a location that is remote from the first vehicle, wherein correlating the vehicle event information with the video information includes correlating the first time information and the second time information; andgenerate a first event record that includes or identifies i) the video information that corresponds to the first vehicle event and ii) the vehicle event information for the first vehicle event.
  • 2. The system of claim 1, wherein the first vehicle event is an accident.
  • 3. The system of claim 1, wherein the one or more physical computer processors are configured such that the correlating of the vehicle event information with the video information includes identifying and correlating: information indicative of the physical event conveyed by the output signals included in the vehicle event information for the first vehicle event and information indicative of the same physical event conveyed by the video information captured during the first period of time.
  • 4. The system of claim 1, wherein the control unit is configured such that: the detected vehicle events have individual start times and individual end times, andthe vehicle event information includes vehicle operation information for periods of time that last from before the individual start times until after the individual end times; andwherein the video system is configured such that the video information includes video information for periods of time that last from before the individual start times until after the individual end times.
  • 5. The system of claim 1, wherein the video system is included in one or more external vehicle systems that generate information about the first vehicle.
  • 6. The system of claim 1, wherein the one or more physical computer processors are further configured by computer readable instructions to: responsive to receiving the vehicle event information, send a message from the centralized cloud server to the video system, wherein the message requests that the video system transmits the video information to the centralized cloud server, wherein the video information corresponds to the first vehicle event.
  • 7. The system of claim 6, wherein the video information is received over the network responsive to the message.
  • 8. The system of claim 1, wherein the first vehicle includes one or more of an automobile, a truck, a delivery vehicle, a plane, or a train.
  • 9. A method for generating vehicle event records for a fleet of vehicles, wherein the fleet of vehicles includes a first vehicle and a second vehicle, the method comprising: receiving, by a centralized cloud server that is geographically separated from the first vehicle and the second vehicle, and over a network during a first transmission, vehicle event information from a control unit mounted to the first vehicle, wherein the vehicle event information indicates vehicle speed of the first vehicle returning to zero, wherein the control unit: i) receives vehicle operation information via output signals generated by sensors coupled with the first vehicle, andii) detects vehicle events based on the output signals,wherein the vehicle event information includes including vehicle operation information and first time information that correspond to the detected vehicle events, wherein the detected vehicle events including a first vehicle event, wherein the vehicle event information for the first vehicle event is associated with the first time information;receiving, over the network during a second transmission, video information corresponding to the first vehicle event from a video system, the second transmission being separate from the first transmission, wherein the video information includes different information than the vehicle event information, wherein the video information indicates that differences between consecutive frames of visual information outside of the first vehicle have become minimal, the video system including a video camera, the video system being mounted to the first vehicle and being physically separate and distinct from the control unit, wherein the video camera is an aftermarket camera, the video information being transmitted from the vehicle separately from the vehicle event information, wherein the video information has been captured during periods of time for the detected vehicle events, the periods of time including a first period of time for the first vehicle event, the video information including second time information and consecutive frames of visual information representing an environment about the first vehicle, wherein the video information for the first vehicle event is associated with the second time information;analyzing the vehicle event information received during the first transmission to identify information indicative of a physical event conveyed by the output signals, wherein the physical event occurred in the first period of time;analyzing the video information received during the second transmission to identify information indicative of the same physical event;correlating, by one or more physical computer processors, the vehicle event information received during the first transmission with the video information received during the second transmission, wherein the correlating is based on analyzing both the vehicle event information and the video information such that the correlating is performed at a location that is remote from the first vehicle, wherein the correlating of the vehicle event information with the video information includes correlating the first time information and the second time information; andgenerating a first event record that includes or identifies i) the video information that corresponds to the first vehicle event and ii) the vehicle event information for the first vehicle event.
  • 10. The method of claim 9, wherein the first vehicle event is an accident.
  • 11. The method of claim 9, wherein correlating the vehicle event information with the video information includes identifying and correlating: information indicative of the physical event conveyed by the output signals included in the vehicle event information for the first vehicle event and information indicative of the same physical event conveyed by the video information captured during the first period of time.
  • 12. The method of claim 9, wherein the control unit is configured such that: the detected vehicle events have individual start times and individual end times, andthe vehicle event information includes vehicle operation information for periods of time that last from before the individual start times until after the individual end times; andwherein the video system is configured such that the video information includes video information for periods of time that last from before the individual start times until after the individual end times.
  • 13. The method of claim 9, wherein the video system is included in one or more external vehicle systems that generate information about the first vehicle.
  • 14. The method of claim 9, further comprising: responsive to receiving the vehicle event information, send a message from the to the centralized cloud server to the video system, wherein the message requests that the video system transmits the video information to the centralized cloud server, wherein the video information corresponds to the first vehicle event.
  • 15. The method of claim 14, wherein the video information is received over the network responsive to the message.
  • 16. The method of claim 9, wherein the first vehicle includes one or more of an automobile, a truck, a delivery vehicle, a plane, or a train.
US Referenced Citations (967)
Number Name Date Kind
2943141 Knight Jun 1960 A
3634866 Meyer Jan 1972 A
3781824 Caiati Dec 1973 A
3812287 Lemelson May 1974 A
3885090 Rosenbaum May 1975 A
3992656 Joy Nov 1976 A
4054752 Dennis, Jr. Oct 1977 A
4072850 McGlynn Feb 1978 A
4258421 Juhasz Mar 1981 A
4271358 Schwarz Jun 1981 A
4276609 Patel Jun 1981 A
4280151 Tsunekawa Jul 1981 A
4281354 Conte Jul 1981 A
4401976 Stadelmayr Aug 1983 A
4409670 Herndon Oct 1983 A
4420773 Toyoda Dec 1983 A
4425097 Owens Jan 1984 A
4456931 Toyoda Jun 1984 A
4489351 dAlayer de Costemore dArc Dec 1984 A
4496995 Colles Jan 1985 A
4500868 Tokitsu Feb 1985 A
4528547 Rodney Jul 1985 A
4533962 Decker Aug 1985 A
4558379 Hutter Dec 1985 A
4588267 Pastore May 1986 A
4593313 Nagasaki Jun 1986 A
4621335 Bluish Nov 1986 A
4625210 Sagl Nov 1986 A
4630110 Cotton Dec 1986 A
4632348 Keesling Dec 1986 A
4638289 Zottnik Jan 1987 A
4646241 Ratchford Feb 1987 A
4651143 Yamanaka Mar 1987 A
4671111 Lemelson Jun 1987 A
4718685 Kawabe Jan 1988 A
4754255 Sanders Jun 1988 A
4758888 Lapidot Jul 1988 A
4763745 Eto Aug 1988 A
4785474 Bernstein Nov 1988 A
4789904 Peterson Dec 1988 A
4794566 Richards Dec 1988 A
4804937 Barbiaux Feb 1989 A
4806931 Nelson Feb 1989 A
4807096 Skogler Feb 1989 A
4814896 Heitzman Mar 1989 A
4837628 Sasaki Jun 1989 A
4839631 Tsuji Jun 1989 A
4843463 Michetti Jun 1989 A
4843578 Wade Jun 1989 A
4853856 Hanway Aug 1989 A
4853859 Morita Aug 1989 A
4866616 Takeuchi Sep 1989 A
4876597 Roy Oct 1989 A
4883349 Mittelhauser Nov 1989 A
4896855 Furnish Jan 1990 A
4926331 Windle May 1990 A
4930742 Schofield Jun 1990 A
4936533 Adams Jun 1990 A
4939652 Steiner Jul 1990 A
4942464 Milatz Jul 1990 A
4945244 Castleman Jul 1990 A
4949186 Peterson Aug 1990 A
4980913 Skret Dec 1990 A
4987541 Levente Jan 1991 A
4992943 McCracken Feb 1991 A
4993068 Piosenka Feb 1991 A
4995086 Lilley Feb 1991 A
5012335 Cohodar Apr 1991 A
5027104 Reid Jun 1991 A
5046007 McCrery Sep 1991 A
5050166 Cantoni Sep 1991 A
5056056 Gustin Oct 1991 A
5057820 Markson Oct 1991 A
5096287 Kakinami Mar 1992 A
5100095 Haan Mar 1992 A
5111289 Lucas May 1992 A
5140434 Van Blessinger Aug 1992 A
5140436 Blessinger Aug 1992 A
5140438 Kurahashi Aug 1992 A
5144661 Shamosh Sep 1992 A
5178448 Adams Jan 1993 A
5185700 Bezos Feb 1993 A
5196938 Blessinger Mar 1993 A
5223844 Mansell Jun 1993 A
5224211 Roe Jun 1993 A
5262813 Scharton Nov 1993 A
5283433 Tsien Feb 1994 A
5294978 Katayama Mar 1994 A
5305214 Komatsu Apr 1994 A
5305216 Okura Apr 1994 A
5308247 Dyrdek May 1994 A
5309485 Chao May 1994 A
5311197 Sorden May 1994 A
5321753 Gritton Jun 1994 A
5327288 Wellington Jul 1994 A
5330149 Haan Jul 1994 A
5333759 Deering Aug 1994 A
5343527 Moore Aug 1994 A
5353023 Mitsugi Oct 1994 A
5361326 Aparicio, IV Nov 1994 A
5387926 Bellan Feb 1995 A
5388045 Kamiya Feb 1995 A
5388208 Weingartner Feb 1995 A
5404330 Lee Apr 1995 A
5408330 Squicciarini Apr 1995 A
5422543 Weinberg Jun 1995 A
5430431 Nelson Jul 1995 A
5430432 Camhi Jul 1995 A
5435184 Pineroli Jul 1995 A
5445024 Riley Aug 1995 A
5445027 Zorner Aug 1995 A
5446659 Yamawaki Aug 1995 A
5455625 Englander Oct 1995 A
5455716 Suman Oct 1995 A
5465079 Bouchard Nov 1995 A
5473729 Bryant Dec 1995 A
5477141 Nather Dec 1995 A
5495242 Kick Feb 1996 A
5495243 McKenna Feb 1996 A
5497419 Hill Mar 1996 A
5499182 Ousborne Mar 1996 A
5504482 Schreder Apr 1996 A
5505076 Parkman Apr 1996 A
5513011 Matsumoto Apr 1996 A
5515285 Garrett May 1996 A
5519260 Washington May 1996 A
5521633 Nakajima May 1996 A
5523811 Wada Jun 1996 A
5526269 Ishibashi Jun 1996 A
5530420 Tsuchiya Jun 1996 A
5532678 Kin Jul 1996 A
5537156 Katayama Jul 1996 A
5539454 Williams Jul 1996 A
5541590 Nishio Jul 1996 A
5544060 Fujii Aug 1996 A
5546191 Hibi Aug 1996 A
5546305 Kondo Aug 1996 A
5548273 Nicol Aug 1996 A
5552990 Ihara Sep 1996 A
5559496 Dubats Sep 1996 A
5568211 Bamford Oct 1996 A
5570087 Lemelson Oct 1996 A
5570127 Schmidt Oct 1996 A
5574424 Nguyen Nov 1996 A
5574443 Hsieh Nov 1996 A
D376571 Kokat Dec 1996 S
5581464 Woll Dec 1996 A
5586130 Doyle Dec 1996 A
5590948 Moreno Jan 1997 A
5596382 Bamford Jan 1997 A
5596647 Wakai Jan 1997 A
5600775 King Feb 1997 A
5608272 Tanguay Mar 1997 A
5610580 Lai Mar 1997 A
5612686 Takano Mar 1997 A
5631638 Kaspar May 1997 A
5638273 Coiner Jun 1997 A
5642106 Hancock Jun 1997 A
5646856 Kaesser Jul 1997 A
5652706 Morimoto Jul 1997 A
RE35590 Bezos Aug 1997 E
5654892 Fujii Aug 1997 A
5659355 Barron Aug 1997 A
5666120 Kline Sep 1997 A
5667176 Zamarripa Sep 1997 A
5669698 Veldman Sep 1997 A
5671451 Takahashi Sep 1997 A
5677979 Squicciarini Oct 1997 A
5680117 Arai Oct 1997 A
5680123 Lee Oct 1997 A
5686765 Washington Nov 1997 A
5686889 Hillis Nov 1997 A
5689442 Swanson Nov 1997 A
5696705 Zykan Dec 1997 A
5706362 Yabe Jan 1998 A
5706909 Bevins Jan 1998 A
5712679 Coles Jan 1998 A
5717456 Rudt Feb 1998 A
5719554 Gagnon Feb 1998 A
5758299 Sandborg May 1998 A
5781101 Stephen Jul 1998 A
5781145 Williams Jul 1998 A
5784007 Pepper Jul 1998 A
5784021 Oliva Jul 1998 A
5784521 Nakatani Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker Aug 1998 A
5793308 Rosinski Aug 1998 A
5793420 Schmidt Aug 1998 A
5793739 Tanaka Aug 1998 A
5793985 Natarajan Aug 1998 A
5794165 Minowa Aug 1998 A
5797134 McMillan Aug 1998 A
5798458 Monroe Aug 1998 A
5800040 Santo Sep 1998 A
5802545 Coverdill Sep 1998 A
5802727 Blank Sep 1998 A
5805079 Lemelson Sep 1998 A
5813745 Fant, Jr. Sep 1998 A
5815071 Doyle Sep 1998 A
5815093 Kikinis Sep 1998 A
5819198 Peretz Oct 1998 A
5825284 Dunwoody Oct 1998 A
5825412 Hobson Oct 1998 A
5844505 Van Ryzin Dec 1998 A
5845733 Wolfsen Dec 1998 A
5867802 Borza Feb 1999 A
5877897 Schofield Mar 1999 A
5896167 Omae Apr 1999 A
5897602 Mizuta Apr 1999 A
5897606 Miura Apr 1999 A
5899956 Chan May 1999 A
5901806 Takahashi May 1999 A
5914748 Parulski Jun 1999 A
5919239 Fraker Jul 1999 A
5926210 Hackett Jul 1999 A
5928291 Jenkins Jul 1999 A
5938321 Bos Aug 1999 A
5946404 Bakshi Aug 1999 A
5948038 Daly Sep 1999 A
5959367 OFarrell Sep 1999 A
5978017 Tino Nov 1999 A
6002326 Turner Dec 1999 A
6006148 Strong Dec 1999 A
6008723 Yassan Dec 1999 A
6008841 Charlson Dec 1999 A
6009370 Minowa Dec 1999 A
6011492 Garesche Jan 2000 A
6028528 Lorenzetti Feb 2000 A
6037860 Zander Mar 2000 A
6037977 Peterson Mar 2000 A
6041410 Hsu Mar 2000 A
6049079 Noordam Apr 2000 A
6057754 Kinoshita May 2000 A
6060989 Gehlot May 2000 A
6064792 Fox May 2000 A
6067488 Tano May 2000 A
6076026 Jambhekar Jun 2000 A
6084870 Wooten Jul 2000 A
6088635 Cox Jul 2000 A
6092008 Bateman Jul 2000 A
6092021 Ehlbeck Jul 2000 A
6092193 Loomis Jul 2000 A
6100811 Hsu Aug 2000 A
6111254 Eden Aug 2000 A
6118768 Bhatia Sep 2000 A
6122738 Millard Sep 2000 A
6141611 Mackey Oct 2000 A
6144296 Ishida Nov 2000 A
6147598 Murphy Nov 2000 A
6151065 Steed Nov 2000 A
6163338 Johnson Dec 2000 A
6163749 McDonough Dec 2000 A
6167186 Kawasaki Dec 2000 A
6170742 Yacoob Jan 2001 B1
6181373 Coles Jan 2001 B1
6182010 Berstis Jan 2001 B1
6185490 Ferguson Feb 2001 B1
6195605 Tabler Feb 2001 B1
6200139 Clapper Mar 2001 B1
6208919 Barkesseh Mar 2001 B1
6211907 Scaman Apr 2001 B1
6218960 Ishikawa Apr 2001 B1
6246933 Bague Jun 2001 B1
6246934 Otake Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6253129 Jenkins Jun 2001 B1
6259475 Ramachandran Jul 2001 B1
6263265 Fera Jul 2001 B1
6266588 McClellan Jul 2001 B1
6298290 Abe Oct 2001 B1
6300875 Schafer Oct 2001 B1
6317682 Ogura Nov 2001 B1
6324450 Iwama Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6337622 Sugano Jan 2002 B1
6349250 Hart Feb 2002 B1
6353734 Wright Mar 2002 B1
6356823 Iannotti Mar 2002 B1
6360147 Lee Mar 2002 B1
6366207 Murphy Apr 2002 B1
6389339 Just May 2002 B1
6389340 Rayner May 2002 B1
6400835 Lemelson Jun 2002 B1
6405112 Rayner Jun 2002 B1
6405132 Breed Jun 2002 B1
6408232 Cannon Jun 2002 B1
6411874 Morgan Jun 2002 B2
6421080 Lambert Jul 2002 B1
6429773 Schuyler Aug 2002 B1
6434510 Callaghan Aug 2002 B1
6449540 Rayner Sep 2002 B1
6456321 Ito Sep 2002 B1
6459988 Fan Oct 2002 B1
6470241 Yoshikawa Oct 2002 B2
6472771 Frese Oct 2002 B1
6490513 Fish Dec 2002 B1
6493650 Rodgers Dec 2002 B1
6505106 Lawrence Jan 2003 B1
6507838 Syeda-Mahmood Jan 2003 B1
6508400 Ishifuji Jan 2003 B1
6516256 Hartmann Feb 2003 B1
6518881 Monroe Feb 2003 B2
6525672 Chainer Feb 2003 B2
6526352 Breed Feb 2003 B1
6529159 Fan Mar 2003 B1
6535804 Chun Mar 2003 B1
6552682 Fan Apr 2003 B1
6553308 Uhlmann Apr 2003 B1
6556905 Mittelsteadt Apr 2003 B1
6559769 Anthony May 2003 B2
6574538 Sasaki Jun 2003 B2
6575902 Burton Jun 2003 B1
6580373 Ohashi Jun 2003 B1
6580983 Laguer-Diaz Jun 2003 B2
6593848 Atkins, III Jul 2003 B1
6594576 Fan Jul 2003 B2
6611740 Lowrey Aug 2003 B2
6611755 Coffee Aug 2003 B1
6624611 Kirmuss Sep 2003 B2
6629029 Giles Sep 2003 B1
6629030 Klausner Sep 2003 B2
6636791 Okada Oct 2003 B2
6664922 Fan Dec 2003 B1
6665613 Duvall Dec 2003 B2
6679702 Rau Jan 2004 B1
6684137 Takagi Jan 2004 B2
6694483 Nagata Feb 2004 B1
6701234 Vogelsang Mar 2004 B1
6714894 Tobey Mar 2004 B1
6718239 Rayner Apr 2004 B2
6721640 Glenn Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6728612 Carver Apr 2004 B1
6732031 Lightner May 2004 B1
6732032 Banet May 2004 B1
6735503 Ames May 2004 B2
6737954 Chainer May 2004 B2
6738697 Breed May 2004 B2
6739078 Morley May 2004 B2
6741168 Webb May 2004 B2
6745153 White Jun 2004 B2
6747692 Patel Jun 2004 B2
6748305 Klausner Jun 2004 B1
6760757 Lundberg Jul 2004 B1
6762513 Landgraf Jul 2004 B2
6779716 Grow Aug 2004 B1
6795017 Puranik Sep 2004 B1
6795111 Mazzilli Sep 2004 B1
6795759 Doyle Sep 2004 B2
6798743 Ma Sep 2004 B1
6804590 Sato Oct 2004 B2
6810362 Adachi Oct 2004 B2
6812831 Ikeda Nov 2004 B2
6819989 Maeda Nov 2004 B2
6831556 Boykin Dec 2004 B1
6832140 Fan Dec 2004 B2
6832141 Skeen Dec 2004 B2
6836712 Nishina Dec 2004 B2
6842762 Raithel Jan 2005 B2
6847873 Li Jan 2005 B1
6850823 Eun Feb 2005 B2
6859695 Klausner Feb 2005 B2
6859705 Rao Feb 2005 B2
6862524 Nagda Mar 2005 B1
6865457 Mittelsteadt Mar 2005 B1
6867733 Sandhu Mar 2005 B2
6873261 Anthony Mar 2005 B2
6882313 Fan Apr 2005 B1
6882912 DiLodovico Apr 2005 B2
6894606 Forbes May 2005 B2
6895248 Akyol May 2005 B1
6898492 deLeon May 2005 B2
6898493 Ehrman May 2005 B2
6919823 Lock Jul 2005 B1
6922566 Puranik Jul 2005 B2
6928348 Lightner Aug 2005 B1
6931309 Phelan Aug 2005 B2
6947817 Diem Sep 2005 B2
6950122 Mirabile Sep 2005 B1
6954223 Miyazawa Oct 2005 B2
6954689 Hanson Oct 2005 B2
6988034 Marlatt Jan 2006 B1
7003289 Kolls Feb 2006 B1
7012632 Freeman Mar 2006 B2
7020548 Saito Mar 2006 B2
7023333 Blanco Apr 2006 B2
7027621 Prokoski Apr 2006 B1
7039510 Gumpinger May 2006 B2
7076348 Bucher Jul 2006 B2
7079927 Tano Jul 2006 B1
7082359 Breed Jul 2006 B2
7082382 Rose, Jr. Jul 2006 B1
7088387 Freeman Aug 2006 B1
7095782 Cohen Aug 2006 B1
7098812 Hirota Aug 2006 B2
7100190 Johnson Aug 2006 B2
7113853 Hecklinger Sep 2006 B2
7117075 Larschan Oct 2006 B1
7119832 Blanco Oct 2006 B2
7138904 Dutu Nov 2006 B1
7155321 Bromley Dec 2006 B2
7177738 Diaz Feb 2007 B2
7209833 Isaji Apr 2007 B2
7239252 Kato Jul 2007 B2
7254482 Kawasaki Aug 2007 B2
7265663 Steele Sep 2007 B2
7266507 Simon Sep 2007 B2
7272179 Siemens Sep 2007 B2
7308341 Schofield Dec 2007 B2
7317974 Luskin Jan 2008 B2
7343306 Bates Mar 2008 B1
7348895 Lagassey Mar 2008 B2
7349027 Endo Mar 2008 B2
7370261 Winarski May 2008 B2
7382933 Dorai Jun 2008 B2
7386376 Basir Jun 2008 B2
7389178 Raz Jun 2008 B2
7398140 Kernwein Jul 2008 B2
7457693 Olsen Nov 2008 B2
7471189 Vastad Dec 2008 B2
7471192 Hara Dec 2008 B2
7536457 Miller May 2009 B2
7548586 Mimar Jun 2009 B1
7561054 Raz Jul 2009 B2
7584033 Mittelsteadt Sep 2009 B2
7596439 Oesterling Sep 2009 B2
7623754 McKain Nov 2009 B1
7659827 Gunderson Feb 2010 B2
7659835 Jung Feb 2010 B2
7667731 Kreiner Feb 2010 B2
7689001 Kim Mar 2010 B2
7702442 Takenaka Apr 2010 B2
7725216 Kim May 2010 B2
7768548 Silvernail Aug 2010 B2
7769499 McQuade Aug 2010 B2
7783956 Ko Aug 2010 B2
7804426 Etcheson Sep 2010 B2
7821421 Tamir Oct 2010 B2
7845560 Emanuel Dec 2010 B2
7853376 Peng Dec 2010 B2
7868912 Venetianer Jan 2011 B2
7893958 DAgostino Feb 2011 B1
7904219 Lowrey Mar 2011 B1
7940250 Forstall May 2011 B2
7941258 Mittelsteadt May 2011 B1
7974748 Goerick Jul 2011 B2
7984146 Rozak Jul 2011 B2
8054168 McCormick Nov 2011 B2
8068979 Breed Nov 2011 B2
8090598 Bauer Jan 2012 B2
8113844 Huang Feb 2012 B2
8139820 Plante Mar 2012 B2
8140265 Grush Mar 2012 B2
8140358 Ling Mar 2012 B1
8152198 Breed Apr 2012 B2
8239092 Plante Aug 2012 B2
8269617 Cook Sep 2012 B2
8311858 Everett Nov 2012 B2
8314708 Gunderson Nov 2012 B2
8321066 Becker Nov 2012 B2
8373567 Denson Feb 2013 B2
8417562 Siemens Apr 2013 B1
8423009 Srinivasan Apr 2013 B2
8442690 Goldstein May 2013 B2
8471701 Yariv Jun 2013 B2
8508353 Cook Aug 2013 B2
8538696 Cassanova Sep 2013 B1
8538785 Coleman Sep 2013 B2
8564426 Cook Oct 2013 B2
8564446 Gunderson Oct 2013 B2
8571755 Plante Oct 2013 B2
8577703 McClellan Nov 2013 B2
8606492 Botnen Dec 2013 B1
8634958 Chiappetta Jan 2014 B1
8635557 Geise Jan 2014 B2
8676428 Richardson Mar 2014 B2
8744642 Nemat-Nasser Jun 2014 B2
8775067 Cho Jul 2014 B2
8781292 Ross Jul 2014 B1
8803695 Denson Aug 2014 B2
8805110 Rhoads Aug 2014 B2
8849501 Cook Sep 2014 B2
8855847 Uehara Oct 2014 B2
8862395 Richardson Oct 2014 B2
8868288 Plante Oct 2014 B2
8880279 Plante Nov 2014 B2
8892310 Palmer Nov 2014 B1
8989959 Plante Mar 2015 B2
8996234 Tamari Mar 2015 B1
8996240 Plante Mar 2015 B2
9047721 Botnen Jun 2015 B1
9085362 Kilian Jul 2015 B1
9183679 Plante Nov 2015 B2
9201842 Plante Dec 2015 B2
9208129 Plante Dec 2015 B2
9226004 Plante Dec 2015 B1
9240079 Lambert Jan 2016 B2
9373203 Fields Jun 2016 B1
9607526 Hsu-Hoffman Mar 2017 B1
9610955 Palmer Apr 2017 B2
9715711 Konrardy Jul 2017 B1
9754325 Konrardy Sep 2017 B1
9767516 Konrardy Sep 2017 B1
9786154 Potter Oct 2017 B1
9792656 Konrardy Oct 2017 B1
9805423 Konrardy Oct 2017 B1
9805601 Fields Oct 2017 B1
9858621 Konrardy Jan 2018 B1
9868394 Fields Jan 2018 B1
9870649 Fields Jan 2018 B1
9942526 Plante Apr 2018 B2
10222228 Chan Mar 2019 B1
10360739 Palmer Jul 2019 B2
10497187 Palmer Dec 2019 B2
10682969 Plante Jun 2020 B2
10706648 Plante Jul 2020 B2
20010005217 Hamilton Jun 2001 A1
20010005804 Rayner Jun 2001 A1
20010018628 Jenkins Aug 2001 A1
20010020204 Runyon Sep 2001 A1
20010020902 Tamura Sep 2001 A1
20010052730 Baur Dec 2001 A1
20020019689 Harrison Feb 2002 A1
20020027502 Mayor Mar 2002 A1
20020029109 Wong Mar 2002 A1
20020035422 Sasaki Mar 2002 A1
20020044225 Rakib Apr 2002 A1
20020059453 Eriksson May 2002 A1
20020061758 Zarlengo May 2002 A1
20020067076 Talbot Jun 2002 A1
20020087240 Raithel Jul 2002 A1
20020091473 Gardner Jul 2002 A1
20020105438 Forbes Aug 2002 A1
20020107619 Klausner Aug 2002 A1
20020111725 Burge Aug 2002 A1
20020111756 Modgil Aug 2002 A1
20020118206 Knittel Aug 2002 A1
20020120374 Douros Aug 2002 A1
20020135679 Scaman Sep 2002 A1
20020138587 Koehler Sep 2002 A1
20020156558 Hanson Oct 2002 A1
20020163532 Thomas Nov 2002 A1
20020169529 Kim Nov 2002 A1
20020169530 Laguer-Diaz Nov 2002 A1
20020170064 Monroe Nov 2002 A1
20020183905 Maeda Dec 2002 A1
20030016753 Kim Jan 2003 A1
20030028298 Macky Feb 2003 A1
20030053433 Chun Mar 2003 A1
20030055557 Dutta Mar 2003 A1
20030055666 Roddy Mar 2003 A1
20030065805 Barnes Apr 2003 A1
20030067541 Joao Apr 2003 A1
20030079041 Parrella Apr 2003 A1
20030080713 Kirmuss May 2003 A1
20030080878 Kirmuss May 2003 A1
20030081121 Kirmuss May 2003 A1
20030081122 Kirmuss May 2003 A1
20030081123 Rupe May 2003 A1
20030081127 Kirmuss May 2003 A1
20030081128 Kirmuss May 2003 A1
20030081934 Kirmuss May 2003 A1
20030081935 Kirmuss May 2003 A1
20030095688 Kirmuss May 2003 A1
20030112133 Webb Jun 2003 A1
20030125854 Kawasaki Jul 2003 A1
20030137194 White Jul 2003 A1
20030144775 Klausner Jul 2003 A1
20030152145 Kawakita Aug 2003 A1
20030154009 Basir Aug 2003 A1
20030158638 Yakes Aug 2003 A1
20030177187 Levine Sep 2003 A1
20030187704 Hashiguchi Oct 2003 A1
20030191568 Breed Oct 2003 A1
20030195678 Betters Oct 2003 A1
20030201875 Kuo Oct 2003 A1
20030214585 Bakewell Nov 2003 A1
20030220835 Barnes Nov 2003 A1
20030222880 Waterman Dec 2003 A1
20040008255 Lewellen Jan 2004 A1
20040032493 Franke Feb 2004 A1
20040033058 Reich Feb 2004 A1
20040039503 Doyle Feb 2004 A1
20040039504 Coffee Feb 2004 A1
20040044452 Bauer Mar 2004 A1
20040044592 Ubik Mar 2004 A1
20040054444 Abeska Mar 2004 A1
20040054513 Laird Mar 2004 A1
20040054689 Salmonsen Mar 2004 A1
20040064245 Knockeart Apr 2004 A1
20040070926 Boykin Apr 2004 A1
20040083041 Skeen Apr 2004 A1
20040088090 Wee May 2004 A1
20040103008 Wahlbin May 2004 A1
20040103010 Wahlbin May 2004 A1
20040104842 Drury Jun 2004 A1
20040111189 Miyazawa Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040135979 Hazelton Jul 2004 A1
20040138794 Saito Jul 2004 A1
20040145457 Schofield Jul 2004 A1
20040153244 Kellum Aug 2004 A1
20040153362 Bauer Aug 2004 A1
20040167689 Bromley Aug 2004 A1
20040179600 Wells Sep 2004 A1
20040181326 Adams Sep 2004 A1
20040184548 Kerbiriou Sep 2004 A1
20040203903 Wilson Oct 2004 A1
20040209594 Naboulsi Oct 2004 A1
20040210353 Rice Oct 2004 A1
20040230345 Tzamaloukas Nov 2004 A1
20040230370 Tzamaloukas Nov 2004 A1
20040230373 Tzamaloukas Nov 2004 A1
20040230374 Tzamaloukas Nov 2004 A1
20040233284 Lesesky Nov 2004 A1
20040236474 Chowdhary Nov 2004 A1
20040243285 Gounder Dec 2004 A1
20040243308 Irish Dec 2004 A1
20040243668 Harjanto Dec 2004 A1
20040254689 Blazic Dec 2004 A1
20040254698 Hubbard Dec 2004 A1
20040257208 Huang Dec 2004 A1
20040267419 Jeng Dec 2004 A1
20050021199 Zimmerman Jan 2005 A1
20050038581 Kapolka Feb 2005 A1
20050043869 Funkhouser Feb 2005 A1
20050060070 Kapolka Mar 2005 A1
20050060071 Winner Mar 2005 A1
20050065682 Kapadia Mar 2005 A1
20050065716 Timko Mar 2005 A1
20050068417 Kreiner Mar 2005 A1
20050073585 Ettinger Apr 2005 A1
20050078423 Kim Apr 2005 A1
20050083404 Pierce Apr 2005 A1
20050088291 Blanco Apr 2005 A1
20050099498 Lao May 2005 A1
20050100329 Lao May 2005 A1
20050102074 Kolls May 2005 A1
20050125117 Breed Jun 2005 A1
20050131585 Luskin Jun 2005 A1
20050131595 Luskin Jun 2005 A1
20050131597 Raz Jun 2005 A1
20050136949 Barnes Jun 2005 A1
20050137757 Phelan Jun 2005 A1
20050137796 Gumpinger Jun 2005 A1
20050146458 Carmichael Jul 2005 A1
20050149238 Stefani Jul 2005 A1
20050149259 Cherveny Jul 2005 A1
20050152353 Couturier Jul 2005 A1
20050159964 Sonnenrein Jul 2005 A1
20050166258 Vasilevsky Jul 2005 A1
20050168258 Poskatcheev Aug 2005 A1
20050171663 Mittelsteadt Aug 2005 A1
20050171692 Hamblen Aug 2005 A1
20050174217 Basir Aug 2005 A1
20050182538 Phelan Aug 2005 A1
20050182824 Cotte Aug 2005 A1
20050185052 Raisinghani Aug 2005 A1
20050185936 Lao Aug 2005 A9
20050192749 Flann Sep 2005 A1
20050197748 Hoist Sep 2005 A1
20050200714 Marchese Sep 2005 A1
20050203683 Olsen Sep 2005 A1
20050205719 Hendrickson Sep 2005 A1
20050206741 Raber Sep 2005 A1
20050209776 Ogino Sep 2005 A1
20050212920 Evans Sep 2005 A1
20050216144 Baldassa Sep 2005 A1
20050228560 Doherty Oct 2005 A1
20050233805 Okajima Oct 2005 A1
20050243171 Ross, Sr. Nov 2005 A1
20050251304 Cancellara Nov 2005 A1
20050256681 Brinton Nov 2005 A1
20050258942 Manasseh Nov 2005 A1
20050264691 Endo Dec 2005 A1
20050283284 Grenier Dec 2005 A1
20060001671 Kamijo Jan 2006 A1
20060007151 Ram Jan 2006 A1
20060011399 Brockway Jan 2006 A1
20060015233 Olsen Jan 2006 A1
20060022842 Zoladek Feb 2006 A1
20060025897 Shostak Feb 2006 A1
20060025907 Kapolka Feb 2006 A9
20060030986 Peng Feb 2006 A1
20060040239 Cummins Feb 2006 A1
20060047380 Welch Mar 2006 A1
20060053038 Warren Mar 2006 A1
20060055521 Blanco Mar 2006 A1
20060057543 Roald Mar 2006 A1
20060058950 Kato Mar 2006 A1
20060072792 Toda Apr 2006 A1
20060078853 Lanktree Apr 2006 A1
20060082438 Bazakos Apr 2006 A1
20060092043 Lagassey May 2006 A1
20060095175 deWaal May 2006 A1
20060095199 Lagassey May 2006 A1
20060095349 Morgan May 2006 A1
20060103127 Lie May 2006 A1
20060106514 Liebl May 2006 A1
20060111817 Phelan May 2006 A1
20060122749 Phelan Jun 2006 A1
20060129578 Kim Jun 2006 A1
20060142913 Coffee Jun 2006 A1
20060143435 Kwon Jun 2006 A1
20060147187 Takemoto Jul 2006 A1
20060158349 Oesterling Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060168271 Pabari Jul 2006 A1
20060178793 Hecklinger Aug 2006 A1
20060180647 Hansen Aug 2006 A1
20060184295 Hawkins Aug 2006 A1
20060192658 Yamamura Aug 2006 A1
20060200008 Moore-Ede Sep 2006 A1
20060200305 Sheha Sep 2006 A1
20060204059 Ido Sep 2006 A1
20060209090 Kelly Sep 2006 A1
20060209840 Paatela Sep 2006 A1
20060212195 Veith Sep 2006 A1
20060215884 Ota Sep 2006 A1
20060226344 Werth Oct 2006 A1
20060229780 Underdahl Oct 2006 A1
20060242680 Johnson Oct 2006 A1
20060247833 Malhotra Nov 2006 A1
20060253307 Warren Nov 2006 A1
20060259218 Wu Nov 2006 A1
20060259933 Fishel Nov 2006 A1
20060261931 Cheng Nov 2006 A1
20070001831 Raz Jan 2007 A1
20070005404 Raz Jan 2007 A1
20070027583 Tamir Feb 2007 A1
20070027726 Warren Feb 2007 A1
20070035632 Silvernail Feb 2007 A1
20070043487 Krzystofczyk Feb 2007 A1
20070088488 Reeves Apr 2007 A1
20070100509 Piekarz May 2007 A1
20070120948 Fujioka May 2007 A1
20070124332 Ballesty May 2007 A1
20070127833 Singh Jun 2007 A1
20070132773 Plante Jun 2007 A1
20070135979 Plante Jun 2007 A1
20070135980 Plante Jun 2007 A1
20070136078 Plante Jun 2007 A1
20070142986 Alaous Jun 2007 A1
20070143499 Chang Jun 2007 A1
20070150138 Plante Jun 2007 A1
20070150140 Seymour Jun 2007 A1
20070159309 Ito Jul 2007 A1
20070173994 Kubo Jul 2007 A1
20070179691 Grenn Aug 2007 A1
20070183635 Weidhaas Aug 2007 A1
20070208494 Chapman Sep 2007 A1
20070213920 Igarashi Sep 2007 A1
20070216521 Guensler Sep 2007 A1
20070217670 Bar-Am Sep 2007 A1
20070219685 Plante Sep 2007 A1
20070219686 Plante Sep 2007 A1
20070236474 Ramstein Oct 2007 A1
20070241874 Okpysh Oct 2007 A1
20070244614 Nathanson Oct 2007 A1
20070253307 Mashimo Nov 2007 A1
20070257781 Denson Nov 2007 A1
20070257782 Etcheson Nov 2007 A1
20070257804 Gunderson Nov 2007 A1
20070257815 Gunderson Nov 2007 A1
20070260677 DeMarco Nov 2007 A1
20070262855 Zuta Nov 2007 A1
20070263984 Sterner Nov 2007 A1
20070268158 Gunderson Nov 2007 A1
20070271105 Gunderson Nov 2007 A1
20070273480 Burkman Nov 2007 A1
20070279214 Buehler Dec 2007 A1
20070280677 Drake Dec 2007 A1
20070299612 Kimura Dec 2007 A1
20080035108 Ancimer Feb 2008 A1
20080059019 Delia Mar 2008 A1
20080071827 Hengel Mar 2008 A1
20080111666 Plante May 2008 A1
20080122603 Plante May 2008 A1
20080137912 Kim Jun 2008 A1
20080143834 Comeau Jun 2008 A1
20080147267 Plante Jun 2008 A1
20080157510 Breed Jul 2008 A1
20080167775 Kuttenberger Jul 2008 A1
20080169914 Albertson Jul 2008 A1
20080177436 Fortson Jul 2008 A1
20080195261 Breed Aug 2008 A1
20080204556 de Miranda Aug 2008 A1
20080211779 Pryor Sep 2008 A1
20080234920 Nurminen Sep 2008 A1
20080243389 Inoue Oct 2008 A1
20080252412 Larsson Oct 2008 A1
20080252485 Lagassey Oct 2008 A1
20080252487 McClellan Oct 2008 A1
20080269978 Shirole Oct 2008 A1
20080281485 Plante Nov 2008 A1
20080309762 Howard Dec 2008 A1
20080319604 Follmer Dec 2008 A1
20090009321 McClellan Jan 2009 A1
20090043500 Satoh Feb 2009 A1
20090043971 Kim Feb 2009 A1
20090051510 Follmer Feb 2009 A1
20090138191 Engelhard May 2009 A1
20090157255 Plante Jun 2009 A1
20090216775 Ratliff Aug 2009 A1
20090224869 Baker Sep 2009 A1
20090290848 Brown Nov 2009 A1
20090299622 Denaro Dec 2009 A1
20090312998 Berckmans Dec 2009 A1
20090326796 Prokhorov Dec 2009 A1
20090327856 Mouilleseaux Dec 2009 A1
20100030423 Nathanson Feb 2010 A1
20100045451 Periwal Feb 2010 A1
20100047756 Schneider Feb 2010 A1
20100049516 Talwar Feb 2010 A1
20100054709 Misawa Mar 2010 A1
20100057342 Muramatsu Mar 2010 A1
20100063672 Anderson Mar 2010 A1
20100063680 Tolstedt Mar 2010 A1
20100063850 Daniel Mar 2010 A1
20100070175 Soulchin Mar 2010 A1
20100076621 Kubotani Mar 2010 A1
20100085193 Boss Apr 2010 A1
20100085430 Kreiner Apr 2010 A1
20100087984 Joseph Apr 2010 A1
20100100315 Davidson Apr 2010 A1
20100103165 Lee Apr 2010 A1
20100104199 Zhang Apr 2010 A1
20100149418 Freed Jun 2010 A1
20100153146 Angell Jun 2010 A1
20100157061 Katsman Jun 2010 A1
20100191411 Cook Jul 2010 A1
20100201875 Rood Aug 2010 A1
20100220892 Kawakubo Sep 2010 A1
20100250020 Lee Sep 2010 A1
20100250022 Hines Sep 2010 A1
20100250060 Maeda Sep 2010 A1
20100250116 Yamaguchi Sep 2010 A1
20100253918 Seder Oct 2010 A1
20100268415 Ishikawa Oct 2010 A1
20100283633 Becker Nov 2010 A1
20100312464 Fitzgerald Dec 2010 A1
20110035139 Konlditslotis Feb 2011 A1
20110043624 Haug Feb 2011 A1
20110060496 Nielsen Mar 2011 A1
20110077028 Wilkes Mar 2011 A1
20110091079 Yu-Song Apr 2011 A1
20110093159 Boling Apr 2011 A1
20110112995 Chang May 2011 A1
20110121960 Tsai May 2011 A1
20110125365 Larschan May 2011 A1
20110130916 Mayer Jun 2011 A1
20110140884 Santiago Jun 2011 A1
20110145042 Green Jun 2011 A1
20110153367 Amigo Jun 2011 A1
20110161116 Peak Jun 2011 A1
20110166773 Raz Jul 2011 A1
20110169625 James Jul 2011 A1
20110172864 Syed Jul 2011 A1
20110173015 Chapman Jul 2011 A1
20110208428 Matsubara Aug 2011 A1
20110212717 Rhoads Sep 2011 A1
20110213628 Peak Sep 2011 A1
20110224891 Iwuchukwu Sep 2011 A1
20110251752 DeLarocheliere Oct 2011 A1
20110251782 Perkins Oct 2011 A1
20110254676 Marumoto Oct 2011 A1
20110257882 McBurney Oct 2011 A1
20110273568 Lagassey Nov 2011 A1
20110282542 Nielsen Nov 2011 A9
20110283223 Vaittinen Nov 2011 A1
20110304446 Basson Dec 2011 A1
20120021386 Anderson Jan 2012 A1
20120035788 Trepagnier Feb 2012 A1
20120041675 Juliver Feb 2012 A1
20120046803 Inou Feb 2012 A1
20120065834 Senart Mar 2012 A1
20120071140 Oesterling Mar 2012 A1
20120078063 Moore-Ede Mar 2012 A1
20120081567 Cote Apr 2012 A1
20120100509 Gunderson Apr 2012 A1
20120109447 Yousefi May 2012 A1
20120123806 Schumann May 2012 A1
20120134547 Jung May 2012 A1
20120150436 Rossano Jun 2012 A1
20120176234 Taneyhill Jul 2012 A1
20120190001 Knight Jul 2012 A1
20120198317 Eppolito Aug 2012 A1
20120203402 Jape Aug 2012 A1
20120210252 Fedoseyeva Aug 2012 A1
20120269383 Bobbitt Oct 2012 A1
20120277950 Plante Nov 2012 A1
20120280835 Raz Nov 2012 A1
20120283895 Noda Nov 2012 A1
20120330528 Schwindt Dec 2012 A1
20130004138 Kilar Jan 2013 A1
20130006469 Green Jan 2013 A1
20130018534 Hilleary Jan 2013 A1
20130021148 Cook Jan 2013 A1
20130028320 Gardner Jan 2013 A1
20130030660 Fujimoto Jan 2013 A1
20130046449 Yuecel Feb 2013 A1
20130048795 Cross Feb 2013 A1
20130052614 Mollicone Feb 2013 A1
20130073112 Phelan Mar 2013 A1
20130073114 Nemat-Nasser Mar 2013 A1
20130096731 Tamari Apr 2013 A1
20130127980 Haddick May 2013 A1
20130145269 Latulipe Jun 2013 A1
20130151980 Lee Jun 2013 A1
20130170762 Marti Jul 2013 A1
20130189649 Mannino Jul 2013 A1
20130197774 Denson Aug 2013 A1
20130209968 Miller Aug 2013 A1
20130274950 Richardson Oct 2013 A1
20130278631 Border Oct 2013 A1
20130317711 Plante Nov 2013 A1
20130332004 Gompert Dec 2013 A1
20130345927 Cook Dec 2013 A1
20130345929 Bowden Dec 2013 A1
20140025225 Armitage Jan 2014 A1
20140025254 Plante Jan 2014 A1
20140032062 Baer Jan 2014 A1
20140046550 Palmer Feb 2014 A1
20140047371 Palmer Feb 2014 A1
20140058583 Kesavan Feb 2014 A1
20140089504 Scholz Mar 2014 A1
20140094992 Lambert Apr 2014 A1
20140098228 Plante Apr 2014 A1
20140152828 Plante Jun 2014 A1
20140226010 Molin Aug 2014 A1
20140232863 Paliga Aug 2014 A1
20140270684 Jayaram Sep 2014 A1
20140279707 Joshua Sep 2014 A1
20140280204 Avery Sep 2014 A1
20140300739 Mimar Oct 2014 A1
20140309849 Ricci Oct 2014 A1
20140335902 Guba Nov 2014 A1
20140336916 Yun Nov 2014 A1
20140339374 Mian Nov 2014 A1
20150000415 Kelley Jan 2015 A1
20150015617 Yeo Jan 2015 A1
20150035665 Plante Feb 2015 A1
20150057512 Kapoor Feb 2015 A1
20150057836 Plante Feb 2015 A1
20150105934 Palmer Apr 2015 A1
20150112542 Fuglewicz Apr 2015 A1
20150112545 Binion Apr 2015 A1
20150134226 Palmer May 2015 A1
20150135240 Shibuya May 2015 A1
20150156174 Fahey Jun 2015 A1
20150170428 Harter Jun 2015 A1
20150189042 Sun Jul 2015 A1
20150203116 Fairgrieve Jul 2015 A1
20150022449 Salinger Aug 2015 A1
20150222449 Salinger Aug 2015 A1
20150317846 Plante Nov 2015 A1
20150371462 Ramesh Dec 2015 A1
20160054733 Hollida Feb 2016 A1
20160182170 Daoura Jun 2016 A1
20170301220 Jarrell Oct 2017 A1
20180025636 Boykin Jan 2018 A1
20180033300 Hansen Feb 2018 A1
20190176837 Williams Jun 2019 A1
20190176847 Palmer Jun 2019 A1
20190180524 Palmer Jun 2019 A1
20190389307 Plante Dec 2019 A1
Foreign Referenced Citations (72)
Number Date Country
2469728 Dec 2005 CA
2469728 Dec 2005 CA
2692415 Aug 2011 CA
2692415 Aug 2011 CA
4416991 Nov 1995 DE
20311262 Sep 2003 DE
202005008238 Aug 2005 DE
102004004669 Dec 2005 DE
102004004669 Dec 2005 DE
0708427 Apr 1996 EP
0840270 May 1998 EP
0848270 Jun 1998 EP
1170697 Jan 2002 EP
1324274 Jul 2003 EP
1355278 Oct 2003 EP
1427165 Jun 2004 EP
1818873 Aug 2007 EP
2104075 Sep 2009 EP
2320387 May 2011 EP
2407943 Jan 2012 EP
244694 Sep 1926 GB
02056197 Feb 1990 GB
2268608 Jan 1994 GB
2402530 Dec 2004 GB
2402530 Dec 2004 GB
2447184 Sep 2008 GB
2451485 Feb 2009 GB
58085110 May 1983 JP
S5885110 May 1983 JP
62091092 Apr 1987 JP
S6291092 Apr 1987 JP
S62166135 Jul 1987 JP
H0256197 Feb 1990 JP
H04257189 Sep 1992 JP
H05137144 Jun 1993 JP
H08124069 May 1996 JP
H09163357 Jun 1997 JP
H09272399 Oct 1997 JP
10076880 Mar 1998 JP
H1076880 Mar 1998 JP
2002191017 Jul 2002 JP
2002191017 Jul 2002 JP
5294188 May 2009 JP
20000074416 Dec 2000 KR
1000588169 Jun 2006 KR
8809023 Nov 1988 WO
9005076 May 1990 WO
9427844 Dec 1994 WO
9600957 Jan 1996 WO
9701246 Jan 1997 WO
9726750 Jul 1997 WO
9937503 Jul 1999 WO
9940545 Aug 1999 WO
9962741 Dec 1999 WO
0007150 Feb 2000 WO
0028410 May 2000 WO
0048033 Aug 2000 WO
0077620 Dec 2000 WO
0123214 Apr 2001 WO
0125054 Apr 2001 WO
0146710 Jun 2001 WO
03045514 Jun 2003 WO
2004066275 Aug 2004 WO
2005095175 Oct 2005 WO
2006022824 Mar 2006 WO
2006022824 Mar 2006 WO
2007067767 Jan 2007 WO
2007109091 Sep 2007 WO
2009081234 Jul 2009 WO
2011055743 May 2011 WO
2013072939 May 2013 WO
2013159853 Oct 2013 WO
Non-Patent Literature Citations (196)
Entry
“DriveCam Driving Feedback System” DriveCam brochure, Mar. 15, 2004, 4 pages.
“DriveCam Driving Feedback System”, DriveCam brochure, Jun. 12, 2001, Document #6600128, 2 pages.
“DriveCam Passenger Transportation Module”, DriveCam brochure, Oct. 26, 2001, 2 pages.
“DriveCam Video Event Data Recorder”, DriveCam brochure, Nov. 6, 2002, Document #6600127, 2 pages.
“DriveCam, Inc's Disclosure of Proposed Constructions and Extrinsic Evidence Pursuant to Patent L.R. 4.1.a & 4.1.b” Disclosure and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Nov. 8, 2011, 68 pages.
“Responsive Claim Construction and Identification of Extrinsic Evidence of Defendani/Counterclaimant SmartDrive Systems, Inc.” Claim Construction and and Extrinsic Evidence in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 15, 2011, 20 pages.
“Sonic MyDVD 4.0: Tutorial: Trimming video segments”. Tutorial for software bundled with Adaptec VideoOh! DVD USB 2.0 Edition, 2003, 13 pages.
“User's Manual for DriveCam Video Systems' HindSight 20/20 Software Version 4.0” DriveCam Manual, San Diego, 2003, Document #6600141-1, 54 pages.
Adaptec published and sold its VideoOh! DVD software USB 2.0 Edition in at least Jan. 24, 2003. (1 pg.).
Ambulance Companies Use Video Technology to Improve Driving Behavior, Ambulance Industry Journal, Spring 2003 (2 pgs.).
Amended Complaint for Patent Infringement, Trade Secret Misappropriation, Unfair Competition and Conversion in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California, Document 34, filed Oct. 20, 2011, pp. 1-15.
Amendment filed Dec. 23, 2009 during prosecution of U.S. Appl. No. 11/566,424 (13 pgs.).
Answer to Amended Complaint; Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 47, filed Dec. 13, 2011, pp. 1-15.
U.S. Appl. No. 11/296,906, filed Dec. 8, 2005, File History (279 pgs.).
U.S. Appl. No. 11/297,669, filed Dec. 8, 2005, File History (183 pgs.).
U.S. Appl. No. 11/297,889, filed Dec. 8, 2005, File History (77 pgs.).
U.S. Appl. No. 11/298,069, filed Dec. 9, 2005, File History (105 pgs.).
U.S. Appl. No. 11/299,028, filed Dec. 9, 2005, File History (181 pgs.).
U.S. Appl. No. 11/593,659, filed Nov. 7, 2006, File History (296 pgs.).
U.S. Appl. No. 11/593,682, filed Nov. 7, 2006, File History (173 pgs.).
U.S. Appl. No. 11/593,882, filed Nov. 7, 2006, File History (94 pgs.).
U.S. Appl. No. 11/595,015, filed Nov. 9, 2006, File History (171 pgs.).
U.S. Appl. No. 11/637,754, filed Dec. 13, 2006, File History (241 pgs.).
U.S. Appl. No. 11/637,755, filed Dec. 13, 2006, File History (171 pgs.).
Bill Siuru, ‘DriveCam Could Save You Big Bucks’, Land Line Magazine, May-Jun. 2000 (1 pg.).
Bill, ‘DriveCam-FAQ’, Dec. 12, 2003 (3 pgs.).
Canadian Office Action issued in Application No. 2,632,685 dated Jan. 30, 2015; 5 pages.
Chris Woodyard, ‘Shuttles save with DriveCam’, Dec. 9, 2003 (1 pg.).
Dan Carr, Flash Video Template: Video Presentation with Navigation, Jan. 16, 2006, http://www.adobe.com/devnet/fiash/articles/vidtemplate_mediapreso_flash8.html (13 pgs.).
Dan Maher, “DriveCam Taking Risk Out of Driving”, DriveCam brochure folder, Jun. 6, 2005, 6 pages.
David Cullen, ‘Getting a real eyeful’, Fleet Owner Magazine, Feb. 2002 (1 pg.).
David Maher, ‘DriveCam Brochure Folder’, Jun. 6, 2005 (2 pg.).
David Maher, “DriveCam Brochure Folder”, Jun. 8, 2005 (2 pg.).
David Vogeleer et al., Macromedia Flash Professional 8UNLEASHED (Sams Oct. 12, 2005). (4 pgs.).
Del Lisk, ‘DriveCam Training Handout Ver4’, Feb. 3, 2005 (16 pgs.).
Del Lisk, “DriveCam Training Seminar” Handout, 2004, 16 pages.
DriveCam Driving Feedback System, Mar. 15, 2004 (12 pgs.).
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 3, 2011. (1 pg.).
DriveCam Extrinsic Evidence with Patent LR 4.1 .a Disclosures, Nov. 8, 2011. (1 pg.).
DriveCam—Illuminator Data Sheet, Oct. 2, 2004. (1 pg.).
Drivecam, Inc., User's Manual for Drivecam Video Systems' Hindsight 20/20 Software Version 4.0 (2003). (54 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit A, U.S. Pat. No. 6,389,340, Document 34.1, Oct. 20, 2011. (10 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,659,827. Aug. 19, 2011. (29 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit B, U.S. Pat. No. 7,804,426, Document 34.2, Oct. 20, 2011. (20 pg.).
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,659,827, Document 34.3, Oct. 20, 2011. (17 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit C, U.S. Pat. No. 7,804,426. Aug. 19, 2011. (47 pgs.).
DriveCam, Inc.'s Infringement Contentions Exhibit D, Document 34.4, Oct. 20, 2011. (2 pgs.).
Drivecam.com as retrieved by the Internet Wayback Machine as of Mar. 5, 2005(1 pg.).
DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Aug. 19, 2011. (6 pgs.).
Driver Feedback System, Jun. 12, 2001 (1 pg.).
Edwin Olson, A Passive Solution to the Sensor Synchronization Problem, the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 18-22, 2010, 6 pages.
European Examination Report issued in EP 07772812.9 dated Jan. 22, 2015; 5 pages.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Exhibit A, Document 55, filed Jan. 3, 2012, pp. 49-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 53, filed Dec. 20, 2011, pp. 1-48.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 1, 2012, pp. 86-103.
First Amended Answer to Amended Complaint and First Amended Counterclaims; and Demand for Jury Trial in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 55, filed Jan. 3, 2012, pp. 86-103.
Franke, U., et al., Autonomous Driving Goes Downtown, IEEE Intelligent Systems, 13(6):40-48 (1988); Digital Object Identifier 10.1109/5254.736001.
Gallagher, B., et al., Wireless Communications for Vehicle Safety: Radio Link Performance and Wireless Connectivity Methods, Vehicular Technology Magazine, IEEE, 1(4):4-24 (2006); Digital Object Identifier 10.1109/MVT.2006.343641.
Gandhi, T., et al., Pedestrian Protection Systems: Issues, Survey, and Challenges, IEEE Transactions on Intelligent Transportation Systems, 8(3):413-430 (2007); Digital Object Identifier 10.1109/TITS.2007.903444.
Gary and Sophia Rayner, Final Report for Innovations Deserving Exploratory Analysis (IDEA) Intelligent Transportation Systems (ITS) Programs' Project 84, I-Witness Black Box Recorder, San Diego, CA. Nov. 2001. (19 pgs.).
GE published its VCR User's Guide for Model VG4255 in 1995. (44 pgs.).
Glenn Oster, ‘Hindsight 20/20 v4.0 Software Installation’, 1 of 2, Jun. 20, 2003 (2 pgs.).
Glenn Oster, ‘HindSight 20/20 v4.0 Software Installation’, 2 of 2, Jun. 20, 2003. (54 pgs.).
Glenn Oster, ‘Illuminator Installation’, Oct. 3, 2004 (2 pgs.).
Hans Fantel, Video; Search Methods Make a Difference in Picking VCR's, NY Times, Aug. 13, 1989. (1 pg.).
I/O Port Racing Supplies' website discloses using Traqmate's Data Acquisition with Video Overlay system in conjunction with professional driver coaching sessions (available at http://www.ioportracing.com/Merchant2/merchant.mvc?Screen=CTGY&Categorys- ub.--Code=coaching)., printed from site on Jan. 11, 2012. (4 pgs.).
Inovate Motorsports, OT-1 16 Channel OBD-II Interface User Manual, Version 1.0, Nov. 28, 2007, pp. 3, 4, 21 & 27.
Interior Camera Data Sheet, Oct. 26, 2001 (2 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68325 dated Feb. 27, 2008. (10 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68325 dated Feb. 27, 2008. (2 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68328 dated Oct. 15, 2007. (2 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68329 dated Mar. 3, 2008. (10 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68332 dated Mar. 3, 2008. (8 pgs.).
International Search Report and Written Opinion issued in PCT/US07/68334 dated Mar. 5, 2008. (11 pgs.).
International Search Report for PCTUS2006/47055, dated Mar. 20, 2008 (2 pp.).
International Search Report issued in PCT/US2006/47042 dated Feb. 25, 2008 (3pgs.).
J. Gallagher, ‘Lancer Recommends Tech Tool’, Insurance and Technology Magazine, Feb. 2002 (1 pg.).
Jean (DriveCam vendor) “DriveCam Driving Feedback System”, DriveCam brochure, Nov. 6, 2002, Document #6600128-1, 2 pages.
Jean (DriveCam vendor), ‘DC Data Sheet’, Nov. 6, 2002. (1 pg.).
Jean (DriveCam vendor), ‘DriveCam brochure’, Nov. 6, 2002. (4 pgs.).
Jean (DriveCam vendor), ‘Feedback Data Sheet’, Nov. 6, 2002. (1 pg.).
Jean (DriveCam vendor), ‘Hindsight 20-20 Data Sheet’, Nov. 4, 2002 (2 pg.).
Jessyca Wallace, ‘Analyzing and Processing DriveCam Recorded Events’, Oct. 6, 2003 (8 pgs.).
Jessyca Wallace, ‘Overview of the DriveCam Program’, Dec. 15, 2005 (13 pgs.).
Jessyca Wallace, ‘The DriveCam Driver Feedback System’, Apr. 6, 2004 (21 pgs.).
Joint Claim Construction Chart in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 11-CV-0997-H (RBB), for the Southern District of California, Document 43, filed Dec. 1, 2011, pp. 1-2.
Joint Claim Construction Chart, U.S. Pat. No. 6,389,340, ‘Vehicle Data Recorder’ for Case No. 3:11-CV-00997-H-RBB, Document 43-1, filed Dec. 1, 2011, pp. 1-33.
Joint Claim Construction Worksheet in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997 H (RBB), for the Southern District of California, Document 44, filed Dec. 1, 2011, pp. 1-2.
Joint Claim Construction Worksheet, U.S. Pat. No. 6,389,340, “Vehicle Data Reporter” for Case No. 3:11-CV-00997-H-RBB, Document 44-1, filed Dec. 1, 2011, pp. 1-10.
Joint Motion for Leave to Supplement Disclosure of Asserted Claims and Preliminary Infringement Contentions in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, Document 29, filed Oct. 12, 2011, pp. 1-7.
Julie Stevens, ‘DriveCam Services’, Nov. 15, 2004 (9 pgs.).
Julie Stevens, ‘Program Support Roll-Out & Monitoring’, Jul. 13, 2004 (2 pgs.).
Jung, Sang-Hack, et al., Egomotion Estimation in Monocular Infra-red Image Sequence for Night Vision Applications, IEEE Workshop on Applications of Computer Vision (WACV '07), Feb. 2007, 6 pgs.; Digital Object Identifier 10.1109/WACV.2007.20.
JVC Company of America, JVC Video Cassette Recorder HR-IP820U Instructions (1996). (44 pgs.).
Kamijo, S., et al., A Real-Time Traffic Monitoring System by Stochastic Model Combination, IEEE International Conference on Systems, Man and Cybernetics, 4:3275-3281 (2003).
Kamijo, S., et al., An Incident Detection System Based on Semantic Hierarchy, Proceedings of the 7th International IEEE Intelligent Transportation Systems Conference, Oct. 3-6, 2004, pp. 853-858; Digital Object Identifier 10.1109/ITSC.2004.1399015.
Karen, ‘Downloading Options to HindSight 20120’, Aug. 6, 2002. (15 pgs.).
Karen, ‘Managers Guide to the DriveCam Driving Feedback System’, Jul. 30, 2002 (11 pgs.).
Kathy Latus (Latus Design), ‘Case Study—Time Warner Cable’, Sep. 23, 2005. (1 pg.).
Kathy Latus (Latus Design), ‘Case Study—Cloud 9 Shuttle’, Sep. 23, 2005 (1 pg.).
Kathy Latus (Latus Design), ‘Case Study—Lloyd Pest Control’, Jul. 19, 2005 (1 pg.).
Ki, Yong-Kul, et al., A Traffic Accident Detection Model using Metadata Registry, Proceedings of the Fourth International Conference on Software Engineering Research, Management and Applications; Aug. 9-11, 2006 pp. 255-259 Digital Object Identifier 10.1109/SERA.2006.8.
Kitchin, Charles. “Understanding accelerometer scale factor and offset adjustments.” Analog Devices (1995). (4 pgs.).
Lin, Chin-Teng et al., EEG-based drowsiness estimation for safety driving using independent component analysis; IEEE Transactions on Circuits and Systems-I: Regular Papers, 52(12):2726-2738 (2005); Digital Object Identifier 10.1109/TCSI.2005.857555.
Lisa Mckenna, ‘A Fly on the Windshield?’, Pest Control Technology Magazine, Apr. 2003 (2 pgs.).
Inovate Motorsports, OT-1 16 Channel 0BD-II Interface User Manual, Version 1.0, Nov. 28, 2007, pp. 3, 4, 21 and 27.
Miller, D.P., Evaluation of Vision Systems for Teleoperated Land Vehicles. Control Systems Magazine, IEEE, 8(3):37-41 (1988); Digital Identifier 10.1109/37.475.
Munder, S., et al., Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models, IEEE Transactions on Intelligent Transportation Systems, 9(2):333-343 (2008); Digital Identifier 10.1109/TITS.2008.922943.
Notice of Allowance Application for U.S. Appl. No. 11/566,424, dated Feb. 26, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Dec. 3, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Feb. 13, 2015, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, date Feb. 25, 2014, 2 pages.
Notice of Allowance for U.S. Appl. No. 11/377,164, dated Nov. 18, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/377,167, dated Apr. 1, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/800,876, dated Apr. 19, 2012, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/957,810, dated Jun. 8, 2015, 10 pages.
Olson, E, A passive solution to the sensor synchronization problem, Intelligent Robots and Systems (IROS), Technical Fields 2010 IEEE/RSJ International Conference on, IEEE, Piscataway, NJ, USA, Searched (IPC) Oct. 18, 2010 (Oct. 18, 2010, pp. 1059-1064, XP031920438, DOI: 10.1109/IROS.2010.5650579 ISBN: 978-1-4244-6674-0.
Panasonic Corporation, Video Cassette Recorder (VCR) Operating Instructions for Models No. PV-V4020/PV-V4520. (40 pgs.).
Passenger Transportation Mode Brochure, May 2, 2005. (2 pgs.).
Patent Abstracts of Japan vol. 007, No. 180 (P-215), Aug. 9, 1983 (Aug. 9, 1983) & JP 58 085110 A (Mitsuhisa Ichikawa), May 21, 1983 (May 21, 1983) (1 pg.).
Patent Abstracts of Japan vol. 011, No. 292 (E-543), Sep. 19, 1987 (Sep. 19, 1987) & JP 62 091092 A (OK ENG:KK), Apr. 25, 1987 (Apr. 25, 1987) (1 pg.).
Patent Abstracts of Japan vol. 012, No. 001 (M-656), Jan. 6, 1988 (Jan. 6, 1988) & JP 62 166135 A (Fuji Electric Co Ltd), Jul. 22, 1987 (Jul. 22, 1987) (1 pg.).
Patent Abstracts of Japan vol. 014, No. 222 (E-0926), May 10, 1990 (May 10, 1990) & JP 02 056197 A (Sanyo Electric Co Ltd), Feb. 26, 1990 (Feb. 26, 1990) (1 pg.).
Patent Abstracts of Japan vol. 017, No. 039 (E-1311), Jan. 25, 1993 (Jan. 25, 1993) & JP 04 257189 A (Sony Corp), Sep. 11, 1992 (Sep. 11, 1992) (1 pg.).
Patent Abstracts of Japan vol. 017, No. 521 (E-1435), Sep. 20, 1993 (Sep. 20, 1993) & JP 05 137144 A (Kyocera Corp), Jun. 1, 1993 (Jun. 1, 1993) (7 pgs.).
Patent Abstracts of Japan vol. 1996, No. 09, Sep. 30, 1996 (Sep. 30, 1996) & JP 08 124069 A (Toyota Motor Corp), May 17, 1996 (May 17, 1996) (15 pgs.).
Patent Abstracts of Japan vol. 1997, No. 10, Oct. 31, 1997 (Oct. 31, 1997) & JP 09 163357 A (Nippon Soken Inc), Jun. 20, 1997 (Jun. 20, 1997) (1 pg.).
Patent Abstracts of Japan vol. 1998, No. 02, Jan. 30, 1998 (Jan. 30, 1998) & JP 09 272399 A (Nippon Soken Inc), Oct. 21, 1997 (Oct. 21, 1997) (1 pg.).
Patent Abstracts of Japan vol. 1998, No. 8, Jun. 30, 1998 (Jun. 30, 1998) & JP 10 076880 A (Muakami Corp), Mar. 24, 1998 (Mar. 24, 1998) (1 pg.).
PCT International Search Report and Written Opinion for PCT/IB16/51863, dated Sep. 16, 2016 (18 pgs.).
PCT International Search Report and Written Opinion for PCT/US15/60721 dated Feb. 26, 2016, 11 pages.
PCT International Search Report and Written Opinion for PCT/US2016/012757 dated Mar. 18, 2016 (11 pgs.).
PCT/US2010/022012, Invitation to Pay Additional Fees with Communication of Partial International Search, Jul. 21, 2010. (4 pgs.).
Peter G. Thurlow, Letter (including exhibits) Regarding Patent Owner's Response to Initial Office Action in Ex Parte Reexamination, Mar. 27, 2012. (78 pgs.).
Preliminary Claim Construction and Identification of Extrinsic Evidence of Defendant/Counterclaimant SmartDriveSystems, Inc.' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H (RBB), for the Southern District of California. Nov. 8, 2011. (13 pgs.).
Quinn Maughan, ‘DriveCam Enterprise Services’, Jan. 5, 2006 (2 pgs.).
Quinn Maughan, ‘DriveCam Managed Services’, Jan. 5, 2006. (2 pgs.).
Quinn Maughan, ‘DriveCam Standard Edition’, Jan. 5, 2006. (2 pgs.).
Quinn Maughan, ‘DriveCam Unit Installation’, Jul. 21, 2005 (9 pgs.).
Quinn Maughan, ‘Enterprise Services’, Apr. 17, 2006 (2 pgs.).
Quinn Maughan, ‘Enterprise Services’, Apr. 7, 2006 (2 pgs.).
Quinn Maughan, ‘Hindsight Installation Guide’, Sep. 29, 2005 (55 pgs.).
Quinn Maughan, ‘Hindsight Users Guide’, Jun. 7, 2005 (80 pgs.).
Ronnie Rittenberry, ‘Eyes on the Road’, Jul. 2004 (2 pgs.).
SmartDrives Systems, Inc's Production, SO14246-S014255, Nov. 16, 2011 (1 pg.).
Supplement to DriveCam's Disclosure of Asserted Claims and Preliminary Infringement Contentions' in DriveCam, Inc. v. SmartDrive Systems, Inc., Case No. 3:11-CV-00997-H-RBB, for the Southern District of California. Oct. 14, 2011. (7 pgs.).
The DriveCam, Nov. 6, 2002. (2 pgs.).
The DriveCam, Nov. 8, 2002 (2 pgs.).
Traqmate GPS Data Acquisition's Traqmate Data Acquisition with Video Overlay system was used to create a video of a driving event on Oct. 2, 2005 (available at http://www.trackvision.net/phpBB2/viewtopic.php? t=51&sid=1184fbbcbe3be5c87ffa0f2ee6e2da76), printed from site on Jan. 11, 2012. (4 pgs.).
Trivinci Systems, LLC, “Race-Keeper System User Guide”, V1 .1.02, Jan. 2011, p. 21.
Trivinci Systems, LLC, Race-Keeper Systems User Guide, Jan. 2011, v1, 1.02, pp. 34 and 39.
U.S. Appl. No. 12/691,639, entitled ‘Driver Risk Assessment System and Method Employing Selectively Automatic Event Scoring’, filed Jan. 21, 2010. (52 pgs.).
U.S. Appl. No. 11/377,167, Final Office Action dated Nov. 8, 2013. (19 pgs.).
U.S. Appl. No. 11/377,157, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Parallel Communications Links” (28 pgs.).
U.S. Appl. No. 11/377,167, filed Mar. 16, 2006 entitled, “Vehicle Event Recorder Systems and Networks Having Integrated Cellular Wireless Communications Systems” (29 pgs.).
USPTO Final Office Action for U.S. Appl. No. 11/296,906, dated Aug. 8, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 11/297,669, dated Nov. 7, 2011, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Dec. 5, 2014, 23 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Jul. 18, 2012, 15 pages.
USPTO Final Office Action for U.S. Appl. No. 12/096,591, dated Nov. 7, 2013, 14 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, dated Jun. 27, 2014, 22 pages.
USPTO Final Office Action for U.S. Appl. No. 13/957,810, dated Jun. 27, 2014, 24 pages.
USPTO Final Office Action for U.S. Appl. No. 14/036,299, dated Feb. 24, 2015, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Apr. 2, 2009, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Apr. 8, 2014, 19 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Jun. 12, 2012, 13 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,906, dated Nov. 6, 2009, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/297,669, dated Apr. 28, 2011, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/299,028, dated Apr. 24, 2008, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Apr. 7, 2014, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Aug. 18, 2014, 5 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Nov. 19, 2007, 7 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Nov. 25, 2011, 9 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Sep. 10, 2012, 10 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,164, dated Sep. 11, 2008, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, dated Jun. 27, 2013, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/377,167, dated Jun. 5, 2008, 11 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, dated Dec. 1, 2010, 12 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 11/800,876, dated Dec. 20, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated Jun. 14, 2011, 8 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated Mar. 27, 2013, 16 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 12/096,591, dated May 20, 2014, 19 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 13/957,810, dated Apr. 17, 2015, 6 pages.
USPTO Non-final Office Action for U.S. Appl. No. 13/957,810, dated Nov. 27, 2013, 18 pages.
USPTO Non-Final Office Action for U.S. Appl. No. 14/036,299, dated Aug. 12, 2014. (14 pgs.).
USPTO Non-Final Office Action for U.S. Appl. No. 11/296,907, dated Mar. 22, 2007 (17 pages).
USPTO Non-final Office Action dated Aug. 27, 2009 during prosecution of U.S. Appl. No. 11/566,424 (25 pgs.).
USPTO Non-Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 14/529,134, filed Oct. 30, 2014 (65 pgs).
USPTO Non-Final Office Action dated Nov. 27, 2013 in U.S. Appl. No. 13/957,810, filed Aug. 2, 2013. (19 pgs.).
Veeraraghavan, H., et al., Computer Vision Algorithms for Intersection Monitoring, IEEE Transactions on Intelligent Transportation Systems, 4(2):78-89 (2003); Digital Object Identifier 10.1109/TITS.2003.821212.
Wijesoma, W.S., et al., Road Curb Tracking in an Urban Environment, Proceedings of the Sixth International Conference of Information Fusion, 1:261-268 (2003).
World News Tonight, CBC Television New Program discussing teen drivers using the DriveCam Program and DriveCam Technology, Oct. 10, 2005, on PC formatted CD-R, World News Tonight.wmv, 7.02 MB, Created Jan. 12, 2011. (1 pg.).
Written Opinion issued in PCT/US07/68328 dated Oct. 15, 2007. (3 pgs.).
Written Opinion of the International Searching Authority for PCT/US2006/47042, dated Feb. 25, 2008 (5 pages).
Written Opinion of the International Searching Authority for PCT/US2006/47055, dated Mar. 20, 2008 (5 pages).
History of the web browser, Wikipedia (Year: 2019) (8 pages).
Related Publications (1)
Number Date Country
20190279441 A1 Sep 2019 US
Continuations (2)
Number Date Country
Parent 15620420 Jun 2017 US
Child 16426386 US
Parent 14676622 Apr 2015 US
Child 15620420 US