It is believed that the vehicle fairing system disclosed herein significantly increases the efficiency of vehicles, particularly tractor-trailers, by improving their aerodynamic profile, and thus reducing aerodynamic drag, without affecting loading and unloading operations.
The large rectangular ends of typical trailer boxes create an area of reduced pressure behind the trailer box as it moves over the highway. In addition, in such tandem vehicle arrangements, the rear vehicular component often projects above the front vehicular component and thus causes additional aerodynamic drag of a type referred to as form drag. Also, in such tandem vehicle arrangements, the rear vehicular component is separated from the front vehicular component by a gap, which also creates aerodynamic drag. All of these phenomena increase wind resistance, and thus decrease the efficiency of the vehicle. Still further, air currents are produced underneath a moving tractor-trailer, which also increases drag.
To describe the drag created by the gap between the front and rear vehicular components, the near wake of a bluff backed object like a tractor cab may be described as a region of slower (or even reversed) flow, bounded by a shear layer. The shear layer is the boundary between the faster moving external flow and the slow moving air dragged along behind the cab. In the absence of cross wind, there is a general flow upwards in the gap, driven by the low pressure at the top of the gap. This tends to increase the size of a separation bubble formed on the forward edge of the trailer roof, which increases drag.
There is also in connection with the movement of the tractor-trailer combination, a horseshoe vortex, having a center extending below the trailer. The rotation of the vortex tails tends to pick up spray from the road wheels, throwing it up and out.
Cross wind creates a general flow from the windward to the leeward side, which is faster at the back of the gap than at the front. The flow may be sufficiently strong to sweep away the horseshoe vortex and replace it with a single vertical vortex (not shown in the figures). Additionally, a stagnation line may form near the windward edge of the trailer forward face, which creates a region of high pressure, and therefore additional aerodynamic drag, and also creates a vortex in the opposite sense, between the stagnation line and the bubble at the front of the trailer side, which further increases drag.
In view of the foregoing general observations on the gap aerodynamics, the requirements of the fairing structure may be discussed in terms of the effect of the external face and the internal face. For the external face, a first requirement is that the distal edges should be positioned inside the volume bounded by the shear layer. In the absence of cross-wind, this simply means making the area bounded by the distal edges small enough to be generally no larger than the cab area projected rearward. However, when there is crosswind, the cab wake is displaced downwind, so that on the windward side the distal edge must be farther in, close enough to the center line that the above requirement is still met. In either case, fast moving air is prevented from impinging on the forward face of the trailer.
For the internal face, in the absence of cross-wind, the fairing tends to reduce or reverse the upwards flow, which consequently reduces the separation bubble on the trailer roof, which reduces drag and reduces the strength of the horseshoe vortex. In the presence of cross-wind, the fairing structure reduces or reverses the upward flow (as in the case of no-crosswind), but also reduces or reverses the general leeward flow, again reducing drag. The fairing structures also block air from entering the gap.
The fairing system disclosed herein takes the foregoing into account to ameliorate the acrodynamic drag in the front, rear and under portion of a moving tractor-trailer.
In
In
Each of the horizontal and first and second vertical surfaces has a proximal edge adapted to be positioned adjacent a rear vehicular component 20, which is typically a trailer box in a tractor-trailer combination. Attachment may be permanent, such as by riveting, or temporary, using appropriate hardware allowing for ease of replacement or removal. Preferably, the boundary between where the front edges 150 of the trailer box or rear vehicular component 20 meets the fairing structure is continuous so that no substantial barrier to air flow is created at that point. If desired, the fairing surfaces may be riveted or otherwise directly attached to the trailer box without hardware needing to be attached to the forward face of the trailer box. Preferably, the boundary between the front edges 150 of the trailer box or rear vehicle component 20 and the fairing structure is continuous so that no substantial barrier to air flow is created at that point.
Optional support walls 160 may attach to the distal edges of the horizontal and vertical edges of the fairing surfaces and are, for example (but not necessarily), perpendicular to the leading surface of the trailer box. These support walls join with the front surface of the trailer box using the same or similar attachment hardware as may be used to attach the fairing surfaces to the edges of the trailer box.
Each of the horizontal and first and second vertical surfaces has a distal edge adapted to be positioned away from the rear vehicular component with respect to the respective proximal edge. The fairing surfaces curve inward so that an area bounded by the distal edges of the fairing surfaces is smaller than an area bounded by the proximal edges. In a tractor-trailer, this simply means that the distal edges of the fairing structure are inboard of the trailer box. It is also preferred that the distal edges of the fairing structure surfaces are inboard of the front vehicular component profile. It is preferred that the distal edges of the fairing surfaces are positioned inside a volume bounded by the shear layer. Preferably, the distal edges of the fairing surfaces bound a substantially vertical planar area inside a volume bounded by the shear layer.
In
Assemblies 100 and 200 are identical, except that assembly 200 is a mirror image of assembly 100. For convenience, the following description will generally refer to the components of assembly 100 only, it being recognized that the description applies equally well to assembly 200.
Assembly 100 includes two principal components, a vertical fairing surface 110 and a horizontal fairing surface 120. Referring to
Further details concerning assemblies 100 and 200 are disclosed in the U.S. Pat. No. 6,799,791, the contents of which are incorporated by reference herein.
As shown in
Without wishing to be bound by theory, it is believed that the vehicle fairing structures work more effectively when combined in a system on a vehicle with front and rear vehicular components. For example, the side fairing structures and the fairing structure on the front end of the trailer box both contribute to improving the aerodynamics at the front of the trailer, as well as under the trailer, and there is believed to be beneficial interaction of these effects. Likewise for example, the side fairing structures and rear end structures both improve the aerodynamic flow behind the trailer, and again it is believed that there is a beneficial interaction of those effects.
The foregoing detailed description is for illustration only and is not to be deemed as limiting the invention, which is defined in the appended claims.
This application claims the benefit of priority U.S. Provisional Application No. 60/844,442 and U.S. Provisional Application No. 60/844,511, each filed Sep. 13, 2006, and which are each incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60844442 | Sep 2006 | US | |
60844511 | Sep 2006 | US |