The present invention relates to a vehicle front end structure.
If an air cleaner is disposed downstream of an air-cooled type intercooler, as viewed in a direction of an air flow, the air cleaner constitutes a resistance to the air flow, and the volume of air passing through the intercooler is reduced, resulting in a drawback that intake air cannot be cooled sufficiently.
Note that the intercooler is an apparatus for cooling air drawn into an engine (an internal combustion engine), that is, intake air, and is used together with, in particular, a turbocharged engine.
The present invention was made in view of the aforesaid situation and a primary object of the invention is to provide a novel vehicle front end structure which is different from conventional vehicle front end structures, and a secondary object thereof is to prevent a reduction in volume of air passing through the intercooler.
With a view to attaining the objects, according to the present invention, there is provided a vehicle front end structure comprising an axial flow fan (60) having a rotating shaft which extends in a longitudinal direction of a vehicle and adapted to supply cooling air to a radiator (20), an intercooler (30) for cooling air drawn into an internal combustion engine (40) and an air cleaner (50), provided on a downstream side of an air flow relative to an inlet duct (51) from which air drawn into the internal combustion engine (40) is introduced, for removing dust in the air so introduced, wherein the inlet duct (51) is positioned opposite to the intercooler (30) across the axial flow fan (60) as viewed in the longitudinal direction of the vehicle, wherein the air cleaner (50) is positioned at a location where the air cleaner (50) deviates from the intercooler (30) as viewed in the longitudinal direction of the vehicle, and wherein the axial flow fan (60) rotates in a direction which deflects an air flow blown out of the axial fan (60) to an intercooler (30) side.
Then, according to the present invention, as the inlet duct (51) is positioned opposite to the intercooler (30) across the axial flow fan (60) as viewed in the longitudinal direction of the vehicle and, furthermore, the air cleaner (50) is positioned at the location where the air cleaner (50) deviates from the intercooler (30) as viewed in the longitudinal direction of the vehicle, it is possible to prevent the occurrence of a problem that the air cleaner (50) constitutes a resistance to an air flow, whereby the volume of air passing through the intercooler (30) is reduced. Consequently, as the intake air can be sufficiently cooled, the output of the internal combustion engine (40) can be increased.
In addition, as the axial flow fan (60) rotates in the direction which deflects the air flow blown out of the axial flow fan (60) to the intercooler (30) side, the inlet duct (51) can be situated in an area where the temperature is relatively low. Consequently, as the intake air having a low temperature can be introduced, the output of the internal combustion engine (40) can be increased.
Additionally, according to the present invention, a bell-mouthed-like air guide portion (14) for guiding air in front of the vehicle to the intercooler (30) is provided on a radiator support (10) which supports the radiator (20).
As this construction allows much more cooling air to be introduced to the intercooler (30), the intake air can sufficiently be cooled.
Furthermore, according to the present invention, the radiator support (10) and the air guide portion (14) are molded integrally.
The present invention will become more apparant from the following description of the preferred embodiments and the accompanying drawings of the present invention.
As shown in
Incidentally, the radiator support 10 is a member to which at least a heat exchanger such as the radiator 20 is assembled and is referred to as a carrier or a front end panel, depending on the literature, and the radiator 20 is a heat exchanger for cooling a coolant for an internal combustion engine for running, that is, an engine, through heat exchange taking place between the coolant and air.
As shown in
In addition, a fan using an axial flow fan 60 for supplying cooling air to the radiator 20 is disposed rearward of the radiator 20, and the inlet duct 51 for taking in air drawn into the internal combustion engine 40 is positioned opposite to the intercooler 30 across the axial flow fan 60 when viewed in the longitudinal direction of the vehicle as shown in
Then, as shown in
Note that the axial flow fan 60 is a fan such as defined in No. 1012, JIS (Japanese Industrial Standard) B 0132 through which air passes in an axial direction thereof.
In addition, as shown in
Note that, in this embodiment, the axial flow fan 60, that is, the fan is fixed to the radiator support 10 via the shroud portion 13, whereas the intercooler 30 is fixed to the radiator support 10 via the air guide portion 14.
Next, the function and advantage of the embodiment will be described.
As the air cleaner 50 is positioned at the location where it deviates from the intercooler 30 as viewed in the longitudinal direction of the vehicle, it can be prevented that the air cleaner 50 constitutes a resistance to the air flow to thereby reduce the volume of air passing through the intercooler 30. Consequently, as intake air can be sufficiently cooled, the output of the engine 40 can be increased.
Note that, in a case where the air cleaner 50 and the inlet 51 are disposed close to each other, in case where the inlet 51 is disposed opposite to the intercooler 30 across the axial flow fan 60, the air cleaner 50 can be prevented in an ensured fashion from constituting a resistance to an air flow which passes through the intercooler 30.
Incidentally, it has been made clear from tests and studies made by the inventors, et al that atmosphere temperatures in areas on a right-hand side of and below the chain double-dashed lines become lower than those in areas on a left-hand side of and above the chain double-dashed lines when the axial flow fan 60 rotates in a counterclockwise direction as shown in
Consequently, as described in this embodiment, in the case, the axial flow fan 60 is set to rotate in the direction which deflects the air flow blown out of the axial flow fan 60 to the intercooler 30. That is, in case where the inlet duct 51 is disposed at the position which is on the upper side relative to the axial flow fan 60 and is opposite to the direction of air flow produced by the rotation of the axial flow fan 60, whereas the intercooler 30 is disposed at the position which is on the lower side relative to the axial flow fan 60 and is downstream along the direction of air flow produced by the rotation of the axial flow fan 60, as the construction allows the inlet duct 51 to be positioned in the areas on the right-hand side of and below the chain double-dashed lines, intake air having a low temperature can be taken in, whereby the output of the engine can be increased.
In addition, as the air guide portion 14 is provided for guiding air in front of the vehicle to the intercooler 30, more cooling air is introduced to the intercooler 30 and the intake air can be sufficiently cooled.
While, in the first embodiment, the air guide portion 14 is constructed to guide air only to a core portion of the intercooler 30, in a second embodiment, an air guide portion 14 is constructed to guide air to the entirety of the intercooler 30, as shown in
Note that the core portion is a location through which cooling air passes and is also a location where positive heat exchange is performed between intake air and outside air.
While, in the aforesaid embodiments, the axial flow fan 60 is disposed downstream of the radiator 20 when viewed in the direction of air flow, in contrast to this, the axial flow fan 60 may be disposed upstream of the radiator 20 when viewed in the direction of air flow.
In addition, the installing position of the air cleaner 50 is not limited to the vicinity of the inlet 51 but may be located at any position where the inlet 51 can deviate from the intercooler 30 as viewed in the longitudinal direction of the vehicle.
Additionally, while, in the aforesaid embodiments, the radiator support 10 is made from the resin, the present invention is not limited to this, and the radiator support 10 may be made from metal such as aluminum, magnesium or iron.
Note that while the invention has been described in detail heretofore based on the specific embodiments, various changes and modifications that would be made by those skilled in the art can be made to the present invention without departing from the spirit and scope thereof.
Number | Date | Country | Kind |
---|---|---|---|
2002-242054 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4610326 | Kirchweger et al. | Sep 1986 | A |
4702079 | Saito et al. | Oct 1987 | A |
4744411 | Lohmann | May 1988 | A |
4831981 | Kitano | May 1989 | A |
5058558 | Ueda et al. | Oct 1991 | A |
5358304 | Kanemitsu et al. | Oct 1994 | A |
5427502 | Hudson | Jun 1995 | A |
5448982 | Arakawa et al. | Sep 1995 | A |
5551505 | Freeland | Sep 1996 | A |
5711387 | Murata et al. | Jan 1998 | A |
6035955 | Suzuki et al. | Mar 2000 | A |
6357541 | Matsuda et al. | Mar 2002 | B1 |
6386273 | Hateley | May 2002 | B1 |
Number | Date | Country |
---|---|---|
64-16922 | Jan 1989 | JP |
02-264115 | Oct 1990 | JP |
5-87000 | Apr 1993 | JP |
07-047845 | Feb 1995 | JP |
09-060561 | Mar 1997 | JP |
9-60561 | Mar 1997 | JP |
11-157347 | Jun 1999 | JP |
2000-337220 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040163864 A1 | Aug 2004 | US |