Vehicle having adjustable compression and rebound damping

Abstract
A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame are disclosed. The vehicle including at least one adjustable shock absorber having an adjustable damping characteristic.
Description
FIELD OF DISCLOSURE

The present disclosure relates to improved suspension characteristics for a vehicle and in particular to systems and methods of damping control, such as compression and/or rebound damping, for shock absorbers.


BACKGROUND OF THE DISCLOSURE

Adjustable shock absorbers are known. Systems and methods for controlling one or more adjustable characteristics of adjustable shock absorbers are disclosed in US Published Patent Application No. 2016/0059660 (filed Nov. 6, 2015, titled VEHICLE HAVING SUSPENSION WITH CONTINUOUS DAMPING CONTROL) and US Published Application 2018/0141543 (filed Nov. 17, 2017, titled VEHICLE HAVING ADJUSTABLE SUSPENSION).


SUMMARY OF THE DISCLOSURE

In an exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, at least one sensor positioned on the recreational vehicle and configured to provide sensor information to a controller, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive sensor information from the sensor, determine a cornering event related to the recreational vehicle executing a turn based on the sensor information, and provide, to at least one of the plurality of adjustable shock absorbers and based on the cornering event, one or more commands to result in a decrease of a damping characteristic of the at least one of the plurality of adjustable shock absorbers.


In some instances, the controller is configured determine, based on the sensor information, a direction of the turn corresponding to the cornering event, determine, based on the direction of the turn, at least one inner adjustable shock absorber of the plurality of adjustable shock absorbers, and provide, to the at least one inner adjustable shock absorber, one or more commands to result in a decrease of a compression damping characteristic and an increase of a rebound damping characteristic. In some examples, the at least one sensor comprises an inertial measurement unit (IMU), the sensor information comprises acceleration information indicating a lateral acceleration value, and the controller is configured to determine the cornering event by determining that the recreational vehicle is turning based on comparing the lateral acceleration value to a first threshold.


In some variations, the sensor information further comprises yaw rate information indicating a yaw rate. The controller is further configured to determine the cornering event by determining that the recreational vehicle is turning based on comparing the yaw rate to a second threshold. In some instances, the at least one sensor further comprises a steering sensor and the sensor information further comprises steering information indicating a steering position or a steering rate corresponding to a steering wheel. Further, the controller is configured to determine the cornering event by determining that the recreational vehicle is turning based on comparing the steering position to a third threshold.


In some variations, the sensor information comprises yaw rate information indicating a yaw rate and steering information indicating a steering position or a steering rate. The controller is further configured to prioritize the yaw rate information over the steering information such that the controller is configured to determine the vehicle is executing the turn in a first direction based on the yaw rate indicating the turn in the first direction and even if the steering position or the steering rate indicates the turn in a second direction or does not indicate the turn. In some instances, the sensor information comprises acceleration information indicating a lateral acceleration value and yaw rate information indicating a yaw rate. The controller is further configured to prioritize the acceleration information over the yaw rate information such that the controller is configured to determine the vehicle is executing the turn in a first direction based on the lateral acceleration value indicating the turn in the first direction and even if the yaw rate indicates the turn in a second direction or does not indicate the turn. In some examples, the sensor information comprises steering information indicating a steering position or a steering rate and acceleration information indicating a lateral acceleration value. The controller is further configured to prioritizing the acceleration information over the steering information such that the controller is configured to determine the vehicle is executing the turn in a first direction based on the lateral acceleration value indicating the turn in the first direction and even if the steering position or the steering rate indicates the turn in a second direction or does not indicate the turn.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a first sensor positioned on the recreational vehicle and configured to provide cornering information to a controller, a second sensor positioned on the recreational vehicle and configured to provide acceleration information to the controller and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive, from the first sensor, the cornering information, receive, from the second sensor, the acceleration information, determine, based on the cornering information, a cornering event corresponding to the recreational vehicle executing a turn, determine, based on the acceleration information, a position of the recreational vehicle during the turn, and provide, to the at least one of the plurality of adjustable shock absorbers and based on the cornering event and the position of the recreational vehicle during the turn, one or more commands to result in an adjustment of a damping characteristic of the at least one of the plurality of adjustable shock absorbers.


In some instances, the second sensor is an accelerometer or an IMU. In some examples, the controller is configured to determine the position of the recreational vehicle during the turn by determining, based on the acceleration information indicating a longitudinal deceleration, that the vehicle is entering the turn. Also, the controller is further configured to determine, based on the cornering event, a plurality of damping characteristics for the plurality of adjustable shock absorbers, bias, based on the determining that the vehicle is entering the turn, the plurality of damping characteristics, and generate the one or more commands based on the plurality of biased damping characteristics. In some instances, the controller is configured to bias the plurality of damping characteristics by additionally increasing the compression damping of a front adjustable shock absorber of the plurality of adjustable shock absorbers, and additionally decreasing the compression damping of a rear adjustable shock absorber of the plurality of adjustable shock absorbers. In some examples, the controller is configured to bias the plurality of damping characteristics by additionally increasing the rebound damping of a rear adjustable shock absorber of the plurality of adjustable shock absorbers and additionally decreasing the rebound damping of a front adjustable shock absorber of the plurality of adjustable shock absorbers.


In some instances, the controller is configured to determine the position of the recreational vehicle during the turn by determining, based on the acceleration information indicating a longitudinal acceleration, that the vehicle is exiting the turn. Also, the controller is further configured to determine, based on the cornering event, a plurality of damping characteristics for the plurality of adjustable shock absorbers, bias, based on the determining that the vehicle is exiting the turn, the plurality of damping characteristics, and generate the one or more commands based on the plurality of biased damping characteristics. In some examples, the controller is configured to bias the plurality of damping characteristics by additionally increasing the compression damping of a rear adjustable shock absorber of the plurality of adjustable shock absorbers and additionally decreasing the compression damping of a front adjustable shock absorber of the plurality of adjustable shock absorbers. In some variations, the controller is configured to bias the plurality of damping characteristics by additionally increasing the rebound damping of a front adjustable shock absorber of the plurality of adjustable shock absorbers and additionally decreasing the rebound damping of a rear adjustable shock absorber of the plurality of adjustable shock absorbers.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a sensor positioned on the recreational vehicle and configured to provide sensor information to a controller, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive sensor information from the sensor, determine a braking event corresponding to the recreational vehicle based on the sensor information, and provide, to at least one of the plurality of adjustable shock absorbers and based on the braking event, one or more commands to decrease a damping characteristic of the at least one of the plurality of adjustable shock absorbers.


In some instances, the controller is configured to provide one or more commands to decrease a rebound damping characteristic of the at least one of the plurality of adjustable shock absorbers. In some examples, the controller is configured to provide, one or more commands to decrease a compression damping characteristic of the at least one of the plurality of adjustable shock absorbers. In some variations, the sensor is a brake sensor, and the sensor information is information indicating actuation of a brake pedal. In some instances, the controller is configured to provide, to a front adjustable shock absorber of the plurality of adjustable shock absorbers, a command to increase a compression damping characteristic and to decrease a rebound damping characteristic. In some examples, the controller is configured to provide, to a rear adjustable shock absorber of the plurality of adjustable shock absorbers, a command to increase a rebound damping characteristic and to decrease a compression damping characteristic.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a first sensor positioned on the recreational vehicle and configured to provide braking information to a controller, a second sensor positioned on the recreational vehicle and configured to provide acceleration information, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive, from the first sensor, the braking information, receive, from the second sensor, the acceleration information, determine a braking event corresponding to the recreational vehicle based on the braking information, determine, based on the acceleration information, an amount to reduce a damping characteristic of an adjustable shock absorber from the plurality of adjustable shock absorbers, and provide, to the adjustable shock absorber and based on the cornering event, one or more first commands to adjust the damping characteristics of the front adjustable shock absorber to the determined amount.


In some instances, the second sensor is an accelerometer, and the acceleration information indicates a longitudinal deceleration of the recreational vehicle. In some examples, the second sensor is an inertial measurement unit (IMU), and the acceleration information indicates a longitudinal deceleration of the recreational vehicle. In some variations, the second sensor is a brake sensor, and the acceleration information indicates a longitudinal deceleration of the recreational vehicle. In some instances, the adjustable shock absorber is a shock absorber positioned at a rear portion of the recreational vehicle.


In some variations, the controller is configured to determine, based on the acceleration information, a deceleration value, and in response to determining the deceleration value is below a first threshold, maintaining a compression damping of the adjustable shock absorber. In some examples, the controller is configured to determine, based on the acceleration information, a deceleration value, in response to determining the deceleration value is greater than a first threshold and below a second threshold, reducing a compression damping of the adjustable shock absorber to a first value, and in response to determining the deceleration value is greater than the first threshold and the second threshold, reducing the compression damping of the adjustable shock absorber to a second value, wherein the second value is below the first value.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a sensor positioned on the recreational vehicle and configured to provide airborne information and landing information to a controller, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive, from the sensor, the airborne information, determine, based on the airborne information, an airborne event indicating the recreational vehicle is airborne, provide, based on the airborne event, one or more first commands to result in decreasing a rebound damping characteristic for the plurality of adjustable shock absorbers from a pre-takeoff rebound value to a free-fall rebound value, receive, from the at least one sensor, landing information, determine, based on the landing information, a landing event indicating the recreational vehicle has landed subsequent to the airborne event, determine, based on the airborne event and the landing event, a time duration that the recreational vehicle is airborne, provide, based on the landing event and the time duration the recreational vehicle is airborne, one or more second commands to result in increasing the rebound damping characteristic for the plurality of adjustable shock absorbers from the free-fall rebound value to a post-landing rebound value to prevent a landing hop, and provide one or more third commands to result in decreasing the rebound damping characteristic for the plurality of adjustable shock absorbers from the post-landing rebound value to the pre-takeoff rebound value.


In some instances, the sensor is an accelerometer or an IMU. In some examples, the sensor is an inertial measurement unit (IMU). In some variations, the one or more third commands cause the rebound damping characteristic for the plurality of adjustable shock absorbers to gradually decrease from the post-landing rebound value to the pre-takeoff rebound value. In some examples, the controller is further configured to increase the post-landing rebound value as the time duration that the recreational vehicle is airborne increases. In some variations, the controller is further configured to in response to determining the time duration is below a first threshold, set the post-landing rebound value to a same value as the pre-takeoff rebound value. In some instances, the controller is further configured to in response to determining the time duration is below a first threshold, bias the post-landing rebound value for a front shock absorber of the plurality of adjustable shock absorbers different from a rear shock absorber of the plurality of adjustable shock absorbers, and generate the one or more second commands based on the biasing the post-landing rebound value. In some instances, the controller is configured to bias the post-landing rebound value by additionally increasing the post-landing rebound value for the front shock absorber.


In some examples, the controller is configured to provide, based on the airborne event, one or more fourth commands to result in gradually increasing a compression damping characteristic for the plurality of adjustable shock absorbers from a pre-takeoff compression value to a post-landing compression value, provide, based on the landing event and the time duration, one or more fifth commands to result in maintaining the compression damping characteristic for the plurality of adjustable shock absorbers at the post-landing compression value, and provide one or more sixth commands to result in decreasing the compression damping characteristic for the plurality of adjustable shock absorbers from the post-landing compression value to the pre-takeoff compression value. In some instances, the controller is further configured to in response to determining the time duration is below a first threshold, set the post-landing compression value to a same value as the pre-takeoff compression value. In some examples, the controller is further configured to in response to determining the time duration is below a first threshold, bias the post-landing compression value for a front shock absorber of the plurality of adjustable shock absorbers different from a rear shock absorber of the plurality of adjustable shock absorbers, and generate the one or more fifth commands based on the biasing the post-landing compression value. In some variations, the controller is further configured to in response to determining the time duration is below a first threshold, bias the post-landing compression value for a front shock absorber of the plurality of adjustable shock absorbers different from a rear shock absorber of the plurality of adjustable shock absorbers, and generate the one or more fifth commands based on the biasing the post-landing compression value. In some examples, the free-fall rebound value is substantially zero.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a sensor positioned on the recreational vehicle and configured to provide acceleration information to a controller, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive, from the at least one sensor, the acceleration information, determine, based on the acceleration information, an orientation of the vehicle, and provide, to at least one of the plurality of adjustable shock absorbers and based on the orientation of the vehicle, one or more commands to result in an adjustment of a damping characteristic of the at least one of the plurality of adjustable shock absorbers.


In some instances, the sensor is an accelerometer or an IMU. In some examples, the sensor is an IMU. In some variations, the recreational vehicle further includes an operator interface configured to provide one or more user inputs indicating mode selections to the controller. The controller is configured to provide the one or more commands to result in the adjustment of the damping characteristic based on receiving, from the operator interface, user input indicating a selection of a rock crawler mode. In some examples, the at least one sensor comprises a second sensor configured to provide vehicle speed information to the controller. The controller is further configured to receive, from the second sensor, vehicle speed information indicating a vehicle speed of the recreational vehicle, and in response to determining that the vehicle speed is greater than a threshold, transitioning the vehicle from the rock crawler mode to a different operating mode.


In some variations, the controller is further configured to determine, based on the acceleration information, a longitudinal acceleration and a lateral acceleration of the recreational vehicle, determine, based on the longitudinal acceleration and the lateral acceleration, a pitch angle and a roll angle of the recreational vehicle, and the controller is configured to determine the orientation of the recreational vehicle based on the pitch angle and the roll angle. In some examples, the controller is configured to determine, based on the longitudinal acceleration and the lateral acceleration, that the orientation of the recreational vehicle is on flat ground, and provide, based on the determination that the recreational vehicle is on flat ground, one or more commands to result in an increase of a compression damping characteristic and a decrease of a rebound damping characteristic for the at least one of the plurality of adjustable shock absorbers.


In some instances, the controller is configured to determine, based on the longitudinal acceleration and the lateral acceleration, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber from the plurality of adjustable shock absorbers, and provide, to the at least one uphill adjustable shock absorber, one or more commands to result in an increase of a rebound damping characteristic and a decrease of a compression damping characteristic. In some examples, the controller is further configured to determine, based on the longitudinal acceleration and the lateral acceleration, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber from the plurality of adjustable shock absorbers, and provide, to the at least one downhill adjustable shock absorber, one or more commands to result in an increase of a compression damping characteristic.


In another exemplary embodiment of the present disclosure, a recreational vehicle is provided. The recreational vehicle includes a plurality of ground engaging members, a frame supported by the plurality of ground engaging members, a plurality of suspensions, a plurality of adjustable shock absorbers, a sensor positioned on the recreational vehicle and configured to provide sensor information to a controller, and a controller operatively coupled to the sensor and the plurality of adjustable shock absorbers. Each of the suspensions couples a ground engaging member to the frame. The controller is configured to receive, from the at least one sensor, the sensor information, determine, based on the sensor information, a sliding event corresponding to the recreational vehicle sliding while traversing a slope, and provide, to at least one of the plurality of adjustable shock absorbers and based on the determining of the sliding event, one or more commands to result in adjusting a damping characteristic for the at least one of the plurality of adjustable shock absorbers.


In some instances, the at least one sensor comprises an inertial measurement unit (IMU). Also, the sensor information comprises acceleration information indicating a lateral acceleration value. The controller is configured to determine the sliding event by determining that the recreational vehicle is sliding based on comparing the lateral acceleration value to a first threshold. In some examples, the sensor information further comprises yaw rate information indicating a yaw rate. The controller is further configured to determine the cornering based on the yaw rate. In some variations, the sensor information comprises acceleration information indicating a lateral acceleration value and yaw rate information indicating a yaw rate. The controller is further configured to prioritize the acceleration information over the yaw rate information such that the controller is configured to determine the vehicle is sliding while traversing the slope based on the lateral acceleration value exceeding a first threshold and even if the yaw rate does not exceed a second threshold.


In some instances, the sensor information comprises steering information indicating a steering position or a steering rate and acceleration information indicating a lateral acceleration value. The controller is further configured to prioritizing the acceleration information over the steering information such that the controller is configured to determine the vehicle is sliding while traversing the slope based on the lateral acceleration value exceeding a first threshold and even if the steering position or the steering rate does not exceed a second threshold. In some variations, the sensor information indicates a lateral acceleration. The controller is further configured to determine, based on the lateral acceleration, a direction of a slide corresponding to the sliding event, determining, based on the direction of the slide, at least one leading adjustable shock absorber of the plurality of adjustable shock absorbers, and the controller is configured to provide the one or more commands by providing, to the at least one leading adjustable shock absorber, one or more commands to result in an increase of a compression damping characteristic and a decrease of a rebound damping characteristic.


In some examples, the sensor information indicates a lateral acceleration. The controller is further configured to determine, based on the lateral acceleration, a direction of a slide corresponding to the sliding event, determining, based on the direction of the slide, at least one trailing adjustable shock absorber of the plurality of adjustable shock absorbers, and the controller is configured to provide the one or more commands by providing, to the at least one trailing adjustable shock absorber, one or more commands to result in a decrease of a compression damping characteristic and an increase of a rebound damping characteristic. In some variations, the sensor information indicates a longitudinal acceleration. The controller is further configured to determine, based on the longitudinal acceleration, an orientation of the vehicle, determine, based on the orientation of the vehicle, a plurality of damping characteristics for the plurality of adjustable shock absorbers, bias, based on the orientation of the vehicle, the plurality of damping characteristics, and generate the one or more commands based on the plurality of biased damping characteristics.


In some instances, the controller is configured to bias the plurality of damping characteristics by additionally increasing a compression damping of a downhill adjustable shock absorber of the plurality of adjustable shock absorbers and additionally decreasing a compression damping of an uphill adjustable shock absorber of the plurality of adjustable shock absorbers. In some examples, the controller is configured to bias the plurality of damping characteristics by additionally increasing the rebound damping of an uphill adjustable shock absorber of the plurality of adjustable shock absorbers.


In another exemplary embodiment of the present disclosure, a method and vehicle of adjusting a plurality of adjustable shock absorbers of a recreational vehicle traveling over terrain including at least one dune is provided. For example, the method and vehicle determines an orientation of the recreational vehicle based on a longitudinal acceleration of the vehicle, determines a slide of the recreational vehicle based on a lateral acceleration of the vehicle, detects the recreational vehicle is sliding across the dune based on the orientation and the slide of the recreational vehicle, and adjusts at least one damping characteristic of the plurality of adjustable shock absorbers to turn the recreational vehicle into the dune as the recreational vehicle continues across the dune.


In some instances, the method and vehicle determines, based on the slide, at least one leading adjustable shock absorber and at least one trailing adjustable shock absorber of the plurality of adjustable shock absorbers and provides, to the at least one leading adjustable shock absorber, one or more commands to result in an increase of a compression damping characteristic and a decrease in a rebound damping characteristic. In some examples, the method and vehicle determines, based on the slide, at least one leading adjustable shock absorber and at least one trailing adjustable shock absorber of the plurality of adjustable shock absorbers and provides, to the at least one trailing adjustable shock absorber, one or more commands to result in an increase of a rebound damping characteristic and a decrease of a compression damping characteristic.


In some variations, the method and vehicle determines, based on the orientation, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber of the plurality of adjustable shock absorbers and provides, to the at least one uphill adjustable shock absorber, one or more commands to result in an increase of a compression damping characteristic. In some instances, the method and vehicle determines, based on the orientation, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber of the plurality of adjustable shock absorbers and provides, to the at least one downhill adjustable shock absorber, one or more commands to result in an increase of a rebound damping characteristic and a decrease of the compression damping characteristic.


Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many additional features of the present system and method will become more readily appreciated and become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings, where:



FIG. 1 shows a representative view of components of a vehicle of the present disclosure having a suspension with a plurality of continuous damping control shock absorbers and a plurality of sensors integrated with a controller of the vehicle;



FIG. 2 shows an adjustable damping shock absorber coupled to a vehicle suspension;



FIG. 3 shows an x-axis, a y-axis, and a z-axis for a vehicle, such as an ATV;



FIG. 4 shows a representative view of an exemplary power system for the vehicle of FIG. 1;



FIG. 5 shows a representative view of an exemplary controller of the vehicle of FIG. 1;



FIG. 6 shows a first, perspective view of an exemplary vehicle;



FIG. 7 shows a second, perspective view of the exemplary vehicle of FIG. 6;



FIG. 8 shows a side view of the exemplary vehicle of FIG. 6;



FIG. 9 shows a bottom view of the exemplary vehicle of FIG. 6;



FIG. 10 shows an exemplary control system for controlling the damping of one or more shock absorbers;



FIG. 11 shows an exemplary flowchart describing the operation of the suspension controller during a cornering event and/or a braking event;



FIG. 12 shows an example of the suspension controller adjusting the adjustable shock absorbers for the vehicle during a braking event;



FIG. 13 shows an example of the suspension controller adjusting the adjustable shock absorbers for the vehicle during a cornering event;



FIG. 14 shows an example flowchart describing the operation of the suspension controller 86 during an airborne event and a landing event;



FIG. 15 shows an example representation of the compression and rebound damping characteristics of a vehicle during a pre-takeoff period, a free-fall period, and a post-landing period;



FIG. 16 shows an exemplary flowchart describing the suspension controller performing in a rock crawl operation;



FIG. 17 shows an example of the suspension controller adjusting the adjustable shock absorbers for the vehicle performing in a rock crawl operation;



FIG. 18 shows another example of the suspension controller adjusting the adjustable shock absorbers for the vehicle performing in a rock crawl operation;



FIG. 19 shows another example of the suspension controller adjusting the adjustable shock absorbers for the vehicle performing in a rock crawl operation;



FIG. 20 shows another example of the suspension controller adjusting the adjustable shock absorbers for the vehicle performing in a rock crawl operation;



FIG. 21 shows an exemplary flowchart describing the operation of the suspension controller during a sliding event;



FIG. 22 shows another example of the suspension controller adjusting the adjustable shock absorbers during the sliding event;



FIG. 23 shows another example of the suspension controller adjusting the adjustable shock absorbers during the sliding event;



FIG. 24 shows an exemplary flowchart illustrating a method for performing real-time correction of the inertial measurement of a vehicle;



FIG. 25 shows an exemplary schematic block diagram illustrating an example of logic components in the suspension controller;



FIG. 26 shows an exemplary flowchart describing the operation of the suspension controller when switching between driver modes;



FIG. 27 shows an exemplary physical switch for adjusting driving modes;



FIG. 28 shows an exemplary graphical user interface for adjusting driver modes;



FIG. 29 shows an exemplary flowchart describing a method for implementing egress aid for a vehicle;



FIG. 30 illustrates a representative view of a sway bar of the vehicle of FIG. 1; and



FIG. 31 illustrates a view of another exemplary vehicle.





DETAILED DESCRIPTION OF EMBODIMENTS

For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed below are not intended to be exhaustive or limited to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings.


Referring now to FIG. 1, the present disclosure relates to a vehicle 10 having a suspension system 11 located between a plurality of ground engaging members 12 and a vehicle frame 14. Exemplary ground engaging members 12 include wheels, skis, guide tracks, treads or other suitable devices for supporting the vehicle relative to the ground. The suspension typically includes springs 16 and shock absorbers 18 coupled between the ground engaging members 12 and the frame 14. The springs 16 may include, for example, coil springs, leaf springs, air springs or other gas springs. The air or gas springs 16 may be adjustable. See, for example, U.S. Pat. No. 7,950,486, assigned to the current assignee, the entire disclosure of which is incorporated herein by reference.


The adjustable shock absorbers 18 are often coupled between the vehicle frame 14 and the ground engaging members 12 through an A-arm linkage 70 (See FIG. 2) or other type linkage. Springs 16 are also coupled between the ground engaging members 12 and the vehicle frame 14. FIG. 2 illustrates an adjustable shock absorber 18 mounted on an A-arm linkage 70 having a first end pivotably coupled to the vehicle frame 14 and a second end pivotably coupled to A-arm linkage 70 which moves with wheel 12. A damping control activator 74 is coupled to controller 20 by one or more wires 76. An exemplary damping control activator is an electronically controlled valve which is activated to increase or decrease the damping characteristics of adjustable shock absorber 18.


In one embodiment, the adjustable shock absorbers 18 include solenoid valves mounted at the base of the shock body or internal to a damper piston of the shock absorber 18. The stiffness of the shock is increased or decreased by introducing additional fluid to the interior of the shock absorber, removing fluid from the interior of the shock absorber, and/or increasing or decreasing the ease with which fluid can pass from a first side of a damping piston of the shock absorber to a second side of the damping piston of the shock absorber. In another embodiment, the adjustable shock absorbers 18 include a magnetorheological fluid internal to the shock absorber 18. The stiffness of the shock is increased or decreased by altering a magnetic field experienced by the magnetorheological fluid. Additional details on exemplary adjustable shocks are provided in US Published Patent Application No. 2016/0059660, filed Nov. 6, 2015, titled VEHICLE HAVING SUSPENSION WITH CONTINUOUS DAMPING CONTROL, assigned to the present assignee, the entire disclosure of which is expressly incorporated by reference herein.


In one embodiment, a spring 16 and shock 18 are located adjacent each of the ground engaging members 12. In an all-terrain vehicle (ATV), for example, a spring 16 and an adjustable shock 18 are provided adjacent each of the four wheels 12. In a snowmobile, for example, one or more springs 16 and one or more adjustable shocks 18 are provided for each of the two front skis and the rear tread. Some manufacturers offer adjustable springs 16 in the form of either air springs or hydraulic preload rings. These adjustable springs 16 allow the operator to adjust the ride height on the go. However, a majority of ride comfort comes from the damping provided by shock absorbers 18.


In an illustrated embodiment, controller 20 provides signals and/or commands to adjust damping characteristics of the adjustable shocks 18. For example, the controller 20 provides signals to adjust damping of the shocks 18 in a continuous or dynamic manner. In other words, adjustable shocks 18 may be adjusted to provide differing compression damping, rebound damping, or both. In one embodiment, adjustable shocks 18 include a first controllable valve to adjust compression damping and a second controllable valve to adjust rebound damping. In another embodiment, adjustable shocks include a combination valve which controls both compression damping and rebound damping.


In an illustrated embodiment of the present disclosure, an operator interface 22 is provided in a location easily accessible to the driver operating the vehicle. For example, the operator interface 22 is either a separate user interface mounted adjacent the driver's seat on the dashboard or integrated onto a display within the vehicle. Operator interface 22 includes user input devices to allow the driver or a passenger to manually adjust shock absorber 18 damping during operation of the vehicle based on road conditions that are encountered or to select a preprogrammed active damping profile for shock absorbers 18 by selecting a ride mode. In one embodiment, a selected ride mode (e.g., a selected driver mode) alters characteristics of suspension system 11 alone, such as the damping profile for shock absorbers 18. In one embodiment, a selected ride mode alters characteristics of suspension system 11 and other vehicle systems, such as a driveline torque management system 50 or a steering system 104.


Exemplary input devices for operator interface 22 include levers, buttons, switches, soft keys, and other suitable input devices. Operator interface 22 may also include output devices to communicate information to the operator. Exemplary output devices include lights, displays, audio devices, tactile devices, and other suitable output devices. In another illustrated embodiment, the user input devices are on a steering wheel, handle bar, or other steering control of the vehicle 10 to facilitate actuation of the damping adjustment. For example, referring to FIG. 27, a physical switch 820 may be located on the steering wheel, handle bar, or other steering control of the vehicle 10. A display 24 is also provided on or next to the operator interface 22 or integrated into a dashboard display of vehicle 10 to display information related to the compression and/or rebound damping characteristics.


As explained in further detail below, controller 20 receives user inputs from operator interface 22 and adjusts the damping characteristics of the adjustable shocks 18 accordingly. The operator may independently adjust front and rear shock absorbers 18 to adjust the ride characteristics of the vehicle 10. In certain embodiments, each of the shocks 18 is independently adjustable so that the damping characteristics of the shocks 18 are changed from one side of the vehicle 10 to another. Side-to-side adjustment is desirable during sharp turns or other maneuvers in which different damping profiles for shock absorbers 18 on opposite sides of the vehicle improves the handling characteristics of the vehicle. The damping response of the shock absorbers 18 can be changed in a matter of milliseconds to provide nearly instantaneous changes in damping for potholes, dips in the road, or other driving conditions. Additionally, and/or alternatively, controller 20 may independently adjust the damping characteristics of front and/or rear shocks 18. An advantage, among others, of adjusting the damping characteristics of the front and/or rear shocks 18 is that the vehicle 10 may be able to operate more efficiently in rough terrain.


The controller 20 communicates with (e.g., provides, transmits, receives, and/or obtains) multiple vehicle condition sensors 40. For example, a wheel accelerometer 25 is coupled adjacent each ground engaging member 12. The controller 20 communicates with each of the accelerometers 25. For instance, the accelerometers 25 may provide information indicating movement of the ground engaging members and the suspension components 16 and 18 as the vehicle traverses different terrain. Further, the controller 20 may communicate with additional vehicle condition sensors 40, such as a vehicle speed sensor 26, a steering sensor 28, a chassis supported accelerometer 30, a chassis supported gyroscope 31, an inertial measurement unit (IMU) 37 (shown on FIG. 10), a physical switch 820 (shown on FIG. 10), and other sensors which monitor one or more characteristics of vehicle 10.


Accelerometer 30 is illustratively a three-axis accelerometer supported on the chassis of the vehicle 10 to provide information indicating acceleration forces of the vehicle 10 during operation. In some instances, accelerometer 30 is located at or close to a center position (e.g., a center of gravity position) of vehicle 10. In other instances, the accelerometer 30 is located at a position that is not near the center of gravity of the vehicle 10. In the exemplary vehicle 200 illustrated in FIGS. 6-9, the chassis accelerometer 30 is located along a longitudinal centerline plane 122 of vehicle 200. The x-axis, y-axis, and z-axis for a vehicle 10, illustratively an ATV, are shown in FIG. 3.


Gyroscope 31 is illustratively a three-axis gyroscope supported on the chassis to provide indications of inertial measurements, such as roll rates, pitch rates, and/or yaw rates, of the vehicle during operation. In one embodiment, accelerometer 30 is not located at a center of gravity of vehicle 10 and the readings of gyroscope 31 are used by controller 20 to determine the acceleration values of vehicle 10 at the center of gravity of vehicle 10. In one embodiment, accelerometer 30 and gyroscope 31 are integrated into the controller 20, such as a suspension controller 86.


In some examples and referring to FIG. 10, an IMU, such as the IMU 37 is supported on the chassis to provide indications of the inertial measurements, including the angular rate and/or the acceleration forces, of the vehicle 10 during operation. The IMU 37 may include the functionalities of the accelerometer 30 and/or the gyroscope 31. As such, in some instances, the accelerometer 30 and/or the gyroscope 31 are optional and might not be included in the vehicle 10. In other instances, the vehicle 10 may include the gyroscope 31 and the accelerometer 30 instead of the IMU 37.


The controller 20 may also communicate with additional vehicle condition sensors 40, such as a brake sensor 32, a throttle position sensor 34, a wheel speed sensor 36, and/or a gear selection sensor 38.


Referring to FIG. 4, one embodiment of a driveline torque management system 50 of vehicle 10 is illustrated. Driveline torque management system 50 controls the amount of torque exerted by each of ground engaging members 12. Driveline torque management system 50 provides a positive torque to one or more of ground engaging members 12 to power the movement of vehicle 10 through a power system 60. Driveline torque management system 50 further provides a negative torque to one or more of ground engaging members 12 to slow or stop a movement of vehicle 10 through a braking system 75. In one example, each of ground engaging members 12 has an associated brake of braking system 75.


Power system 60 includes a prime mover 62. Exemplary prime movers 62 include internal combustion engines, two stroke internal combustion engines, four stroke internal combustion engines, diesel engines, electric motors, hybrid engines, and other suitable sources of motive force. To start the prime mover 62, a power supply system 64 is provided. The type of power supply system 64 depends on the type of prime mover 62 used. In one embodiment, prime mover 62 is an internal combustion engine and power supply system 64 is one of a pull start system and an electric start system. In one embodiment, prime mover 62 is an electric motor and power supply system 64 is a switch system which electrically couples one or more batteries to the electric motor.


A transmission 66 is coupled to prime mover 62. Transmission 66 converts a rotational speed of an output shaft 61 of prime mover 62 to one of a faster rotational speed or a slower rotational speed of an output shaft 63 of transmission 66. It is contemplated that transmission 66 may additionally rotate output shaft 63 at the same speed as output shaft 61.


In the illustrated embodiment, transmission 66 includes a shiftable transmission 68 and a continuously variable transmission (“CVT”) 71. In one example, an input member of CVT 71 is coupled to prime mover 62. An input member of shiftable transmission 68 is in turn coupled to an output member of CVT 71. In one embodiment, shiftable transmission 68 includes a forward high setting, a forward low setting, a neutral setting, a park setting, and a reverse setting. The power communicated from prime mover 62 to CVT 71 is provided to a drive member of CVT 71. The drive member in turn provides power to a driven member through a belt. Exemplary CVTs are disclosed in U.S. Pat. Nos. 3,861,229; 6,176,796; U.S. Pat. Nos. 6,120,399; 6,860,826; and 6,938,508, the disclosures of which are expressly incorporated by reference herein. The driven member provides power to an input shaft of shiftable transmission 68. Although transmission 66 is illustrated as including both shiftable transmission 68 and CVT 71, transmission 66 may include only one of shiftable transmission 68 and CVT 71. Further, transmission 66 may include one or more additional components.


Transmission 66 is further coupled to at least one differential 73 which is in turn coupled to at least one ground engaging members 12. Differential 73 may communicate the power from transmission 66 to one of ground engaging members 12 or multiple ground engaging members 12. In an ATV embodiment, one or both of a front differential and a rear differential are provided. The front differential powering at least one of two front wheels of the ATV and the rear differential powering at least one of two rear wheels of the ATV. In a side-by-side vehicle embodiment having seating for at least an operator and a passenger in a side-by-side configuration, one or both of a front differential and a rear differential are provided. The front differential powering at least one of two front wheels of the side-by-side vehicle and the rear differential powering at least one of multiple rear wheels of the side-by-side vehicle. In one example, the side-by-side vehicle has three axles and a differential is provided for each axle. An exemplary side-by-side vehicle 200 is illustrated in FIGS. 6-9.


In one embodiment, braking system 75 includes anti-lock brakes. In one embodiment, braking system 75 includes active descent control and/or engine braking. In one embodiment, braking system 75 includes a brake and in some embodiments a separate parking brake. Braking system 75 may be coupled to any of prime mover 62, transmission 66, differential 73, and ground engaging members 12 or the connecting drive members therebetween. Brake sensor 32, in one example, monitors when braking system 75 is applied. In one example, brake sensor 32 monitors when a user actuatable brake input, such as brake pedal 232 (see FIG. 7) in vehicle 200, is applied.


Referring to FIG. 5, controller 20 has at least one associated memory 76. Controller 20 provides the electronic control of the various components of vehicle 10. Further, controller 20 is operatively coupled to a plurality of vehicle condition sensors 40 as described above, which monitor various parameters of the vehicle 10 or the environment surrounding the vehicle 10. Controller 20 performs certain operations (e.g., provides commands) to control one or more subsystems of other vehicle components. In certain embodiments, the controller 20 forms a portion of a processing subsystem including one or more computing devices having memory, processing, and communication hardware. Controller 20 may be a single device or a distributed device, and the functions of the controller 20 may be performed by hardware and/or as computer instructions on a non-transitory computer readable storage medium, such as memory 76.


As illustrated in the embodiment of FIG. 5, controller 20 is represented as including several controllers. These controllers may each be single devices or distributed devices or one or more of these controllers may together be part of a single device or distributed device. The functions of these controllers may be performed by hardware and/or as computer instructions on a non-transitory computer readable storage medium, such as memory 76.


In one embodiment, controller 20 includes at least two separate controllers which communicate over a network 78. In one embodiment, network 78 is a CAN network. Details regarding an exemplary CAN network are disclosed in U.S. patent application Ser. No. 11/218,163, filed Sep. 1, 2005, the disclosure of which is expressly incorporated by reference herein. Of course any suitable type of network or data bus may be used in place of the CAN network. In one embodiment, two wire serial communication is used for some connections.


Referring to FIG. 5, controller 20 includes an operator interface controller 80 which controls communication with an operator through operator interface 22. A prime mover controller 82 controls the operation of prime mover 62. A transmission controller 84 controls the operation of transmission system 66.


A suspension controller 86 controls adjustable portions of suspension system 11. Exemplary adjustable components include adjustable shocks 18, adjustable springs 16, and/or configurable stabilizer bars. Additional details regarding adjustable shocks, adjustable springs, and configurable stabilizer bars is provided in US Published Patent Application No. 2016/0059660, filed Nov. 6, 2015, titled VEHICLE HAVING SUSPENSION WITH CONTINUOUS DAMPING CONTROL, assigned to the present assignee, the entire disclosure of which is expressly incorporated by reference herein.


Communication controller 88 controls communications between a communication system 90 of vehicle 10 and remote devices, such as other vehicles, personal computing devices, such as cellphones or tablets, a centralized computer system maintaining one or more databases, and other types of devices remote from vehicle 10 or carried by riders of vehicle 10. In one embodiment, communication controller 88 of vehicle 10 communicates with paired devices over a wireless network. An exemplary wireless network is a radio frequency network utilizing a BLUETOOTH protocol. In this example, communication system 90 includes a radio frequency antenna. Communication controller 88 controls the pairing of devices to vehicle 10 and the communications between vehicle 10 and the remote device. In one embodiment, communication controller 88 of vehicle 10 communicates with remote devices over a cellular network. In this example, communication system 90 includes a cellular antenna and communication controller 88 receives and sends cellular messages from and to the cellular network. In one embodiment, communication controller 88 of vehicle 10 communicates with remote devices over a satellite network. In this example, communication system 90 includes a satellite antenna and communication controller 88 receives and sends messages from and to the satellite network. In one embodiment, vehicle 10 is able to communicate with other vehicles 10 over a Radio Frequency mesh network and communication controller 88 and communication system 90 are configured to enable communication over the mesh network. An exemplary vehicle communication system is disclosed in U.S. patent application Ser. No. 15/262,113, filed Sep. 12, 2016, titled VEHICLE TO VEHICLE COMMUNICATIONS DEVICE AND METHODS FOR RECREATIONAL VEHICLES, the entire disclosure of which is expressly incorporated by reference herein.


A steering controller 102 controls portions of a steering system 104. In one embodiment, steering system 104 is a power steering system and includes one or more steering sensors 28 (shown in FIG. 1). Exemplary sensors and electronic power steering units are provided in U.S. patent application Ser. No. 12/135,107, assigned to the assignee of the present application, titled VEHICLE, docket PLR-06-22542.02P, the disclosure of which is expressly incorporated by reference herein. A vehicle controller 92 controls lights, loads, accessories, chassis level functions, and other vehicle functions. A ride height controller 96 controls the preload and operational height of the vehicle. In one embodiment, ride height controller controls springs 16 to adjust a ride height of vehicle 10, either directly or through suspension controller 86. In one example, ride height controller 96 provides more ground clearance in a comfort ride mode compared to a sport ride mode.


An agility controller 100 controls a braking system of vehicle 10 and the stability of vehicle 10. Control methods of agility controller 100 may include integration into braking circuits (ABS) such that a stability control system can improve dynamic response (vehicle handling and stability) by modifying the shock damping in conjunction with electronic braking control.


In one embodiment, controller 20 either includes a location determiner 110 and/or communicates via network 78 to a location determiner 110. The location determiner 110 determines a current geographical location of vehicle 10. An exemplary location determiner 110 is a GPS unit which determines the position of vehicle 10 based on interaction with a global satellite system.


Referring to FIGS. 6-9, an exemplary side-by-side vehicle 200 is illustrated. Vehicle 200, as illustrated, includes a plurality of ground engaging members 12. Illustratively, ground engaging members 12 are wheels 204 and associated tires 206. As mentioned herein, one or more of ground engaging members 12 are operatively coupled to power system 60 (see FIG. 4) to power the movement of vehicle 200 and braking system 75 to slow movement of vehicle 200.


Referring to the illustrated embodiment in FIG. 6, a first set of wheels, one on each side of vehicle 200, generally correspond to a front axle 208. A second set of wheels, one on each side of vehicle 200, generally correspond to a rear axle 210. Although each of front axle 208 and rear axle 210 are shown having a single ground engaging member 12 on each side, multiple ground engaging members 12 may be included on each side of the respective front axle 208 and rear axle 210. As configured in FIG. 6, vehicle 200 is a four wheel, two axle vehicle.


Referring to FIG. 9, wheels 204 of front axle 208 are coupled to a frame 212 of vehicle 200 through front independent suspensions 214. Front independent suspensions 214 in the illustrated embodiment are double A-arm suspensions. Other types of suspensions systems may be used for front independent suspensions 214. The wheels 204 of rear axle 210 are coupled to frame 212 of vehicle 200 through rear independent suspensions 216. Other types of suspensions systems may be used for rear independent suspensions 216.


Returning to FIG. 6, vehicle 200 includes a cargo carrying portion 250. Cargo carrying portion 250 is positioned rearward of an operator area 222. Operator area 222 includes seating 224 and a plurality of operator controls. In the illustrated embodiment, seating 224 includes a pair of bucket seats. In one embodiment, seating 224 is a bench seat. In one embodiment, seating 224 includes multiple rows of seats, either bucket seats or bench seats or a combination thereof. Exemplary operator controls include a steering wheel 226, a gear selector 228, an accelerator pedal 230 (see FIG. 7), and a brake pedal 232 (see FIG. 7). Steering wheel 226 is operatively coupled to the wheels of front axle 208 to control the orientation of the wheels relative to frame 212. Gear selector 228 is operatively coupled to the shiftable transmission 68 to select a gear of the shiftable transmission 68. Exemplary gears include one or more forward gears, one or more reverse gears, and a park setting. Accelerator pedal 230 is operatively coupled to prime mover 62 to control the speed of vehicle 200. Brake pedal 232 is operatively coupled to brake units associated with one or more of wheels 204 to slow the speed of vehicle 200.


Operator area 222 is protected with a roll cage 240. Referring to FIG. 6, side protection members 242 are provided on both the operator side of vehicle 200 and the passenger side of vehicle 200. In the illustrated embodiment, side protection members 262 are each a unitary tubular member.


In the illustrated embodiment, cargo carrying portion 250 includes a cargo bed 234 having a floor 256 and a plurality of upstanding walls. Floor 256 may be flat, contoured, and/or comprised of several sections. Portions of cargo carrying portion 250 also include mounts 258 which receive an expansion retainer (not shown). The expansion retainers which may couple various accessories to cargo carrying portion 250. Additional details of such mounts and expansion retainers are provided in U.S. Pat. No. 7,055,454, to Whiting et al., filed Jul. 13, 2004, titled “Vehicle Expansion Retainers,” the entire disclosure of which is expressly incorporated by reference herein.


Front suspensions 214A and 214B each include a shock absorber 260, respectively. Similarly, rear suspensions 216A and 216B each include a shock absorber 262. In one embodiment each of shock absorbers 260 and shock absorbers 262 are electronically adjustable shocks 18 which are controlled by a controller 20 of vehicle 200.


Additional details regarding vehicle 200 are provided in U.S. Pat. Nos. 8,827,019 and 9,211,924, assigned to the present assignee, the entire disclosures of which are expressly incorporated by reference herein. Other exemplary recreational vehicles include ATVs, utility vehicles, snowmobiles, other recreational vehicles designed for off-road use, on-road motorcycles, and other suitable vehicles (e.g., FIG. 31).



FIG. 10 shows an exemplary control system 300 for controlling the damping of shock absorbers 18. In some instances, the control system 300 may be included in the vehicle 10 and/or the vehicle 200 described above. For example, the suspension controller 86 may communicate with (e.g., receive and/or provide) one or more entities (e.g., sensors, devices, controllers, and/or subsystems) from the vehicle 10 and/or 200 described above. Additionally, and/or alternatively, the vehicle 10 and 200 may be the same vehicle (e.g., the vehicle 200 may include entities from vehicle 10, such as the suspension controller 86).


Additionally, the controller 20 may include a suspension controller 86 as described above in FIG. 5. The suspension controller 86 may communicate with the plurality of vehicle condition sensors 40 as described above. Further, the suspension controller 86 may provide information (e.g., one or more commands) to each of the adjustable shock absorbers 18a, 18b, 18c, and 18d. For example, the suspension controller 86 may provide commands to adjust the compression damping characteristic and/or the rebound damping characteristic for the adjustable shock absorbers 18a, 18b, 18c, and 18d.


While exemplary sensors, devices, controllers, and/or subsystems are provided in FIG. 10, additional exemplary sensors, devices, controllers, and/or subsystems used by the suspension controller 86 to adjust shock absorbers 18 are provided in US Published Patent Application No. 2016/0059660 (filed Nov. 6, 2015, titled VEHICLE HAVING SUSPENSION WITH CONTINUOUS DAMPING CONTROL) and US Published Application 2018/0141543 (filed Nov. 17, 2017, titled VEHICLE HAVING ADJUSTABLE SUSPENSION), both assigned to the present assignee and the entire disclosures of each expressly incorporated by reference herein.


The illustrative control system 300 is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the present disclosure. Neither should the illustrative control system 300 be interpreted as having any dependency or requirement related to any single entity or combination of entities illustrated therein. Additionally, various entities depicted in FIG. 10, in embodiments, may be integrated with various ones of the other entities depicted therein (and/or entities not illustrated). For example, the suspension controller 86 may be included within the controller 20, and may communicate with one or more vehicle condition sensors 40 as described above. The functionalities of the suspension controller 86 and/or other entities in control system 300 will be described below.


Cornering Event and Braking Event



FIG. 11 shows an example flowchart describing the operation of the suspension controller 86 during a cornering event and/or a braking event. FIGS. 12 and 13 show examples of the suspension controller 86 adjusting the shock absorbers 18 for the vehicle 10 during a cornering event and/or braking event. As will be described in more detail below, for better performance during a braking and/or cornering event, a vehicle, such as vehicle 10, may use a controller 20 (e.g., the suspension controller 86) to adjust the rebound and/or compression damping. For instance, during a cornering event, the suspension controller 86 may reduce (e.g., decrease) the compression damping of the inner adjustable shock absorbers 18, which may cause the vehicle 10 to ride lower during cornering and/or to be less upset when the inner ground engaging members 12 encounter bumps. Further, the suspension controller 86 may reduce the rebound damping of the outside adjustable shock absorbers 18, which may promote shock extensions to flatten the vehicle 10 and/or cause the wheels of the vehicle 10 to follow the ground better to provide better traction. Additionally, and/or alternatively, the suspension controller 86 may increase the compression damping of the outside adjustable shocks 18 and/or increase the rebound damping of the inside adjustable shock absorbers 18.


During a braking event, the suspension controller 86 may reduce the compression damping for the rear adjustable shock absorbers 18 based on a deceleration rate (e.g., deceleration value), which may cause increased stability of the vehicle 10 during bumps and/or rough trails. Further, by reducing the compression damping for the rear adjustable shock absorbers 18, the suspension controller 86 may cause the rear ground engaging members 12 to absorb events, such as bumps, better. Also, the suspension controller 86 may also reduce the rebound damping for the front adjustable shock absorbers 18, which may promote shock extensions to flatten the vehicle 10 and/or cause the wheels of the vehicle 10 to follow the ground better to provide better traction. Additionally, and/or alternatively, the suspension controller 86 may increase the compression damping of the front adjustable shocks 18 and/or increase the rebound damping of the rear adjustable shock absorbers 18. By increasing the rebound damping of the rear adjustable shock absorbers 18, the vehicle 10 may be better able to control the pitch body movement and/or weight transfer during a braking event. Further, the suspension controller 86 may hold the vehicle 10 flatter and/or more stable when the vehicle 10 encounters bumps while braking.


In operation, at step 402, the suspension controller 86 may receive steering information from one or more sensors, such as the steering sensor 28. The steering information may indicate a steering position, steering angle, and/or steering rate of a steering wheel, such as steering wheel 226. The steering position and/or angle may indicate a position and/or an angle of the steering wheel for the vehicle 10. The steering rate may indicate a change of the position and/or angle of the steering wheel over a period of time.


At step 404, the suspension controller 86 may receive yaw rate information from one or more sensors, such as the gyroscope 31 and/or the IMU 37. The yaw information indicates the yaw rate of the vehicle 10.


At step 406, the suspension controller 86 may receive acceleration information indicating an acceleration rate or deceleration rate of the vehicle 10 from one or more sensors, such as the IMU 37 and/or the chassis accelerometer 30. The acceleration information may indicate multi-axis acceleration values of the vehicle, such as a longitudinal acceleration and/or a lateral acceleration. In some examples, the suspension controller 86 may receive information from another sensor, such as the throttle position sensor 34 and/or the accelerator pedal sensor 33. The suspension controller 86 use the information to determine the acceleration rate. For example, the suspension controller 86 may use the throttle position from the throttle position sensor and/or the position of the accelerator pedal 230 from the acceleration pedal sensor 33 to determine whether the vehicle 10 is accelerating and/or decelerating.


At step 408, the suspension controller 86 may receive brake information from a sensor, such as the brake sensor 32. The brake information may indicate a position (e.g., braking and/or not braking) of the brake pedal 232. Additionally, and/or alternatively, the brake information may indicate an amount of brake pressure on the brake pedal 232.


At step 410, the suspension controller 86 may receive an operating mode of the vehicle 10 from the operator interface 22 and/or one or more other controllers (e.g., controller 20). Each mode may include a different setting for the rebound and/or compression damping. An operator (e.g., user) may input a mode of operation on the operator interface 22. The operator interface 22 may provide the user input indicating the mode of operation to the controller 20 and/or the suspension controller 86. The suspension controller 86 may use the user input to determine the mode of operation for the vehicle 10.


At step 412, the suspension controller 86 may determine whether a cornering event (e.g., a turn) is occurring. Further, the suspension controller 86 may determine a direction of the turn (e.g., a left turn or a right turn). For example, the suspension controller 86 may determine the cornering event and/or direction of the turn based on the steering information indicating a steering rate, angle, and/or position, yaw rate information indicating a yaw rate, and/or the acceleration information indicating a lateral acceleration. The suspension controller 86 may compare the steering rate, steering angle, steering position, yaw rate, and/or lateral acceleration with one or more corresponding thresholds (e.g., pre-determined, pre-programmed, and/or user-defined) to determine the cornering event. The suspension controller 86 may use the positive and/or negative values of the steering rate, angle, position, yaw rate, and/or lateral acceleration to determine the direction of the turn.


In some examples, the suspension controller 86 may determine the cornering event based on the steering rate, angle, and/or position being greater than a threshold. In such examples, the method 400 may move to step 414. Otherwise, if the suspension controller 86 determines that the steering rate, angle and/or position is below the threshold, the method 400 may move to step 418. In some variations, the suspension controller 86 may determine the cornering event based on the yaw rate. For example, based on the yaw rate being greater than a threshold, the suspension controller 86 may determine a cornering event is occurring. In some instances, the suspension controller 86 may determine the cornering event based on a lateral acceleration. For example, based on the lateral acceleration being greater than a threshold, the suspension controller 86 may determine that a cornering event is occurring.


In some variations, the suspension controller 86 may prioritize the steering information, the yaw rate information, and/or the acceleration information, and determine the cornering event based on the priorities. For instance, in some examples, the steering position and/or angle, steering rate, yaw rate, and lateral acceleration may all indicate a turn. In other examples, the steering position and/or angle, steering rate, yaw rate, and/or lateral acceleration may conflict (e.g., the steering position might not indicate a turn and the yaw rate may indicate a turn; the yaw rate might not indicate a turn and the lateral acceleration may indicate a turn). For example, in a counter steer or a slide, the vehicle 10 may be turning in one direction, such as a left turn (e.g., indicated by a yaw rate and/or lateral acceleration); however, the steering position may indicate a turn in the opposite direction, such as a right turn, or might not indicate a turn. In such examples, the suspension controller 86 may prioritize the lateral acceleration and/or the yaw rate over the steering rate, angle, and/or position. For example, the suspension controller 86 may determine the vehicle 10 is turning and the turn is a left turn.


In some variations, the suspension controller 86 may prioritize the lateral acceleration over the yaw rate and the yaw rate over the steering rate, angle, and/or position. In other words, the suspension controller 86 may determine the cornering event is occurring and/or a direction of turn based on the lateral acceleration indicating a turn even if the yaw rate, steering rate, angle, and/or position do not indicate a turn. Further, the suspension controller 86 may determine the cornering event is occurring and/or a direction of turn based on the yaw rate indicating a turn even if the steering rate, angle, and/or position do not indicate a turn.


At step 414, the suspension controller 86 may determine a cornering state of the vehicle 10. The cornering state may indicate whether the vehicle 10 is entering, in the middle of, and/or exiting a corner event. Additionally, and/or alternatively, the cornering state may indicate whether the vehicle 10 is braking, accelerating, and/or decelerating through the cornering event. For example, the suspension controller 86 may determine the cornering state based on the acceleration information (e.g., the longitudinal acceleration) and/or the brake information (e.g., the position of the brake pedal 232 and/or amount of pressure on the brake pedal 232). As will be explained below, the suspension controller 86 may adjust and/or bias the adjustable shock absorbers 18 based on the cornering event, the braking of the vehicle 10, and/or the acceleration/deceleration of the vehicle 10.


At step 416, the suspension controller 86 may execute a corner condition modifier for one or more of the adjustable shock absorbers 18. For example, the suspension controller 86 may adjust (e.g., increase and/or decrease) the rebound and/or compression damping for one or more of the adjustable shock absorbers 18 based on detecting a cornering event (e.g., from step 412 indicating that the vehicle 10 is turning). FIG. 13 shows the suspension of the vehicle 10 during a cornering event. For example, in response to detecting the cornering event, the suspension controller 86 may provide information (e.g., one or more commands) to the adjustable shock absorbers 18. For instance, the suspension controller 86 may determine that the vehicle 10 is turning left (e.g., based on the steering position or rate, yaw rate, and/or lateral acceleration). In response, the suspension controller 86 may provide information 302 and/or 306 to the inner adjustable shock absorbers 18a and/or 18c to decrease the compression damping (CD) and/or increase the rebound damping (RD). By decreasing the compression damping of the inner adjustable shock absorbers 18a and/or 18c, the vehicle 10 may absorb bumps on that side better and/or be more stable when cornering in rough terrain. Further, the vehicle 10 may sit lower when cornering because the inside will move through the compression stroke easier when the vehicle is “on the sway bar” torsion. Additionally, by increasing the rebound on the inside adjustable shock absorbers 18a and/or 18c, the vehicle 10 may control the roll gradient and/or rate during the cornering event. Also, the suspension controller 86 may provide information 304 and/or 308 to the outer adjustable shock absorbers 18b and/or 18d to increase the compression damping (CD) and/or decrease the rebound damping (RD). After the suspension controller 86 determines and/or executes a corner condition modifier, the method 400 may move back to step 402 and repeat continuously.


In some variations, during the cornering event, the suspension controller 86 may adjust (e.g., increase and/or decrease) the rebound and/or compression damping for one or more of the adjustable shock absorbers 18 based on the cornering state (e.g., the braking of the vehicle 10 and/or the acceleration/deceleration of the vehicle 10). For example, during a cornering event, the suspension controller 86 may adjust the compression and/or rebound damping for the inner and/or outer adjustable shock absorbers 18 as described above. Additionally, and/or alternatively, based on the braking, acceleration, and/or deceleration rate, the suspension controller 86 may further bias (e.g., further increase by a value or percentage and/or further decrease by a value or percentage) the compression damping and/or rebound damping for the front and rear adjustable shock absorbers 18. By biasing the compression and/or rebound damping, the vehicle 10 may improve weight transfer on a corner entry and exit and may also improve the vehicle yaw response.


In other words, in response to detecting the cornering event, the suspension controller 86 may adjust the inner/outer adjustable shock absorbers 18 as described above. Then, based on the vehicle 10 slowing down, the suspension controller 86 may detect and/or determine a longitudinal deceleration (e.g., negative longitudinal acceleration) of the vehicle. Based on detecting the longitudinal deceleration, the suspension controller 86 may further bias (e.g., change and/or determine) the compression and/or rebound damping for the front/rear shock absorbers 18. For example, based on the longitudinal deceleration, the suspension controller 86 may additionally increase (e.g., increase by a percentage or a value) the compression damping of the front adjustable shock absorbers 18a and 18b and/or additionally decrease (e.g., decrease by a percentage or a value) the compression damping of rear adjustable shock absorbers 18c and 18d. Further, the suspension controller 86 may additionally increase the rebound damping of the rear shock absorbers 18c and 18d and/or additionally decrease the rebound damping of the front shock absorbers 18a and 18b.


For instance, the suspension controller 86 may adjust the compression and/or rebound damping for a shock absorber 18 based on whether the shock absorber is an inner or outer shock absorber as described above (e.g., set the compression damping at a value of 73). Then, based on the cornering state (e.g., a positive/negative longitudinal acceleration), the suspension controller 86 may further bias the compression and/or rebound damping. For example, the suspension controller 86 may decrease the front compression damping (e.g., set the compression damping from 73 to 62) if the suspension controller 86 detects a positive acceleration and increase the front compression damping (e.g., set the compression damping from 73 to 80) if the suspension controller 86 detects a negative acceleration. The suspension controller 86 may operate similarly for rebound damping.


Additionally, and/or alternatively, the suspension controller 86 may bias the compression and/or rebound damping differently based on the positive/negative longitudinal acceleration being greater than or less than one or more thresholds. For example, if acceleration is greater than a first threshold, then the suspension controller 86 may set the compression damping from a first value (e.g., 73) to a second value (e.g., 62). If acceleration is greater than a second threshold, then the suspension controller 86 may set the compression damping from the first value (e.g., 73) to a third value (e.g., 59). Additionally, and/or alternatively, if acceleration is greater than a third threshold, then the suspension controller 86 may set the compression damping from the first value (e.g., 73) to a fourth value (44). The suspension controller 86 may operate similarly for negative accelerations and/or braking as well.


At the end of the cornering event (e.g., a turn exit), the vehicle 10 may speed up (e.g., an operator may actuate the accelerator pedal 230). Based on detecting a positive acceleration (e.g., a longitudinal acceleration), the suspension controller 86 may further bias the front/rear shock absorbers 18. For example, based on the positive longitudinal acceleration, the suspension controller 86 may additionally increase the compression damping of rear adjustable shock absorbers 18c and 18d and/or additionally decrease the compression damping of the front adjustable shock absorbers 18a and 18b. Further, the suspension controller 86 may additionally increase the rebound damping of the front shock absorbers 18a and 18b and/or additionally decrease rebound damping of the rear shock absorbers 18c and 18d. After the executing the corner condition modifier, the method 400 may move back to step 402.


If the suspension controller 86 does not detect a cornering event, the method 400 may move to step 418. At step 418, the suspension controller 86 may determine whether a braking event is occurring. For example, the suspension controller 86 may determine whether the brake pedal 232 is actuated. In other words, the suspension controller 86 may determine or detect a braking event (e.g., whether the vehicle 10 is braking). If the suspension controller 86 determines that the brake pedal 232 is not actuated, the method 400 moves back to 402 and then repeats. If the suspension controller 86 determines that the brake pedal 232 is actuated, the method 400 moves to step 410.


At step 420, the suspension controller 86 may determine the deceleration rate of the vehicle 10 (e.g., two tenths of a gravitational constant (G) or half of a G). For example, the suspension controller 86 may determine the deceleration rate of the vehicle 10 from the chassis accelerometer 30 and/or the IMU 37. Additionally, and/or alternatively, the suspension controller 86 may determine and/or predict the deceleration rate of the vehicle 10 based on the amount of brake pressure on the brake pedal 232. As mentioned above, the brake sensor 32 may provide the amount of brake pressure on the brake pedal 232 to the suspension controller 86. Additionally, and/or alternatively, the suspension controller 86 may determine and/or predict the deceleration rate of the vehicle 10 based on an engine torque reduction from an engine torque sensor.


At step 422, the suspension controller 86 may execute a brake condition modifier for one or more of the adjustable shock absorbers 18. For example, the suspension controller 86 may adjust (e.g., increase and/or decrease) the rebound and/or compression damping for one or more of the adjustable shock absorbers 18 based on detecting a braking event (e.g., from step 408 indicating that the brake pedal has been actuated). FIG. 12 shows the suspension of the vehicle 10 during a braking event. For example, in response to detecting the braking event, the suspension controller 86 may provide information (e.g., one or more commands) to the adjustable shock absorbers 18 during the braking event. For instance, the suspension controller 86 may provide information 302 and/or 304 to the front adjustable shock absorbers 18a and/or 18b to increase the compression damping (CD) and decrease the rebound damping (RD). Further, the suspension controller 86 may provide information 306 and/or 308 to the rear adjustable shock absorbers 18c and/or 18d to increase the rebound damping (RD) and decrease the compression damping (CD). After the suspension controller 86 determines and/or executes a brake condition modifier, the method 400 may move back to step 402 and repeat continuously.


In some examples, in response to detecting the braking event, the suspension controller 86 may adjust the rebound and/or compression damping for the one or more adjustable shock absorbers 18 using the deceleration rate from step 410. For example, based on comparing the deceleration rate with a threshold, the suspension controller 86 may adjust the rebound and/or compression damping. For instance, if the deceleration rate is above a first threshold (e.g., above two tenths of a G), then the suspension controller 86 may reduce the compression damping of the rear adjustable shock absorbers 18c and/or 18d. If the deceleration is below the first threshold, then the suspension controller 86 might not reduce the compression damping (e.g., maintain the current compression damping) of the rear adjustable shock absorbers 18c and/or 18d. Additionally, and/or alternatively, if the deceleration rate is above the first threshold (e.g., above two tenths of a G), but below a second threshold (e.g., half of a G), then the suspension controller 86 may reduce the compression damping to a first value. If the deceleration is above the second threshold, then the suspension controller 86 may reduce to a second value that is below the first value (e.g., a softer compression damping value).


In some instances, the suspension controller 86 may separate operation of the braking event and/or cornering event. For example, step 412, 414, and 416 may be optional, and the method 400 may move directly to step 418.


Landing Hop Prevention



FIG. 14 shows an example flowchart describing the operation of the suspension controller 86 during an airborne event and a landing event. FIG. 14 will be described with reference to FIG. 15. FIG. 15 shows an example graph 525 illustrating the compression and rebound damping characteristics of a vehicle, such as vehicle 10 and/or 200, during a pre-takeoff period 530, a free-fall period 535, and a post-landing period 540. As will be described in more detail below, by adjusting the compression damping and/or rebound damping of one or more adjustable shock absorbers 18 during a free-fall and/or post-landing event, the suspension controller 86 may increase the stability of vehicle 10 post-landing by preventing the vehicle 10 from hoping, unloading, and/or decreasing the weight on the ground engaging members 12. Additionally, and/or alternatively, this may also provide a faster vehicle 10 in a race environment since after a landing event, the throttle may be applied quicker without tire (e.g., ground engaging members 12) spin. Additionally, and/or alternatively, this may also provide a more stable vehicle because the vehicle 10 will have better traction, and thus better user control.


In operation, at step 502, the suspension controller 86 may receive information (e.g., inputs) from one or more entities (e.g., sensors, devices, and/or subsystems) of vehicle 10. For example, the suspension controller 86 may receive (e.g., retrieve and/or obtain) information (e.g., data packets and/or signals indicating sensor readings) from the one or more sensors, devices, and/or subsystems. In some instances, the suspension controller 86 may receive information indicating the x, y, and/or z-axis acceleration from the chassis accelerometer 30 and/or IMU 37. For example, referring back to FIG. 3, the chassis accelerometer 30 and/or IMU 37 may measure the x, y, and/or z-axis acceleration values for the vehicle 10, and may provide the acceleration values to the suspension controller 86.


At step 506, the suspension controller 86 may determine whether an airborne event is occurring. For example, the suspension controller 86 may determine whether an airborne event is occurring based on the magnitude of the x-axis acceleration value, the y-axis acceleration value, and/or the z-axis acceleration value. For instance, the suspension controller 86 may compare the x, y, and/or z-axis acceleration values with one or more thresholds (e.g., one or more pre-defined, pre-programmed, and/or user-defined thresholds) to determine whether the vehicle 10 is in free-all. If the x, y, and/or z-axis acceleration values are less than the one or more thresholds, the method 500 may move to step 508. If the x, y, and/or z-axis acceleration values are greater than the thresholds, the method 500 may move back to step 502 and repeat.


In some examples, the suspension controller 86 may use two or three different thresholds. For example, the suspension controller 86 may compare the magnitudes for each of the x, y, and/or z-axis acceleration with a different threshold. Additionally, and/or alternatively, the suspension controller 86 may compare the magnitudes for the x and y-axis acceleration with a same threshold. For example, in free-fall, the chassis accelerometer 30 and/or IMU 37 may measure the vehicle 10 to have zero or substantially zero acceleration (e.g., wind, air resistance, and/or other factors may account for substantially zero acceleration) for the x and y-axis, and 1 G or substantially 1 G on the z-axis. As such, the suspension controller 86 may use a first threshold for the x-axis and y-axis acceleration values and a second threshold for the z-axis acceleration value. In some variations, the first threshold for the x-axis and the y-axis may be 0.3 Gs. In some instances, the suspension controller 86 may combine (e.g., calculate) a magnitude of acceleration for the x, y, and z-axis acceleration, and compare the combined magnitude with a threshold to determine whether the vehicle 10 is in free-fall.


Exemplary detection of an airborne event is described in US Published Patent Application No. 2016/0059660 (filed Nov. 6, 2015, titled VEHICLE HAVING SUSPENSION WITH CONTINUOUS DAMPING CONTROL) and US Published Application 2018/0141543 (filed Nov. 17, 2017, titled VEHICLE HAVING ADJUSTABLE SUSPENSION), both assigned to the present assignee and the entire disclosures of each expressly incorporated by reference herein.


At step 508, the suspension controller 86 may determine an airborne condition modifier for one or more of the adjustable shock absorbers 18. For example, the suspension controller 86 may provide information (e.g., one or more commands) to the adjustable shock absorbers 18 to increase and/or gradually increase the compression damping. By increasing the adjustable shock absorbers 18, the vehicle 10 may increase the energy absorption upon landing. Further, the suspension controller 86 may provide information (e.g., one or more commands) to decrease the rebound damping for the adjustable shock absorbers 18. By decreasing the rebound damping, the adjustable shock absorbers 18 may achieve full shock extension faster, increase energy absorption upon landing, and/or increase the travel of the shocks 18 available for landing. For example, the suspension controller 86 may reduce the rebound damping for the adjustable shock absorbers 18 to zero or substantially zero.



FIG. 15 shows an example of a graph 525 indicating compression and rebound damping characteristics for a vehicle, such as vehicle 10. The graph 525 is merely one example of a possible compression and rebound damping characteristics set by the suspension controller 86 over different periods of time. Graph 525 shows three periods, a pre-takeoff (e.g., pre-airborne) period 530, a free-fall period 535, and a post-landing period 540. Initially, during the pre-takeoff period, the rebound damping 550 and the compression damping 555 for the adjustable shock absorbers 18 are steady. When an airborne event occurs, the suspension controller 86 gradually increases the compression damping 55 over the free-fall period 535 and decreases the rebound damping 550 to substantially zero. The post-landing period 540 will be discussed below.


Referring back to FIG. 14, at step 510, the suspension controller 86 may determine whether a landing event has occurred. For example, similar to step 506, the suspension controller 86 may determine whether a landing event is occurring based on the magnitude of the x-axis acceleration value, the y-axis acceleration value, and/or the z-axis acceleration value. For instance, the suspension controller 86 may compare the x, y, and/or z-axis acceleration values with one or more thresholds (e.g., one or more pre-defined, pre-programmed, and/or user-defined thresholds) to determine whether the vehicle 10 has landed. If the x, y, and/or z-axis acceleration values are greater than the one or more thresholds, the method 500 may move to step 508. If the x, y, and/or z-axis acceleration values are less than the thresholds, then step 510 may repeat.


In some examples, the suspension controller 86 may use the same thresholds as in step 506. For example, as mentioned above, in free-fall, the chassis accelerometer 30 and/or IMU 37 may measure the vehicle 10 to have zero or substantially zero acceleration for the x and y-axis, and 1 G or substantially 1 G on the z-axis. As such, the suspension controller 86 may determine whether a landing event is occurring based on determining whether the acceleration values for the x and/or y-axis is greater than the first threshold (e.g., 0.3 Gs) and/or whether the acceleration values for the z-axis is greater than a second threshold. In some instances, the suspension controller 86 may combine (e.g., calculate) a magnitude of acceleration for the x, y, and z-axis acceleration, and compare the combined magnitude with a threshold to determine whether the vehicle 10 has landed.


At step 512, the suspension controller 86 may determine a duration for the airborne event (e.g., a duration that the vehicle 10 is in free-fall). For example, the suspension controller 86 may include a timer, and may use the timer to determine the duration between detecting the airborne event at step 506 and detecting the landing event at step 510.


At step 514, the suspension controller 86 may execute a landing condition modifier for one or more of the adjustable shock absorbers 18. For example, the suspension controller 86 may provide information (e.g., one or more commands) to the adjustable shock absorbers 18 to adjust the compression damping and/or the rebound damping to a post-landing set-point for a period of time. For instance, the suspension controller 86 may increase the rebound damping for a period of time. Also, the suspension controller 86 may maintain the compression damping at the post-landing setting for a period of time. By maintaining the compression damping, the vehicle 10 may be easier able to get through the landing compression stroke of the shock.


At step 516, the suspension controller 86 may execute a normal condition modifier. For example, the suspension controller 86 may adjust the compression damping and/or rebound damping back to normal (e.g., back to the pre-takeoff position). For example, the suspension controller may decrease and/or gradually decrease the rebound damping back to the normal (e.g., the pre-takeoff rebound damping setting). Further, the suspension controller 86 may decrease the compression damping back to normal (e.g., the pre-takeoff compression damping setting).


In some variations, the suspension controller 86 may adjust the post-landing compression damping settings and/or rebound damping settings based on the duration of the airborne event. Referring back to FIG. 15, the compression damping 555 is gradually increasing, and increase as the duration of the airborne event increases. As such, during the post-landing period 540, the suspension controller 86 may maintain an increased compression damping 555 based on the airborne event. Additionally, and/or alternatively, the suspension controller 86 may change the duration to maintain the increased compression damping 555 based on the duration of the airborne event. For example, the vehicle 10 may encounter a small bump (e.g., the airborne event is less than three hundred milliseconds). In such instances, the suspension controller 86 may compare the duration of the airborne event with a threshold (e.g., pre-programmed, pre-defined, and/or user-defined). If the duration of the airborne event is less than the threshold, the suspension controller 86 might not maintain the increased compression damping 555. Instead, the suspension controller 86 may reduce and/or gradually reduce the compression damping back to the pre-takeoff 530 compression damping 555 in response to detecting the landing event.


In some examples, if the duration of the airborne event is greater than the threshold, the suspension controller 86 may maintain the increased compression damping 555 for a period of time. In some instances, the suspension controller 86 may determine the period of time to maintain the increased compression damping 555 based on the duration of the airborne event (e.g., the longer the duration for the airborne event, the longer the period of time to maintain the increased compression damping 555).


In response to detecting the landing event (e.g., the start of the post-landing period 540), the suspension controller 86 may increase the rebound damping 550 based on the duration of the airborne event. For example, traditionally, the vehicle 10 tends to unload the tires (e.g., wheels are light) and/or perform a hop upon landing. To prevent the hop or unloading of the tires, the suspension controller 86 increases the rebound damping 550 for the adjustable shock absorbers 18 based on the duration of the airborne event (e.g., as the duration of the airborne event increases, the rebound damping 550 after landing increases). After a set period of time (e.g., after the vehicle 10 has completed its first shock compression and rebound cycle), the suspension controller 86 decreases and/or gradually decreases the rebound damping 550 back to the pre-takeoff period's 530 rebound damping setting. By increasing the rebound damping 550, the suspension controller 86 reduces the hop/unloading of the vehicle 10 causing increases in the stability and/or traction on the landing events.


In some examples, the vehicle 10 may encounter a small bump or hill, the vehicle 10 might not perform a hop upon landing or performs a small hop upon landing. In such examples, the suspension controller 86 may adjust the compression and/or rebound damping characteristics based on comparing the duration of the airborne event with a threshold. For example, the suspension controller 86 might not increase the rebound damping 550, and instead set the rebound damping 550 to the pre-takeoff period's 530 rebound damping setting in response to detecting the landing event.


Additionally, and/or alternatively, based on the duration of the airborne event, the suspension controller 86 may bias the compression damping and/or rebound damping for the front and/or rear adjustable shock absorbers 18. For example, based on detecting the duration of the airborne event is below a threshold (e.g., the vehicle 10 is encountering a small bump or hill), the suspension controller 86 may additionally increase the rebound damping for the post-landing rebound value for the rear adjustable shock absorbers 18c and 18d. Biasing the front/rear shock absorbers 18 in response to detecting the airborne event may increase stability of the vehicle 10 and/or assist the vehicle 10 when traveling through rough terrain.


Rock Crawler Operation



FIG. 16 shows an example flowchart describing the operation of the suspension controller 86 during a rock crawler operation. FIGS. 17-20 show examples of the suspension controller 86 adjusting the adjustable shock absorbers 18 for the vehicle 10 during the rock crawler operation.


By adjusting the compression damping and/or rebound damping of one or more adjustable shock absorbers 18 during the rock crawl operation, the suspension controller 86 may increase vehicle 10 stability when encountering rocks. For example, based on received information (e.g., longitudinal acceleration, lateral acceleration vehicle speed, engine speed, and/or roll angle), the suspension controller 86 may determine the orientation of the vehicle 10 (e.g., whether the vehicle 10 is on flat ground, facing uphill, facing downhill, passenger side facing downhill, and/or driver side facing downhill). Based on the orientation of the vehicle 10, the suspension controller 86 may adjust the compression and/or rebound damping to lean the vehicle 10 into the hill, and/or rock, causing the vehicle 10 to reduce the overall pitch/roll angle when traversing an obstacle. Further, by adjusting the compression and/or rebound damping when the vehicle 10 is on flat ground, the vehicle 10 has increased ground clearance.


In operation, at step 602, the suspension controller 86 may receive information (e.g., inputs) from one or more entities (e.g., sensors, devices, and/or subsystems) of vehicle 10. For example, the suspension controller 86 may receive (e.g., retrieve and/or obtain) information (e.g., data packets and/or signals indicating sensor readings) from the one or more sensors, devices, and/or subsystems. In some instances, the suspension controller 86 may receive longitudinal and/or lateral acceleration rates from a sensor, such as the IMU 37 and/or the chassis accelerometer 30. In some examples, the suspension controller 86 may receive pitch rate, roll rate, pitch angles, roll angles, and/or yaw rates from a sensor, such as the gyroscope 31. In some instances, the suspension controller 86 may receive a vehicle speed from a sensor, such as the vehicle speed sensor 26.


In some examples, the suspension controller 86 may receive information indicating a mode of operation for the vehicle 10. For example, the suspension controller 86 may receive information indicating the mode of operation from an operator interface 22 and/or another controller (e.g., controller 20). For instance, the operator interface 22 may receive user input indicating a selection of the rock crawler mode. The operator interface 22 may provide the user input to the suspension controller 86. The suspension controller 86 may be configured to operate in a rock crawler mode based on the user input.


At step 604, the suspension controller 86 may determine whether the vehicle 10 is in a rock crawler mode. For example, based on information indicating the mode of operation, the suspension controller 86 may determine whether the vehicle 10 is in the rock crawler mode. If the vehicle 10 is in the rock crawling mode, the method 600 may move to step 606. If not, the method 600 may move back to step 602.


At step 606, the suspension controller 86 may determine whether the vehicle speed is below a threshold. For example, the suspension controller 86 may compare the vehicle speed with a threshold. If the vehicle speed is less than the threshold, then the method 600 may move to step 608. If not, then the method 600 may move back to step 602. In other words, the suspension controller 86 may operate in the rock crawler mode and provide rock crawler condition modifiers at low vehicle speeds. At higher vehicle speeds, the suspension controller 86 might not operate in the rocker crawler mode. Instead, at higher vehicle speeds, the suspension controller 86 may operate in a different mode of operation, such as a normal or comfort mode. In some instances, the suspension controller 86 may use the engine speed rather than the vehicle speed to determine whether to operate in the rock crawler mode and/or provide rock crawler condition modifiers.


At step 608, the suspension controller 86 may determine an orientation of the vehicle 10. For example, based on the magnitude of the x-axis acceleration value, the y-axis acceleration value, and/or the z-axis acceleration value, the suspension controller 86 may determine a longitudinal acceleration and/or a lateral acceleration of the vehicle 10. Using the longitudinal and/or lateral acceleration, the suspension controller 86 may determine a roll and/or pitch angle of the vehicle 10. Then, based on the roll and/or pitch angle of the vehicle, the suspension controller 86 may determine whether the vehicle 10 is on a flat surface, the front of the vehicle 10 facing uphill, the front of the vehicle 10 is facing downhill, the passenger side of the vehicle 10 is facing downhill, and/or the driver side of the vehicle 10 is facing downhill. Additionally, and/or alternatively, the suspension controller 86 may determine the orientation, such as whether the passenger side of the vehicle 10 is facing downhill and/or the driver side of the vehicle 10 is facing downhill, based on the roll rates from the gyroscope 31 and/or the IMU 37.


At step 610, the suspension controller 86 may execute a rock crawler condition modifier. For example, based on the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the compression damping and/or the rebound damping for one or more of the adjustable shock absorbers 18. In some examples, the suspension controller 86 may increase the compression damping for the downhill adjustable shock absorbers 18. Additionally, and/or alternatively, the suspension controller 86 may increase the rebound damping and/or decrease the compression damping for the uphill adjustable shock absorbers 18.



FIGS. 17-20 show examples of the rebound and compression damping characteristics of the adjustable shock absorbers 18 using method 600. FIG. 17 shows the compression damping and/or rebound damping characteristics of the vehicle 10 on flat ground. For example, at step 608, the suspension controller 86 may determine the vehicle 10 is on flat ground (e.g., based on the longitudinal acceleration value and/or the lateral acceleration value. Based on the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the damping characteristics of the vehicle 10. For instance, the suspension controller 86 may provide information 302, 304, 306, 308 to increase the compression damping and to decrease the rebound damping for the adjustable shock absorber 18a, 18b, 18c, and 18d. By adjusting the compression damping and rebound damping, the suspension controller 86 may maximize the ground clearance for obstacle avoidance, may avoid full stiff compression when on flat ground to remove unnecessary harshness, and may allow the ground engaging members 12 to fall into holes in the ground more quickly, thus not upsetting the vehicle 10.



FIG. 18 shows the compression damping and/or rebound damping characteristics of the vehicle 10 when the front of the vehicle 10 is facing downhill. For example, at step 608, the suspension controller 86 may determine the vehicle 10 is facing downhill (e.g., based on the longitudinal acceleration value and/or lateral acceleration value). Based on the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the damping characteristics of the vehicle 10. For instance, the suspension controller 86 may provide information 302 and 304 to increase the compression damping for the adjustable shock absorbers 18a and 18b (e.g., the downhill facing shock absorbers). Further, the suspension controller 86 may provide information 306 and 308 to increase the rebound damping and/or decrease the compression damping for the adjustable shock absorber 18c and 18d (e.g., the uphill facing shock absorbers).



FIG. 19 shows the compression damping and/or rebound damping characteristics of the vehicle 10 when the front of the vehicle 10 is facing uphill. For example, at step 608, the suspension controller 86 may determine the vehicle 10 is facing uphill (e.g., based on the longitudinal acceleration value and/or lateral acceleration value). Based on the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the damping characteristics of the vehicle 10. For instance, the suspension controller 86 may provide information 302 and 304 to increase the rebound damping and/or decrease the compression damping for the adjustable shock absorbers 18a and 18b (e.g., the uphill facing shock absorbers). Further, the suspension controller 86 may provide information 306 and 308 to increase the compression damping for the adjustable shock absorber 18c and 18d (e.g., the downhill facing shock absorbers).



FIG. 20 shows the compression damping and/or rebound damping characteristics of the vehicle 10 when the passenger side of the vehicle 10 is facing downhill. For example, at step 608, the suspension controller 86 may determine the passenger side of the vehicle 10 is facing downhill (e.g., based on the lateral acceleration value and/or longitudinal acceleration value). Based on the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the damping characteristics of the vehicle 10. For instance, the suspension controller 86 may provide information 304 and 308 to increase the compression damping for the adjustable shock absorbers 18b and 18d (e.g., the downhill facing shock absorbers). Further, the suspension controller 86 may provide information 302 and 306 to increase the rebound damping and/or decrease the compression damping for the adjustable shock absorber 18a and 18c (e.g., the uphill facing shock absorbers).


In some variations, a portion of the vehicle 10, such as the passenger side of the front of the vehicle 10, is facing downhill. In other words, the vehicle 10 may be angled so one wheel (e.g., the front right ground engaging member 12b) is facing downhill and one wheel (e.g., the rear left ground engaging member 12c) is facing uphill. In such instances, at step 608, the suspension controller 86 may determine a pitch and roll angle based on the longitudinal and/or lateral acceleration values. Based on the pitch and roll angles, the suspension controller 86 may determine the orientation of the vehicle (e.g., that the front right ground engaging member 12b is facing). Based on the orientation of the vehicle 10, the suspension controller 86 may provide information 304 to increase the compression damping for the adjustable shock absorbers 18b (e.g., the downhill facing shock absorber). Further, the suspension controller 86 may provide information 306 to increase the rebound damping and/or decrease the compression damping for the adjustable shock absorber 18c (e.g., the uphill facing shock absorber). Additionally, and/or alternatively, based on the angle of the orientation, the suspension controller 86 may provide information 302 to maintain and/or decrease the rebound damping and/or maintain and/or increase the compression damping for the adjustable shock absorber 18a (e.g., a shock absorber that is neither uphill or downhill). Additionally, and/or alternatively, based on the angle of the orientation, the suspension controller 86 may provide information 308 to decrease the rebound damping and/or maintain the compression damping for the adjustable shock absorber 18d (e.g., a shock absorber that is neither uphill or downhill).


In some instances, when the vehicle 10 is in the rock crawler mode, the suspension controller 86 may increase, decrease, and/or maintain the compression and/or rebound damping as shown in FIG. 17. Further, in response to determining the orientation of the vehicle 10 (e.g., step 608), the suspension controller 86 may additionally increase and/or decrease the compression and/or rebound damping as shown in FIGS. 18-20. In other words, in such instances, the increasing, decreasing, and/or maintain of the compression/rebound damping as shown in FIGS. 18-20 are based off of the compression/rebound damping from FIG. 17.


Hill (Dune) Sliding Operation



FIG. 21 shows an example flowchart describing the operation of the suspension controller 86 during a hill sliding event. FIGS. 22 and 23 show examples of the suspension controller 86 adjusting the adjustable shock absorbers 18 for the vehicle 10 during the hill sliding event. By adjusting the damping during an front uphill sliding event, the vehicle 10 may lean better into the hill or dune, hold onto a steeper slope better, and/or provide a smoother ride (e.g., less chop) to the user when traversing the hill or dune. By adjusting the damping during a front downhill sliding event, the vehicle 10 may lean better into the hill or dune, increase vehicle stability, and/or make it easier to traverse back uphill. A hill sliding event is any event where the vehicle 10 is traversing a slope (e.g., hill, dune, ramp) and begins to slide in at least one direction.


In operation, at step 652, the suspension controller 86 may receive steering information from one or more sensors, such as the steering sensor 28. The steering information may indicate a steering position (e.g., steering angle) of a steering wheel, such as steering wheel 226. The steering position and/or angle may indicate a position and/or an angle of the steering wheel for the vehicle 10. The steering rate may indicate a change of the position and/or angle of the steering wheel over a period of time.


At step 654, the suspension controller 86 may receive yaw rate information from one or more sensors, such as the gyroscope 31 and/or the IMU 37. The yaw information indicates the yaw rate of the vehicle 10.


At step 656, the suspension controller 86 may receive acceleration information indicating an acceleration rate or deceleration rate of the vehicle 10 from one or more sensors, such as the IMU 37 and/or the chassis accelerometer 30. The acceleration information may indicate multi-axis acceleration values of the vehicle, such as a longitudinal acceleration and/or a lateral acceleration. In some examples, the suspension controller 86 may receive information from another sensor, such as the throttle position sensor 34 and/or the accelerator pedal sensor 33. The suspension controller 86 use the information to determine the acceleration rate. For example, the suspension controller 86 may use the throttle position from the throttle position sensor and/or the position of the accelerator pedal 230 from the acceleration pedal sensor to determine whether the vehicle 10 is accelerating and/or decelerating.


At step 658, the suspension controller 86 may receive an operating mode of the vehicle 10 from the operator interface 22 and/or one or more other controllers (e.g., controller 20). Each mode may include a different setting for the rebound and/or compression damping. An operator (e.g., user) may input a mode of operation on the operator interface 22. The operator interface 22 may provide the user input indicating the mode of operation to the controller 20 and/or the suspension controller 86. The suspension controller 86 may use the user input to determine the mode of operation for the vehicle 10.


At step 660, the suspension controller 86 may determine whether a hill sliding event (e.g., whether the vehicle 10 is sliding while traversing a slope) is occurring. For example, the suspension controller 86 may determine the hill sliding event based on the steering information indicating a steering rate, angle, and/or position, yaw rate information indicating a yaw rate, the acceleration information indicating a lateral and/or longitudinal acceleration, and/or other information (e.g., a pitch angle or rate). The suspension controller 86 may compare the steering rate, steering angle, steering position, yaw rate, lateral acceleration, and/or longitudinal acceleration with one or more thresholds (e.g., pre-determined, pre-programmed, and/or user-defined) to determine the hill sliding event. If the suspension controller 86 determines the vehicle 10 is in a hill sliding event, the method 650 may move to step 662. If not, the method may move to step 652.


In some instances, the detection of the hill sliding event may be similar to the detection of the cornering event. Further, the commands to adjust the damping of the shock absorbers 18 based on the detection of the hill sliding event may be similar to the cornering event. For example, the suspension controller 86 may prioritize the steering information, the yaw rate information, and/or the acceleration information to determine the hill sliding event. In other words, the steering position and/or angle, steering rate, yaw rate, and/or lateral acceleration may conflict, and the suspension controller 86 may prioritize the lateral acceleration over the steering position, angle, rate and/or the yaw rate. For example, the suspension controller 86 may determine the hill sliding event is occurring based on the lateral acceleration value exceeding (e.g., above or below) a lateral acceleration threshold even if the yaw rate, steering rate, angle, and/or position do not exceed their corresponding thresholds.


In some examples, the suspension controller 86 may use a vehicle speed and/or an engine speed to determine whether the vehicle 10 is in a hill sliding event. For example, the suspension controller 86 may compare the vehicle speed and/or the engine speed with a threshold. If the suspension controller 86 determines the vehicle speed and/or engine speed is greater than a threshold (e.g., the vehicle 10 is traveling at a high vehicle speed), then the method 650 may move to 662. Otherwise, the method 650 may move back to 652. In other words, the suspension controller 86 may execute the hill sliding condition modifier when the vehicle is moving at a high vehicle speed.


At step 662, the suspension controller 86 may determine a direction of the slide. For example, based on the lateral acceleration, the suspension controller 86 may determine whether the vehicle 10 is hill sliding to the left side or the right side.


At step 664, the suspension controller 86 may determine an orientation of the vehicle 10. For example, similar to step 608, based on the longitudinal and/or lateral acceleration, the suspension controller 86 may determine whether the front of the vehicle 10 is facing uphill, the front of the vehicle 10 is facing downhill, the passenger side of the vehicle 10 is facing downhill, and/or the driver side of the vehicle 10 is facing downhill.


At step 666, the suspension controller 86 may execute a hill sliding condition modifier. For example, based on the direction of the slide and/or the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the compression damping and/or the rebound damping for the one or more shock absorbers 18. For example, based on the direction of the slide, the suspension controller 86 may increase the compression damping and/or decrease the rebound damping on the leading adjustable shock absorbers 18. Additionally, and/or alternatively, the suspension controller 86 may decrease the compression damping and/or increase the rebound damping on the trailing adjustable shock absorbers 18. Also, based on the orientation (e.g., the front of the vehicle 10 facing uphill and/or downhill), the suspension controller 86 may further bias the compression damping and/or rebound damping for the front and rear shock absorbers 18. In other words, the suspension controller 86 may additionally increase the compression damping on the downhill adjustable shock absorbers 18. Additionally, and/or alternatively, the suspension controller 86 may additionally decrease the compression damping and/or additionally increase the rebound damping of the uphill shock absorbers 18. Afterwards, the method 650 may move back to step 652. FIGS. 22 and 23 will describe the hill condition modifier in further detail.



FIG. 22 shows the vehicle 10 traveling uphill and in a left pointed slide. For example, the suspension controller 86 may determine that the vehicle 10 is traveling uphill 670 and sliding left 672 based on the lateral and/or longitudinal acceleration. The suspension controller 86 may adjust the compression and/or rebound damping characteristics for a left pointed slide 672 similar to a right turn during a cornering event. In other words, the suspension controller 86 may increase the compression damping and/or decrease the rebound damping for the leading shock absorbers 18a and 18c (e.g., the outside shock absorbers). Further, the suspension controller 86 may decrease the compression damping and/or increase the rebound damping for the leading shock absorbers 18b and 18d (e.g., the inside shock absorbers). For a right pointed slide, the suspension controller 86 may reverse the compression damping and/or rebound damping for the shock absorbers (e.g., decrease the compression damping and/or increase the rebound damping for the shock absorbers 18a and 18c; increase the compression damping and/or decrease the rebound damping for shock absorbers 18b and 18d).


Additionally, and/or alternatively, the suspension controller 86 may bias the front and/or rear adjustable shock absorbers 18 for the uphill orientation 670 similar to detecting an acceleration during a cornering event. For example, based on the uphill orientation of the vehicle 10, the suspension controller 86 may additionally increase (e.g., by a value or percentage) the compression damping and/or additionally decrease (e.g., by a value or a percentage) the rebound damping of rear adjustable shock absorbers 18c and 18d (e.g., the downhill shock absorbers). Further, the suspension controller 86 may additionally decrease the compression damping and/or additionally increase the rebound damping of the front adjustable shock absorbers 18a and 18b (e.g., the uphill shock absorbers).


After determining the slide 672 and the orientation 670 of the vehicle, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the shock absorbers 18. For example, in an uphill 670 and left pointed slide 672, the suspension controller 86 may provide information 302 to maintain or decrease the rebound damping and/or maintain or increase the compression damping for the adjustable shock absorber 18a. Further, the suspension controller 86 may provide information 304 to increase the rebound damping and/or decrease the compression damping for the adjustable shock absorber 18b. Also, the suspension controller 86 may provide information 306 to increase the compression damping and/or to decrease the rebound damping for the adjustable shock absorber 18c. Additionally, the suspension controller 86 may provide information 308 to maintain or decrease the compression damping and/or increase the rebound damping for the adjustable shock absorber 18d.



FIG. 23 shows the vehicle 10 traveling downhill and in a right pointed slide. For example, the suspension controller 86 may determine that the vehicle 10 is traveling downhill 674 and sliding right 676 based on the lateral and/or longitudinal acceleration. The suspension controller 86 may adjust the compression and/or rebound damping characteristics for a right pointed slide 676 similar to a left turn during a cornering event. In other words, the suspension controller 86 may increase the compression damping and/or decrease the rebound damping for the leading shock absorbers 18b and 18d (e.g., the outside shock absorbers). Further, the suspension controller 86 may decrease the compression damping and/or increase the rebound damping for the trailing shock absorbers 18a and 18c (e.g., the inside shock absorbers). The left pointed slide 672 is described above.


Additionally, and/or alternatively, the suspension controller 86 may bias the front and/or rear adjustable shock absorbers 18 for the downhill orientation 674 similar to detecting a deceleration (e.g., braking) during a cornering event. For example, based on the downhill orientation of the vehicle 10, the suspension controller 86 may additionally increase (e.g., by a value or percentage) the compression damping and/or additionally decrease (e.g., by a value or a percentage) the rebound damping of front adjustable shock absorbers 18a and 18b (e.g., the downhill shock absorbers). Further, the suspension controller 86 may additionally decrease the compression damping and/or additionally increase the rebound damping of the rear adjustable shock absorbers 18c and 18d (e.g., the uphill shock absorbers).


After determining the slide and the orientation of the vehicle 10, the suspension controller 86 may provide information (e.g., one or more commands) to adjust the shock absorbers 18. For example, in a downhill orientation 674 and right pointed slide 676, the suspension controller 86 may provide information 302 to decrease or maintain the compression damping and/or increase or maintain the rebound damping for the adjustable shock absorber 18a. Further, the suspension controller 86 may provide information 304 to increase the compression damping and/or decrease the rebound damping for the adjustable shock absorber 18b. Also, the suspension controller 86 may provide information 306 to decrease the compression damping and/or to increase the rebound damping for the adjustable shock absorber 18c. Additionally, the suspension controller 86 may provide information 308 to maintain or increase the compression damping and/or decrease or maintain the rebound damping for the adjustable shock absorber 18d.


Realtime Correction of Inertial Measurement at a Center of Gravity of a Vehicle



FIG. 24 shows an exemplary flowchart illustrating a method for performing real-time correction of the inertial measurement of a vehicle. For example, the IMU 37, the gyroscope 31, and/or the chassis accelerometer 30 may measure the inertial measurements of the vehicle 10 (e.g., the acceleration and/or angular velocity or rate of the vehicle 10). In some examples, these sensors might not be at the center of gravity (CG) of the vehicle 10, and a kinematic transformation may be used to account for the sensors not being at the CG. For example, a controller, such as the suspension controller 86, may use a distance between a sensor (e.g., the IMU 37, the gyroscope 31, and/or the chassis accelerometer 30) and the CG of the vehicle 10 to determine offset correction information. Using the offset correction information, the suspension controller 86 may transform (e.g., determine and/or calculate) the measured acceleration values to CG acceleration values (e.g., an estimated CG acceleration). Additionally, and/or alternatively, the CG of the vehicle 10 may also be affected by the number of users and/or the cargo. For example, a driver and a passenger may change the CG of the vehicle 10. As such, the suspension controller 86 may receive user and/or cargo information, and use the user and/or cargo information to determine second offset correction information. The suspension controller 86 may use the first and/or second offset corrections to determine the CG acceleration values.


By providing real-time correction of the inertial measurement of the vehicle 10, the suspension controller 86 may allow for the IMU 37 and/or other sensors to reside at a location other than the CG of the vehicle 10 while still providing an accurate vehicle inertial measurement estimation for controls. Additionally, and/or alternatively, the suspension controller 86 may allow for a more accurate estimation given the additional information regarding the weight (e.g., riders) and/or location of the weight (e.g., location of the riders) of the vehicle 10. FIG. 24 will be described below with reference to FIG. 25.



FIG. 25 shows a schematic block diagram illustrating an example of logic components in the suspension controller 86. For example, the suspension controller 86 includes one or more logic components, such as an acceleration and/or velocity measurement logic 720, angular acceleration logic 722, angular acceleration calculation logic 724, kinematics function logic 726, estimated acceleration at center of gravity (CG) logic 728, offset correction based on user or cargo information logic 730, and/or offset correction based on sensor information logic 732. The logic 720, 722, 724, 726, 728, 730, and/or 732 is any suitable logic configuration including, but not limited to, one or more state machines, processors that execute kernels, and/or other suitable structure as desired.


Further, in some examples, the suspension controller 86 and/or the controller 20 may include memory and one or more processors. The memory may store computer-executable instructions that when executed by the one or more processors cause the processors to implement the method and procedures discussed herein, including the method 700. Additionally, various components (e.g., logic) depicted in FIG. 25 are, in embodiments, integrated with various ones of the other components depicted therein (and/or components not illustrated), all of which are considered to be within the ambit of the present disclosure.


In operation, at step 702, the suspension controller 86 (e.g., logic 720) may receive vehicle movement information from one or more entities (e.g., sensors, devices, and/or subsystems) of vehicle 10. For example, the suspension controller 86 may receive vehicle movement information indicating the acceleration and/or velocity of the vehicle 10 from one or more sensors. For instance, the logic 720 may receive x, y, and/or z acceleration values (e.g., linear acceleration values) from a sensor, such as the IMU 37 and/or the chassis accelerometer 30. The logic 720 may also receive x, y, and/or z angular velocity values from a sensor, such as the IMU 37 and/or the gyroscope 31.


At step 704, the suspension controller 86 (e.g., logic 730) may receive user or cargo information from one or more entities (e.g., sensors, devices, and/or subsystems) of vehicle 10. In some instances, the suspension controller 86 may receive user or cargo information from the operator interface 22. For example, the operator interface 22 may provide, to the suspension controller 86, user information indicating a number of riders in the vehicle 10 and/or a weight or mass corresponding to the riders in the vehicle 10. Additionally, and/or alternatively, the operator interface 22 may provide, to the suspension controller 86, cargo information indicating a weight or mass of cargo that the vehicle 10 is carrying.


In some examples, the suspension controller 86 may receive the user or cargo information from one or more sensors. For example, one or more sensors, such as seat belt sensors, may provide, to the suspension controller 86, information indicating the number of riders in the vehicle 10 (e.g., when a user puts on their seat belt, the seat belt sensor may provide information indicating the seat belt is engaged to the suspension controller 86).


At step 706, the suspension controller 86 (e.g., the logic 722 and/or 724) may determine the angular acceleration for the vehicle 10. For example, the logic 722 may filter the angular velocity and/or rates received from a sensor, such as the IMU 37 and/or gyroscope 31. The logic 724 may differentiate the angular rates to determine the angular acceleration.


At step 708, the suspension controller 86 (e.g., the logic 732) may determine a first offset correction based on a distance between a sensor (e.g., the IMU 37, the chassis accelerometer 30, and/or the gyroscope 31) and the CG of the vehicle 10. The CG of the vehicle 10 may be pre-programmed and/or pre-defined. Additionally, and/or alternatively, the suspension controller 86 (e.g., the logic 732) may determine the first offset correction based on a distance between a sensor (e.g., the IMU 37, the chassis accelerometer 30, and/or the gyroscope 31) and the suspension controller 86.


At step 710, the suspension controller 86 (e.g., the logic 730) may determine a second offset correction based on the user and/or cargo information received at step 704. For example, based on the number of users, weight/mass of users, and/or weight/mass of the cargo, the logic 730 may determine a second offset correction.


At step 712, the suspension controller 86 (e.g., the logic 726 and/or 728) may determine an estimated acceleration at the CG of the vehicle 10. For example, the logic 726 may receive information from the logic 720 (e.g., the linear acceleration values), the logic 724 (e.g., the determined angular acceleration values), the logic 730 (e.g., the second offset based on the user or cargo information), and/or the logic 732 (e.g., the first offset based on the sensor information). The logic 726 may use a kinematics function to determine the 3-axis estimated acceleration at the CG of the vehicle 10. The logic 726 may provide the 3-axis estimated acceleration at the CG of the vehicle 10 to the logic 728. Then, the method 700 may return to step 702, and may repeat continuously.


In some examples, the logic 726 may receive and/or store the 3-axis (e.g., x, y, and/or z-axis) estimated acceleration values at the CG of the vehicle 10. Additionally, and/or alternatively, the methods 400, 500, and/or 700 may use the determined estimated acceleration values at the CG of the vehicle 10 to execute corner condition modifiers (e.g., step 418), brake condition modifiers (e.g., step 412), landing condition modifiers (e.g., step 415), and/or sand dune condition modifiers (e.g., step 608). For example, the suspension controller 86 may use the estimated acceleration values at the CG of the vehicle 10 to determine and/or detect events (e.g., cornering events, braking events, landing events, airborne events). Additionally, and/or alternatively, the suspension controller 86 may use the estimated acceleration values at the CG of the vehicle 10 to adjust the compression damping and/or rebound damping of the adjustable shock absorbers 18.


Changing Drive Modes, Active Vehicle Events, and Suspension Controller Architecture



FIG. 26 shows an exemplary flowchart describing the operation of the suspension controller 86 when switching between driver modes. For example, an operator may use the operator interface 22 (e.g., a touch screen) and/or a physical switch to adjust the driving modes. For instance, each driving mode may indicate a different compression and/or rebound damping setting. As will be explained below, the suspension controller 86 may receive one or more user inputs, and based on the user inputs may change the driving modes. In response to changing the driving modes, the suspension controller 86 may provide one or more commands to adjust the compression and/or rebound damping for the adjustable shock absorbers 18. FIG. 26 will be described with reference to FIGS. 27 and 28 below.



FIG. 27 shows an exemplary physical switch 820 for adjusting driving modes. In some examples, the physical switch 820 may be located on a steering wheel, such as the steering wheel 226. The physical switch 820 may be operatively coupled to and/or communicate with the suspension controller 86. For example, the suspension controller 86 may receive user input from the physical switch 820. The switch 820 may include an increase mode (+) button 822 (e.g., a first mode changing input device), a decrease mode (−) button 824 (e.g., a second mode changing input device), and/or an instant compression switch 826. When actuated and/or pressed by a user, the instant compression switch 826 may provide information to the suspension controller 86. Based on the information from the instant compression switch 826, the suspension controller 86 may provide momentary stiffness to the adjustable shock absorbers 18. In other words, the suspension controller 86 may increase and/or significantly increase the compression damping of the adjustable shock absorbers 18 for a brief time duration.



FIG. 28 shows an exemplary graphical user interface 830. The graphical user interface 830 may be displayed on an interface, such as the operator interface 22. For example, the suspension controller 86 may cause display of the graphical user interface 830 on the operator interface 22. The graphical user interface 830 may include one or more modes, such as a first driver mode 832, a second driver mode 834, a third driver mode 836, and/or a fourth driver mode 838. The graphical user interface 830 is merely exemplary, and the suspension controller 86 may include multiple driver modes, including more or less than four driver modes. As will be explained below, the suspension controller 86 may receive multiple user inputs, and may adjust the compression and/or rebound damping characteristics based on the number of received user inputs. Exemplarily driving modes may include, but are not limited to, a comfort mode, a rough trial mode, a handling mode, and/or a rock crawl mode.


In operation, at step 802, the suspension controller 86 may determine whether it has received a first user input from the physical switch 820. For example, a user may press (e.g., actuate) the increase mode (+) button 822 and/or the decrease mode (−) button 824. The physical switch 820 may provide information indicating the actuation of the increase mode (+) button 822 and/or the decrease mode (−) button 824. If the suspension controller 86 has received a first user input, then the method 800 may move to step 804. If not, then the method 800 may remain at step 802.


At step 804, the suspension controller 86 may cause display of the driving modes on an operator interface, such as operator interface 22. For example, based on receiving the first user input from the physical switch 820, the suspension controller 86 may cause display of the graphical user interface 830 on the operator interface 22. Additionally, and/or alternatively, the graphical user interface 830 may indicate a current selected driver mode.


At step 806, the suspension controller 86 may determine whether it has received a new user input. For example, initially, when the suspension controller 86 receives the first user input, the suspension controller 86 might not change the current driving mode, such as the second driver mode 834. Instead, the suspension controller 86 may change the current driving mode if it receives two or more user inputs (e.g., the first user input and one or more new user inputs). For example, at step 802, the suspension controller 86 may receive a first user input indicating an actuation of the increase mode (+) button 822 and/or the decrease mode (−) button 824. At step 806, the suspension controller 86 may receive a new user input indicating a second actuation of the increase mode (+) button 822 and/or the decrease mode (−) button 824.


At step 808, based on the new user input, the suspension controller 86 may change the requested driving mode. For example, after receiving the new user input (e.g., a second actuation of button 822 and/or button 824), the suspension controller 86 may change the requested driving mode to a higher or lower driving mode. For instance, if the current driving mode is the second driver mode 834 and the suspension controller 86 receives an activation of button 822 at step 806, the suspension controller 86 may change the requested driving mode to the third driver mode 836. If the suspension controller 86 receives an activation of button 824, the suspension controller 86 may change the requested driving mode to the first driver mode 832. The method 800 may move back to step 806, and repeat. In the next iteration, the suspension controller 86 may receive another new user input (e.g., a third actuation of the button 822 and/or button 824). At step 808, the suspension controller 86 may change the requested driving mode again based on whether button 822 or button 824 was actuated.


In some instances, prior to changing the driving modes and/or adjusting the adjustable shock absorbers 18, the suspension controller 86 may determine whether an event described above, such as a cornering event, a braking event, an airborne event, and/or a landing event, is occurring. If the suspension controller 86 determines an event is occurring, the suspension controller 86 may delay and/or not change the active driving mode until the event has ended. For example, if the requested driving mode is the second driver mode 834 and an event occurs, the suspension controller 86 may delay and/or not change to the active driver mode (e.g., the second driver mode 834) until the event ends.


Referring back to step 806, if the suspension controller 86 does not receive a new input, the method 800 may move to step 810. At step 810, the suspension controller 86 may determine whether the amount of time that it has not received a new user input exceeds a timer, such as three seconds. If it has not exceeded the timer, then the method 800 may move back to 806. If it has exceeded the timer, then the method may move to step 802, and repeat. In other words, after a period of time (e.g., 3 seconds), the change driving mode feature may time out, and the user may need to provide another first input to begin the process again of switching driver modes.


In some examples, the suspension controller 86 may include a wall for the highest and lowest driving modes (e.g., the first driver mode 832 and fourth driver mode 838). For example, if the current driving mode is the second driver mode 834 and the suspension controller 86 receives more than two user inputs, the suspension controller 86 may change the requested driving mode to the highest driving mode, such as the fourth driver mode 838, and remain at the highest driving mode regardless of additional user inputs. In other words, even if a user actuates the increase mode (+) button 822 ten times, the suspension controller 86 may continue to select the highest driving mode (e.g., the further driver mode 838).


In some examples, the controller 20 may include a steering controller 102 (e.g., a power steering controller). The steering controller 102 may include a plurality of power steering modes for the vehicle 10. Based on the method 800, the suspension controller 86 may determine a driving mode (e.g., a suspension mode and/or a power steering mode) as described above. The suspension controller 86 may adjust the adjustable shock absorbers 18 based on the driving mode. Additionally, and/or alternatively, the suspension controller 86 may provide the driving mode (e.g., the power steering mode) to the steering controller 102. The steering controller 102 may change the power steering characteristics based on the received driving mode from the suspension controller 86. In some instances, each suspension mode corresponds to one or more power steering modes. As such, by the operator selecting a suspension mode (e.g., using method 800), the operator may also select a corresponding power steering mode. Thus, the suspension controller 86 may provide the selected driving mode to the steering controller 102, and the steering controller 102 may implement the power steering mode characteristics.


Push and Pull Instant Compression Button Activation


The vehicle 10 may include a sensor on the steering shaft (e.g., a shaft connecting the steering wheel, such as steering wheel 226, to the vehicle frame). The sensor, such as a strain gauge or a spring-loaded contact sensor, may detect a force (e.g., a push or pull) on the steering wheel 226. The sensor may be operatively coupled to and/or communicate with the suspension controller 86, and may provide information indicating the push or pull on the steering wheel 226 to the suspension controller 86.


The suspension controller 86 may receive the information indicating the push or pull (e.g., the force exerted on the steering wheel 226), and compare the force exerted on the steering with a threshold. Based on the comparison, the suspension controller 86 may provide one or more commands to momentarily increase the compression damping (e.g., set the compression damping to a stiff damping level) for the adjustable shock absorbers 18. In other words, instead of using a button, such as the instant compression switch 826 shown on FIG. 27, an operator may push or pull the steering wheel 226 to cause a momentary stiff compression damping for the adjustable shock absorbers 18.


Egress Aid



FIG. 29 shows an exemplary flowchart describing a method for implementing egress aid for a vehicle. For example, an operator may seek to exit the vehicle, such as vehicle 10. In such examples, the suspension controller 86 may reduce the damping (e.g., the compression damping) for the adjustable shock absorbers 18, causing the vehicle 10 to lower in height. By lowering the vehicle height, the operator may more easily exit the vehicle 10.


In operation, at step 902, the suspension controller 86 may receive information (e.g., inputs) from one or more entities (e.g., sensors, devices, and/or subsystems) of vehicle 10. For example, the suspension controller 86 may receive (e.g., retrieve and/or obtain) information (e.g., data packets and/or signals indicating sensor readings) from the one or more sensors, devices, and/or subsystems.


At step 904, the suspension controller 86 may determine whether the operator is going to (e.g., intending to) exit the vehicle 10. For example, the suspension controller 86 may receive, from the gear selection sensor 38, information indicating the vehicle has shifted to park. Based on the information, the suspension controller 86 may determine the operator is intending to exit the vehicle 10 and the method 900 may move to step 906. If not, the method 900 may move to step 902.


In some instances, the suspension controller 86 may determine the operator is intending to exit the vehicle based on the engine speed. For example, the suspension controller 86 may receive information indicating the engine speed is zero or substantially zero. As such, the suspension controller 86 may determine the operator is intending to exit the vehicle. In some examples, the suspension controller 86 may determine the operator is intending to exit the vehicle based on information indicating a vehicle key in the off position and/or a vehicle speed (e.g., from the vehicle speed sensor 26).


In some variations, the suspension controller 86 may receive information indicating the vehicle 10 is operating in the rock crawling mode described above. In the rock crawling mode, the vehicle speed may be low and/or substantially zero and/or may be over a rock. As such, based on the vehicle 10 operating in the rock crawling mode, the suspension controller 86 may determine to deactivate the egress aid (e.g., to not cause the vehicle 10 to become stuck), and the method 900 may move back to step 902.


At step 906, the suspension controller 86 may adjust the compression damping of the adjustable shock absorbers 18. For example, the suspension controller 86 may reduce the compression damping of the adjustable shock absorbers 18. By reducing the compression damping, the vehicle 10 may provide egress aid to the operator (e.g., based on lowering the height of the vehicle 10).


Sway Bar



FIG. 30 illustrates a representative view of a sway bar of a vehicle, such as vehicle 10. For example, the vehicle 10 may include a sway bar 1005. Further, the sway bar 1005 may include one or more sway bar adjustable shock absorbers 1010. The sway bar adjustable shock absorber 1010 may be coupled to the sway bar 1005 and a steering bar 1015. The sway bar 1005 may be in the rear of the vehicle, and located close to a rear adjustable shock absorber, such as shock absorber 18c. Further, the vehicle 10 may include more than one sway bar 1005 and/or sway bar adjustable shock absorber 1010. For example, on the other side of the vehicle 10 (e.g., the side with the adjustable shock absorber 18d), the vehicle 10 may include a second sway bar 1005 and/or a second sway bar adjustable shock absorber 1010.


Also, similar to the adjustable shock absorbers 18, the suspension controller 86 may provide one or more commands to adjust the damping characteristics of the sway bar adjustable shock absorbers 1010. For example, referring to FIG. 11, in response to detecting a cornering event, the suspension controller 86 may provide one or more commands to increase and/or engage the compression damping for the sway bar adjustable shock absorbers 1010. Additionally, and/or alternatively, the suspension controller 86 may provide different damping characteristics based on the driving modes. For instance, in some driving modes, the suspension controller 86 may increase and/or engage the compression damping for the sway bar adjustable shock absorbers 1010 in response to detecting events. In other driving modes, the suspension controller 86 might not increase nor engage the compression damping for the sway bar adjustable shock absorbers 1010 in response to detecting events. For example, referring to FIG. 26, based on changing the driving modes, the suspension controller 86 may provide one or more commands to adjust the compression and/or rebound damping for the sway bar adjustable shock absorbers 1010.


Exemplary sway bars are described in U.S. Pat. No. 9,365,251 (filed Jun. 14, 2016, titled Side-by-side vehicle), which is assigned to the present assignee and the entire disclosure is expressly incorporated by reference herein.



FIG. 31 illustrates a view of an exemplary vehicle 1100, such as a snowmobile. Vehicle 1100, as illustrated, includes a plurality of ground engaging members 12. Illustratively, the ground engaging members 12 are the endless track assembly 1108 and a pair of front skis 1112a and 1112b. The endless track assembly 1108 is operatively coupled to power system 60 (see FIG. 4) to power the movement of vehicle 1100. The vehicle may also include a seat 1102 and a seat surface 1104. Also, the vehicle may include handlebars 1106.


Further, the suspensions 1114 and 1116 are coupled to the frame of the vehicle 1100 and the pair of front skis 1112a and 1112b. The suspensions 1114 and 1116 may include adjustable shock absorbers, such as the adjustable shock absorber 1110. Also, the endless track assembly 1108 may also be coupled to one or more suspensions and/or adjustable shock absorbers.


The vehicle 1100 may be the same and/or include components of vehicle 10. For example, the vehicle 1100 may include the plurality of vehicle condition sensors 40 described above, and may also include one or more controllers, such as the suspension controller 86. The suspension controller 86 may receive information from the plurality of vehicle condition sensors 40. Using the received information, the suspension controller 86 may adjust the compression and/or rebound damping of the adjustable shock absorbers, such as adjustable shock absorber 1110 as described above. Additional details regarding vehicle 1100 are provided in U.S. Pat. Nos. 9,809,195 and 8,994,494, assigned to the present assignee, the entire disclosures of which are expressly incorporated by reference herein.


In embodiments, substantially zero is any value which is effectively zero. For example, a substantially zero value does not provide an appreciable difference in the operation compared to when the value is zero.


The above detailed description of the present disclosure and the examples described therein have been presented for the purposes of illustration and description only and not by limitation. It is therefore contemplated that the present disclosure covers any and all modifications, variations or equivalents that fall within the scope of the basic underlying principles disclosed above and claimed herein.

Claims
  • 1. A recreational vehicle, comprising: a plurality of ground engaging members;a frame supported by the plurality of ground engaging members;a plurality of suspensions, wherein each of the plurality of suspensions couples a ground engaging member, from the plurality of ground engaging members, to the frame, wherein the plurality of suspensions includes a plurality of adjustable shock absorbers;at least one sensor positioned on the recreational vehicle and configured to provide acceleration information to a controller; andthe controller operatively coupled to the at least one sensor and the plurality of adjustable shock absorbers, wherein the controller is configured to: receive, from the at least one sensor, the acceleration information;determine, based on the acceleration information, at least one orientation of the recreational vehicle;provide, to at least one of the plurality of adjustable shock absorbers and based on the at least one orientation of the recreational vehicle, one or more commands to result in an adjustment of a damping characteristic of the at least one of the plurality of adjustable shock absorbers; anddetermine that the at least one orientation of the recreational vehicle is a first orientation wherein the recreational vehicle is positioned on a hill in a lateral direction of the recreational vehicle the controller configured to provide at least one adjustment of at least one damping characteristic of the at least one of the plurality of adjustable shock absorbers to lean the recreation vehicle into the hill.
  • 2. The recreational vehicle of claim 1, wherein the at least one sensor comprises at least one of: an accelerometer or an inertial measurement unit (IMU).
  • 3. The recreational vehicle of claim 1, further comprising: an operator interface configured to provide one or more user inputs indicating mode selections to the controller, andwherein the controller is configured to provide the one or more commands to result in the adjustment of the damping characteristic based on receiving, from the operator interface, user input indicating a selection of a rock crawler mode.
  • 4. The recreational vehicle of claim 3, wherein the at least one sensor comprises a second sensor configured to provide vehicle speed information to the controller, and wherein the controller is further configured to: receive, from the second sensor, vehicle speed information indicating a vehicle speed of the recreational vehicle; andin response to determining that the vehicle speed is greater than a threshold, transitioning the recreational vehicle from the rock crawler mode to a different operating mode.
  • 5. The recreational vehicle of claim 1, wherein the controller is further configured to: determine, based on the acceleration information, a longitudinal acceleration and a lateral acceleration of the recreational vehicle;determine, based on the longitudinal acceleration and the lateral acceleration, a pitch angle and a roll angle of the recreational vehicle, andwherein the controller is configured to determine the orientation of the recreational vehicle based on the pitch angle and the roll angle.
  • 6. The recreational vehicle of claim 5, wherein the controller is further configured to: determine, based on the longitudinal acceleration and the lateral acceleration, that the orientation of the recreational vehicle is on flat ground; andprovide, based on the determination that the recreational vehicle is on flat ground, one or more commands to result in an increase of a compression damping characteristic and a decrease of a rebound damping characteristic for the at least one of the plurality of adjustable shock absorbers.
  • 7. The recreational vehicle of claim 5, wherein the controller is further configured to: determine, based on the longitudinal acceleration and the lateral acceleration, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber from the plurality of adjustable shock absorbers; andprovide, to the at least one uphill adjustable shock absorber, one or more commands to result in an increase of a rebound damping characteristic and a decrease of a compression damping characteristic.
  • 8. The recreational vehicle of claim 5, wherein the controller is further configured to: determine, based on the longitudinal acceleration and the lateral acceleration, at least one uphill adjustable shock absorber and at least one downhill adjustable shock absorber from the plurality of adjustable shock absorbers; andprovide, to the at least one downhill adjustable shock absorber, one or more commands to result in an increase of a compression damping characteristic.
  • 9. The recreational vehicle of claim 1, wherein the orientation of the recreational vehicle is a pose of the recreational vehicle relative to the ground while the recreational vehicle is on the ground.
  • 10. The recreational vehicle of claim 1, wherein the at least one orientation includes a second orientation and the second orientation of the recreational vehicle is that the recreational vehicle is on flat ground.
  • 11. The recreational vehicle of claim 1, wherein the at least one orientation includes a second orientation and the second orientation of the recreational vehicle is that the recreational vehicle is facing uphill.
  • 12. The recreational vehicle of claim 1, wherein the at least one orientation includes a second orientation and the second orientation of the recreational vehicle is that the recreational vehicle is facing downhill.
  • 13. The recreational vehicle of claim 1, wherein the at least one orientation includes a second orientation and the second orientation of the recreational vehicle is that a passenger side of the recreational vehicle is facing downhill.
  • 14. The recreational vehicle of claim 1, wherein the at least one orientation includes a second orientation and the second orientation of the recreational vehicle is that a driver side of the recreational vehicle is facing downhill.
  • 15. The recreational vehicle of claim 1, wherein the plurality of suspensions comprises a first suspension and a second suspension, and the plurality of shock absorbers comprises a first shock absorber coupled between the first suspension and the frame and a second shock absorber coupled between the second suspension and the frame, and in the first orientation of the recreational vehicle the first suspension is positioned uphill relative to the second suspension and the controller is configured to provide at least one adjustment of at least one damping characteristic of at least one of the first shock absorber and the second shock absorber.
  • 16. The recreational vehicle of claim 15, wherein the controller is configured to increase a compression damping of the second shock absorber.
  • 17. The recreational vehicle of claim 15, wherein the controller is configured to increase a rebound damping of the first shock absorber.
  • 18. The recreational vehicle of claim 15, wherein the controller is configured to decrease a compression damping of the first shock absorber.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a divisional of U.S. patent application Ser. No. 16/198,280, filed Nov. 21, 2018, titled “VEHICLE HAVING ADJUSTABLE COMPRESSION AND REBOUND DAMPING”, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (530)
Number Name Date Kind
3623565 Ward et al. Nov 1971 A
3861229 Domaas Jan 1975 A
3933213 Trowbridge Jan 1976 A
4340126 Larson Jul 1982 A
4462480 Yasui et al. Jul 1984 A
4600215 Kuroki et al. Jul 1986 A
4722548 Hamilton et al. Feb 1988 A
4741554 Okamoto May 1988 A
4749210 Sugasawa Jun 1988 A
4779895 Rubel Oct 1988 A
4805923 Soltis Feb 1989 A
4809179 Klingler et al. Feb 1989 A
4826205 Kouda et al. May 1989 A
4827416 Kawagoe et al. May 1989 A
4867474 Smith Sep 1989 A
4903983 Fukushima et al. Feb 1990 A
4905783 Bober Mar 1990 A
4927170 Wada May 1990 A
4930082 Harara et al. May 1990 A
4934667 Pees et al. Jun 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4961146 Kajiwara Oct 1990 A
5015009 Ohyama et al. May 1991 A
5024460 Hanson et al. Jun 1991 A
5029328 Kamimura et al. Jul 1991 A
5037128 Okuyama et al. Aug 1991 A
5054813 Kakizaki Oct 1991 A
5062657 Majeed Nov 1991 A
5071157 Majeed Dec 1991 A
5071158 Yonekawa et al. Dec 1991 A
5080392 Bazergui Jan 1992 A
5083811 Sato et al. Jan 1992 A
5092624 Fukuyama et al. Mar 1992 A
5096219 Hanson et al. Mar 1992 A
5113345 Mine et al. May 1992 A
5114177 Fukunaga et al. May 1992 A
5144559 Kamimura et al. Sep 1992 A
5163538 Derr et al. Nov 1992 A
5189615 Rubel et al. Feb 1993 A
5233530 Shimada et al. Aug 1993 A
5253728 Matsuno et al. Oct 1993 A
5342023 Kuriki et al. Aug 1994 A
5350187 Shinozaki Sep 1994 A
5361209 Tsutsumi Nov 1994 A
5361213 Fujieda et al. Nov 1994 A
5362094 Jensen Nov 1994 A
5366236 Kuriki et al. Nov 1994 A
5375872 Ohtagaki et al. Dec 1994 A
5377107 Shimizu et al. Dec 1994 A
5383680 Bock et al. Jan 1995 A
5384705 Inagaki et al. Jan 1995 A
5390121 Wolfe Feb 1995 A
5444621 Matsunaga et al. Aug 1995 A
5446663 Sasaki et al. Aug 1995 A
5475593 Townend Dec 1995 A
5475596 Henry et al. Dec 1995 A
5483448 Liubakka et al. Jan 1996 A
5510985 Yamaoka et al. Apr 1996 A
5515273 Sasaki et al. May 1996 A
5550739 Hoffmann et al. Aug 1996 A
5586032 Kallenbach et al. Dec 1996 A
5632503 Raad et al. May 1997 A
5678847 Izawa et al. Oct 1997 A
5749596 Jensen May 1998 A
5832398 Sasaki et al. Nov 1998 A
5890870 Berger et al. Apr 1999 A
5897287 Berger et al. Apr 1999 A
5992558 Noro et al. Nov 1999 A
6000702 Streiter Dec 1999 A
6032752 Karpik et al. Mar 2000 A
6070681 Catanzarite et al. Jun 2000 A
6076027 Raad et al. Jun 2000 A
6078252 Kulczycki et al. Jun 2000 A
6112866 Boichot et al. Sep 2000 A
6120399 Okeson et al. Sep 2000 A
6122568 Madau et al. Sep 2000 A
6148252 Iwasaki et al. Nov 2000 A
6155545 Noro et al. Dec 2000 A
6161908 Takayama et al. Dec 2000 A
6176796 Lislegard Jan 2001 B1
6181997 Badenoch et al. Jan 2001 B1
6206124 Mallette et al. Mar 2001 B1
6244398 Girvin et al. Jun 2001 B1
6249728 Streiter Jun 2001 B1
6254108 Germain Jul 2001 B1
6290034 Ichimaru Sep 2001 B1
6343248 Rizzotto et al. Jan 2002 B1
6352142 Kim Mar 2002 B1
6370458 Shal et al. Apr 2002 B1
6502025 Kempen Dec 2002 B1
6507778 Koh Jan 2003 B2
6526342 Burdock et al. Feb 2003 B1
6604034 Speck et al. Aug 2003 B1
6657539 Yamamoto et al. Dec 2003 B2
6684140 Lu Jan 2004 B2
6685174 Behmenburg et al. Feb 2004 B2
6752401 Burdock Jun 2004 B2
6834736 Kramer et al. Dec 2004 B2
6851679 Downey et al. Feb 2005 B2
6860826 Johnson Mar 2005 B1
6895518 Wingen May 2005 B2
6938508 Saagge Sep 2005 B1
6942050 Honkala et al. Sep 2005 B1
6945541 Brown Sep 2005 B2
6976689 Hibbert Dec 2005 B2
7011174 James Mar 2006 B1
7032895 Folchert Apr 2006 B2
7035836 Caponetto et al. Apr 2006 B2
7055454 Whiting et al. Jun 2006 B1
7055545 Mascari et al. Jun 2006 B2
7058490 Kim Jun 2006 B2
7070012 Fecteau Jul 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7092808 Lu et al. Aug 2006 B2
7097166 Folchert Aug 2006 B2
7124865 Turner et al. Oct 2006 B2
7136729 Salman et al. Nov 2006 B2
7140619 Hrovat et al. Nov 2006 B2
7168709 Niwa et al. Jan 2007 B2
7233846 Kawauchi et al. Jun 2007 B2
7234707 Green et al. Jun 2007 B2
7270335 Hio et al. Sep 2007 B2
7286919 Nordgren et al. Oct 2007 B2
7316288 Bennett et al. Jan 2008 B1
7322435 Lillbacka et al. Jan 2008 B2
7359787 Ono et al. Apr 2008 B2
7386378 Lauwerys et al. Jun 2008 B2
7401794 Laurent et al. Jul 2008 B2
7413196 Borowski Aug 2008 B2
7421954 Bose Sep 2008 B2
7427072 Brown Sep 2008 B2
7441789 Geiger et al. Oct 2008 B2
7454282 Mizuguchi Nov 2008 B2
7483775 Karaba et al. Jan 2009 B2
7510060 Zawa et al. Mar 2009 B2
7526665 Kim et al. Apr 2009 B2
7529609 Braunberger et al. May 2009 B2
7533750 Simmons et al. May 2009 B2
7533890 Chiao May 2009 B2
7571039 Chen et al. Aug 2009 B2
7600762 Yasui et al. Oct 2009 B2
7611154 Delaney Nov 2009 B2
7630807 Yoshimura et al. Dec 2009 B2
7641208 Barron et al. Jan 2010 B1
7644934 Mizuta Jan 2010 B2
7684911 Seifert et al. Mar 2010 B2
7740256 Davis Jun 2010 B2
7751959 Boon et al. Jul 2010 B2
7778741 Rao et al. Aug 2010 B2
7810818 Bushko Oct 2010 B2
7815205 Barth et al. Oct 2010 B2
7823106 Baker et al. Oct 2010 B2
7823891 Bushko et al. Nov 2010 B2
7862061 Jung Jan 2011 B2
7885750 Lu Feb 2011 B2
7899594 Messih et al. Mar 2011 B2
7912610 Saito et al. Mar 2011 B2
7926822 Ohletz et al. Apr 2011 B2
7940383 Noguchi et al. May 2011 B2
7942427 Lloyd May 2011 B2
7950486 Van et al. May 2011 B2
7959163 Beno et al. Jun 2011 B2
7962261 Bushko et al. Jun 2011 B2
7963529 Oteman et al. Jun 2011 B2
7970512 Lu et al. Jun 2011 B2
7975794 Simmons Jul 2011 B2
7984915 Post et al. Jul 2011 B2
8005596 Lu et al. Aug 2011 B2
8027775 Takenaka et al. Sep 2011 B2
8032281 Bujak et al. Oct 2011 B2
8050818 Mizuta Nov 2011 B2
8050857 Lu et al. Nov 2011 B2
8056392 Ryan et al. Nov 2011 B2
8065054 Tarasinski et al. Nov 2011 B2
8075002 Pionke et al. Dec 2011 B1
8086371 Furuichi et al. Dec 2011 B2
8087676 McIntyre Jan 2012 B2
8095268 Parison et al. Jan 2012 B2
8108104 Hrovat et al. Jan 2012 B2
8113521 Lin et al. Feb 2012 B2
8116938 Itagaki et al. Feb 2012 B2
8121757 Song et al. Feb 2012 B2
8170749 Mizuta May 2012 B2
8190327 Poilbout May 2012 B2
8195361 Kajino et al. Jun 2012 B2
8209087 Haegglund et al. Jun 2012 B2
8214106 Ghoneim et al. Jul 2012 B2
8219262 Stiller Jul 2012 B2
8229642 Post et al. Jul 2012 B2
8260496 Gagliano Sep 2012 B2
8271175 Takenaka et al. Sep 2012 B2
8296010 Hirao et al. Oct 2012 B2
8308170 Van et al. Nov 2012 B2
8315764 Chen et al. Nov 2012 B2
8315769 Braunberger et al. Nov 2012 B2
8321088 Brown et al. Nov 2012 B2
8322497 Marjoram et al. Dec 2012 B2
8352143 Lu et al. Jan 2013 B2
8355840 Ammon et al. Jan 2013 B2
8374748 Jolly Feb 2013 B2
8376373 Conradie Feb 2013 B2
8396627 Jung et al. Mar 2013 B2
8417417 Chen et al. Apr 2013 B2
8424832 Robbins et al. Apr 2013 B2
8428839 Braunberger et al. Apr 2013 B2
8434774 Leclerc et al. May 2013 B2
8437935 Braunberger et al. May 2013 B2
8442720 Lu et al. May 2013 B2
8444161 Leclerc et al. May 2013 B2
8447489 Murata et al. May 2013 B2
8457841 Knoll et al. Jun 2013 B2
8473157 Savaresi et al. Jun 2013 B2
8517395 Knox et al. Aug 2013 B2
8532896 Braunberger et al. Sep 2013 B2
8534397 Grajkowski et al. Sep 2013 B2
8534413 Nelson et al. Sep 2013 B2
8548678 Ummethala et al. Oct 2013 B2
8550221 Paulides et al. Oct 2013 B2
8571776 Braunberger et al. Oct 2013 B2
8573605 Di Maria Nov 2013 B2
8626388 Oikawa Jan 2014 B2
8626389 Sidlosky Jan 2014 B2
8641052 Kondo et al. Feb 2014 B2
8645024 Daniels Feb 2014 B2
8666596 Arenz Mar 2014 B2
8672106 Laird et al. Mar 2014 B2
8672337 Van et al. Mar 2014 B2
8676440 Watson Mar 2014 B2
8682530 Nakamura Mar 2014 B2
8682550 Nelson et al. Mar 2014 B2
8682558 Braunberger et al. Mar 2014 B2
8684887 Krosschell Apr 2014 B2
8700260 Jolly et al. Apr 2014 B2
8712599 Westpfahl Apr 2014 B1
8712639 Lu et al. Apr 2014 B2
8718872 Hirao et al. May 2014 B2
8725351 Selden et al. May 2014 B1
8725380 Braunberger et al. May 2014 B2
8731774 Yang May 2014 B2
8770594 Tominaga et al. Jul 2014 B2
8827019 Deckard et al. Sep 2014 B2
8903617 Braunberger et al. Dec 2014 B2
8954251 Braunberger et al. Feb 2015 B2
8972712 Braunberger Mar 2015 B2
8994494 Koenig et al. Mar 2015 B2
8997952 Goetz Apr 2015 B2
9010768 Kinsman et al. Apr 2015 B2
9027937 Ryan et al. May 2015 B2
9038791 Marking May 2015 B2
9123249 Braunberger et al. Sep 2015 B2
9151384 Kohler et al. Oct 2015 B2
9162573 Grajkowski et al. Oct 2015 B2
9205717 Brady et al. Dec 2015 B2
9211924 Safranski et al. Dec 2015 B2
9327726 Braunberger et al. May 2016 B2
9365251 Safranski et al. Jun 2016 B2
9371002 Braunberger Jun 2016 B2
9381810 Nelson et al. Jul 2016 B2
9381902 Braunberger et al. Jul 2016 B2
9428242 Ginther et al. Aug 2016 B2
9429235 Krosschell et al. Aug 2016 B2
9527362 Scheuerell et al. Dec 2016 B2
9643538 Braunberger et al. May 2017 B2
9643616 Lu May 2017 B2
9662954 Scheuerell et al. May 2017 B2
9665418 Arnott May 2017 B2
9695899 Smith Jul 2017 B2
9771084 Norstad Sep 2017 B2
9802621 Gillingham et al. Oct 2017 B2
9809195 Giese et al. Nov 2017 B2
9830821 Braunberger et al. Nov 2017 B2
9834184 Braunberger Dec 2017 B2
9834215 Braunberger et al. Dec 2017 B2
9855986 Braunberger et al. Jan 2018 B2
9868385 Braunberger Jan 2018 B2
9878693 Braunberger Jan 2018 B2
9920810 Smeljanskij Mar 2018 B2
9945298 Braunberger et al. Apr 2018 B2
10005335 Brady et al. Jun 2018 B2
10046694 Braunberger et al. Aug 2018 B2
10086698 Grajkowski et al. Oct 2018 B2
10154377 Post et al. Dec 2018 B2
10195989 Braunberger et al. Feb 2019 B2
10202159 Braunberger et al. Feb 2019 B2
10220765 Braunberger Mar 2019 B2
10227041 Braunberger et al. Mar 2019 B2
10266164 Braunberger Apr 2019 B2
10363941 Norstad Jul 2019 B2
10384682 Braunberger et al. Aug 2019 B2
10391989 Braunberger Aug 2019 B2
10406884 Oakden-Graus et al. Sep 2019 B2
10410520 Braunberger et al. Sep 2019 B2
10436125 Braunberger et al. Oct 2019 B2
10578184 Gilbert Mar 2020 B2
10704640 Galasso Jul 2020 B2
10723408 Pelot Jul 2020 B2
10731724 Laird Aug 2020 B2
10774896 Hamers Sep 2020 B2
10933710 Tong Mar 2021 B2
10981429 Tsiaras Apr 2021 B2
11001120 Cox May 2021 B2
11110913 Krosschell et al. Sep 2021 B2
11124036 Brady et al. Sep 2021 B2
11148748 Galasso Oct 2021 B2
11162555 Haugen Nov 2021 B2
11192424 Tabata Dec 2021 B2
11279198 Marking Mar 2022 B2
11285964 Norstad et al. Mar 2022 B2
11306798 Cox Apr 2022 B2
11351834 Cox Jun 2022 B2
11400784 Brady et al. Aug 2022 B2
11400785 Brady et al. Aug 2022 B2
11400786 Brady et al. Aug 2022 B2
11400787 Brady et al. Aug 2022 B2
11413924 Cox Aug 2022 B2
11448283 Strickland Sep 2022 B2
11472252 Tong Oct 2022 B2
11479075 Graus et al. Oct 2022 B2
20010005803 Cochofel et al. Jun 2001 A1
20010021887 Obradovich et al. Sep 2001 A1
20010035166 Kerns et al. Nov 2001 A1
20020082752 Obradovich Jun 2002 A1
20020125675 Clements Sep 2002 A1
20030038411 Sendrea Feb 2003 A1
20030047994 Koh Mar 2003 A1
20030125857 Madau et al. Jul 2003 A1
20030187555 Lutz et al. Oct 2003 A1
20030200016 Spillane et al. Oct 2003 A1
20030205867 Coelingh et al. Nov 2003 A1
20040010383 Lu et al. Jan 2004 A1
20040024515 Troupe et al. Feb 2004 A1
20040026880 Bundy Feb 2004 A1
20040041358 Hrovat et al. Mar 2004 A1
20040090020 Braswell May 2004 A1
20040094912 Niwa et al. May 2004 A1
20040107591 Cuddy Jun 2004 A1
20050023789 Suzuki et al. Feb 2005 A1
20050077696 Ogawa Apr 2005 A1
20050098964 Brown May 2005 A1
20050131604 Lu Jun 2005 A1
20050217953 Bossard Oct 2005 A1
20050267663 Naono et al. Dec 2005 A1
20050279244 Bose Dec 2005 A1
20050280219 Brown Dec 2005 A1
20060017240 Laurent et al. Jan 2006 A1
20060064223 Voss Mar 2006 A1
20060226611 Xiao et al. Oct 2006 A1
20060229811 Herman et al. Oct 2006 A1
20060278197 Takamatsu et al. Dec 2006 A1
20060284387 Klees Dec 2006 A1
20070007742 Allen Jan 2007 A1
20070050095 Nelson et al. Mar 2007 A1
20070073461 Fielder Mar 2007 A1
20070120332 Bushko et al. May 2007 A1
20070158920 Delaney Jul 2007 A1
20070244619 Peterson Oct 2007 A1
20070255466 Chiao Nov 2007 A1
20070260372 Langer Nov 2007 A1
20080059034 Lu Mar 2008 A1
20080119984 Hrovat et al. May 2008 A1
20080172155 Takamatsu et al. Jul 2008 A1
20080183353 Post et al. Jul 2008 A1
20080243334 Bujak et al. Oct 2008 A1
20080243336 Fitzgibbons Oct 2008 A1
20080275606 Tarasinski et al. Nov 2008 A1
20090008890 Woodford Jan 2009 A1
20090020966 Germain Jan 2009 A1
20090037051 Shimizu et al. Feb 2009 A1
20090093928 Getman et al. Apr 2009 A1
20090108546 Ohletz et al. Apr 2009 A1
20090240427 Siereveld et al. Sep 2009 A1
20090254249 Ghoneim et al. Oct 2009 A1
20090261542 McIntyre Oct 2009 A1
20090308682 Ripley et al. Dec 2009 A1
20090321167 Simmons Dec 2009 A1
20100017059 Lu et al. Jan 2010 A1
20100057297 Itagaki et al. Mar 2010 A1
20100059964 Morris Mar 2010 A1
20100109277 Furrer May 2010 A1
20100121529 Savaresi et al. May 2010 A1
20100152969 Li et al. Jun 2010 A1
20100211261 Sasaki et al. Aug 2010 A1
20100230876 Inoue et al. Sep 2010 A1
20100238129 Nakanishi et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100253018 Peterson Oct 2010 A1
20100259018 Honig et al. Oct 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100301571 Van et al. Dec 2010 A1
20110022266 Ippolito et al. Jan 2011 A1
20110035089 Hirao et al. Feb 2011 A1
20110035105 Jolly Feb 2011 A1
20110074123 Fought et al. Mar 2011 A1
20110109060 Earle et al. May 2011 A1
20110153158 Acocella Jun 2011 A1
20110166744 Lu et al. Jul 2011 A1
20110186360 Brehob et al. Aug 2011 A1
20110190972 Timmons et al. Aug 2011 A1
20110297462 Grajkowski et al. Dec 2011 A1
20110297463 Grajkowski et al. Dec 2011 A1
20110301824 Nelson et al. Dec 2011 A1
20110301825 Grajkowski Dec 2011 A1
20120018263 Marking Jan 2012 A1
20120029770 Hirao et al. Feb 2012 A1
20120053790 Oikawa Mar 2012 A1
20120053791 Harada Mar 2012 A1
20120055745 Buettner et al. Mar 2012 A1
20120078470 Hirao et al. Mar 2012 A1
20120119454 Di Maria May 2012 A1
20120136506 Takeuchi et al. May 2012 A1
20120139328 Brown et al. Jun 2012 A1
20120168268 Bruno et al. Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120247888 Chikuma et al. Oct 2012 A1
20120253601 Ichida et al. Oct 2012 A1
20120265402 Post et al. Oct 2012 A1
20120277953 Savaresi et al. Nov 2012 A1
20130009350 Wolf-Monheim Jan 2013 A1
20130018559 Epple et al. Jan 2013 A1
20130030650 Norris et al. Jan 2013 A1
20130041545 Baer et al. Feb 2013 A1
20130060423 Jolly Mar 2013 A1
20130060444 Matsunaga et al. Mar 2013 A1
20130074487 Herold et al. Mar 2013 A1
20130079988 Hirao et al. Mar 2013 A1
20130092468 Nelson et al. Apr 2013 A1
20130096784 Kohler et al. Apr 2013 A1
20130096785 Kohler et al. Apr 2013 A1
20130096793 Krosschell Apr 2013 A1
20130103259 Eng et al. Apr 2013 A1
20130158799 Kamimura Jun 2013 A1
20130161921 Cheng et al. Jun 2013 A1
20130190980 Ramirez Ruiz Jul 2013 A1
20130197732 Pearlman et al. Aug 2013 A1
20130197756 Ramirez Ruiz Aug 2013 A1
20130218414 Meitinger et al. Aug 2013 A1
20130226405 Koumura et al. Aug 2013 A1
20130253770 Nishikawa et al. Sep 2013 A1
20130261893 Yang Oct 2013 A1
20130304319 Daniels Nov 2013 A1
20130328277 Ryan et al. Dec 2013 A1
20130334394 Parison et al. Dec 2013 A1
20130338869 Tsumano Dec 2013 A1
20130341143 Brown Dec 2013 A1
20130345933 Norton et al. Dec 2013 A1
20140001717 Giovanardi et al. Jan 2014 A1
20140005888 Bose et al. Jan 2014 A1
20140012467 Knox et al. Jan 2014 A1
20140038755 Ijichi et al. Feb 2014 A1
20140046539 Wijffels et al. Feb 2014 A1
20140058606 Hilton Feb 2014 A1
20140095022 Cashman et al. Apr 2014 A1
20140125018 Brady et al. May 2014 A1
20140129083 O'Connor et al. May 2014 A1
20140131971 Hou May 2014 A1
20140136048 Ummethala et al. May 2014 A1
20140156143 Evangelou et al. Jun 2014 A1
20140167372 Kim et al. Jun 2014 A1
20140232082 Oshita Aug 2014 A1
20140239602 Blankenship et al. Aug 2014 A1
20140316653 Kikuchi et al. Oct 2014 A1
20140353933 Hawksworth et al. Dec 2014 A1
20140358373 Kikuchi et al. Dec 2014 A1
20150039199 Kikuchi Feb 2015 A1
20150046034 Kikuchi Feb 2015 A1
20150057885 Brady et al. Feb 2015 A1
20150081170 Kikuchi Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150084290 Norton et al. Mar 2015 A1
20150217778 Fairgrieve et al. Aug 2015 A1
20150329141 Preijert Nov 2015 A1
20160059660 Brady et al. Mar 2016 A1
20160107498 Yamazaki Apr 2016 A1
20160121689 Park et al. May 2016 A1
20160121905 Gillingham et al. May 2016 A1
20160121924 Norstad May 2016 A1
20160153516 Marking Jun 2016 A1
20160200164 Tabata Jul 2016 A1
20160214455 Reul et al. Jul 2016 A1
20160347142 Seong et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170043778 Kelly Feb 2017 A1
20170087950 Brady Mar 2017 A1
20170129298 Lu et al. May 2017 A1
20170129390 Akaza May 2017 A1
20170321729 Melcher Nov 2017 A1
20180001729 Goffer Jan 2018 A1
20180009443 Norstad Jan 2018 A1
20180126817 Russell et al. May 2018 A1
20180141543 Krosschell May 2018 A1
20180264902 Schroeder Sep 2018 A1
20180297435 Brady et al. Oct 2018 A1
20180339566 Ericksen Nov 2018 A1
20180354336 Oakden-Graus Dec 2018 A1
20180361853 Grajkowski et al. Dec 2018 A1
20190100071 Tsiaras et al. Apr 2019 A1
20190118898 Ericksen et al. Apr 2019 A1
20190389478 Norstad Dec 2019 A1
20200016953 Oakden-Graus et al. Jan 2020 A1
20200096075 Lindblad Mar 2020 A1
20200156430 Oakden-Graus et al. May 2020 A1
20200223279 McKeefery Jul 2020 A1
20200269648 Halper Aug 2020 A1
20200282786 Lorenz Sep 2020 A1
20210031579 Booth Feb 2021 A1
20210070124 Brady et al. Mar 2021 A1
20210070125 Brady et al. Mar 2021 A1
20210070126 Brady et al. Mar 2021 A1
20210086578 Brady et al. Mar 2021 A1
20210088100 Woelfel Mar 2021 A1
20210102596 Malmborg Apr 2021 A1
20210108696 Randall Apr 2021 A1
20210162833 Graus et al. Jun 2021 A1
20210206263 Grajkowski et al. Jul 2021 A1
20210300140 Ericksen Sep 2021 A1
20210316716 Krosschell et al. Oct 2021 A1
20210362806 Hedlund et al. Nov 2021 A1
20210379957 Tabata Dec 2021 A1
20220016949 Graus et al. Jan 2022 A1
20220032708 Tabata Feb 2022 A1
20220041029 Randall Feb 2022 A1
20220056976 Anderson Feb 2022 A1
20220088988 Menden Mar 2022 A1
20220266844 Norstad et al. Aug 2022 A1
20220324282 Brady et al. Oct 2022 A1
20220388362 Graus et al. Dec 2022 A1
20220397194 Kohler Dec 2022 A1
20230013665 Gagnon Jan 2023 A1
20230079941 Graus et al. Mar 2023 A1
Foreign Referenced Citations (98)
Number Date Country
2012323853 May 2014 AU
2015328248 May 2017 AU
2260292 Jul 2000 CA
2851626 Apr 2013 CA
2963790 Apr 2016 CA
2965309 May 2016 CA
1129646 Aug 1996 CN
2255379 Jun 1997 CN
2544987 Apr 2003 CN
1660615 Aug 2005 CN
1746803 Mar 2006 CN
1749048 Mar 2006 CN
1810530 Aug 2006 CN
101417596 Apr 2009 CN
101549626 Oct 2009 CN
201723635 Jan 2011 CN
102069813 May 2011 CN
102168732 Aug 2011 CN
201914049 Aug 2011 CN
202040257 Nov 2011 CN
102616104 Aug 2012 CN
102627063 Aug 2012 CN
102678808 Sep 2012 CN
202449059 Sep 2012 CN
102729760 Oct 2012 CN
202468817 Oct 2012 CN
102840265 Dec 2012 CN
103079934 May 2013 CN
103303088 Sep 2013 CN
103318184 Sep 2013 CN
103507588 Jan 2014 CN
104755348 Jul 2015 CN
105564437 May 2016 CN
106183688 Dec 2016 CN
106794736 May 2017 CN
103857576 Aug 2017 CN
107406094 Nov 2017 CN
107521499 Dec 2017 CN
4017255 Dec 1990 DE
4323589 Jan 1994 DE
4328551 Mar 1994 DE
19508302 Sep 1996 DE
19922745 Dec 2000 DE
102010020544 Jan 2011 DE
102012101278 Aug 2013 DE
0829383 Mar 1998 EP
1022169 Dec 1999 EP
1172239 Jan 2002 EP
1219475 Jul 2002 EP
1238833 Sep 2002 EP
1355209 Oct 2003 EP
1449688 Aug 2004 EP
1164897 Feb 2005 EP
2123933 Nov 2009 EP
2216191 Aug 2010 EP
2268496 Jan 2011 EP
2397349 Dec 2011 EP
2517904 Oct 2012 EP
3150454 Apr 2017 EP
3204248 Aug 2017 EP
2935642 Mar 2010 FR
2233939 Jan 1991 GB
2234211 Jan 1991 GB
2377415 Jan 2003 GB
20130233813 Aug 2014 IN
01-208212 Aug 1989 JP
02-155815 Jun 1990 JP
04-368211 Dec 1992 JP
05-178055 Jul 1993 JP
06-156036 Jun 1994 JP
07-117433 May 1995 JP
07-186668 Jul 1995 JP
2898949 Jun 1999 JP
2956221 Oct 1999 JP
3087539 Sep 2000 JP
2001-018623 Jan 2001 JP
3137209 Feb 2001 JP
2001-121939 May 2001 JP
2002-219921 Aug 2002 JP
2008-273246 Nov 2008 JP
2009-035220 Feb 2009 JP
2009-160964 Jul 2009 JP
4584510 Nov 2010 JP
2011-126405 Jun 2011 JP
5149443 Feb 2013 JP
2013-173490 Sep 2013 JP
2013-189109 Sep 2013 JP
M299089 Oct 2006 TW
9210693 Jun 1992 WO
9605975 Feb 1996 WO
9959860 Nov 1999 WO
0053057 Sep 2000 WO
0220318 Mar 2002 WO
2012028923 Mar 2012 WO
2015004676 Jan 2015 WO
2016057555 Apr 2016 WO
2016069405 May 2016 WO
2020089837 May 2020 WO
Non-Patent Literature Citations (25)
Entry
Office Action issued by the Canadian Intellectual Property Office, dated Jun. 22, 2021, for Canadian Patent Application No. 3,043,481; 3 pages.
Office Action issued by the Canadian Intellectual Property Office, dated May 10, 2021, for Canadian Patent Application No. 2,890,996; 3 pages.
Ackermann et al., “Robust steering control for active rollover avoidance of vehicles with elevated center of gravity”, Jul. 1998, pp. 1-6.
Bhattacharyya et al., “An Approach to Rollover Stability In Vehicles Using Suspension Relative Position Sensors And Lateral Acceleration Sensors”, Dec. 2005, 100 pages.
Hac et al., “Improvements in vehicle handling through integrated control of chassis systems”, Int. J. of Vehicle Autonomous Systems(IJVAS), vol. 1, No. 1, 2002, pp. 83-110.
Huang et al., “Nonlinear Active Suspension Control Design Applied to a Half-Car Model”, Procccdings of the 2004 IEEE International Conference on Networking, Mar. 21-23, 2004, pp. 719-724.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/033199, dated Aug. 23, 2021, 14 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/IB2019/060089, dated Jun. 3, 2021, 22 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2019/060089, dated May 29, 2020, 24 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Jul. 26, 2019, for Canadian Patent Application No. 2,963,790; 3 pages.
Compare: Three Selectable Terrain Management Systems, Independent Land Rover News Blog, retrieved from https://web.archive.org/web/20120611082023/ . . . ; archive date Jun. 11, 2012; 4 pages.
EDFC Active Adjust Damping Force Instantly according to G-Force & Speed, TEIN, retrieved from https://web.archive.org/web/20140528221849/ . . . ; archive date May 28, 2014; 18 pages.
EDFC Active Adjust Damping Force Instantly according to G-Force & Speed, TEIN, retrieved from https://web.archive.org/web/20160515190809/ . . . ; archive date May 15, 2016; 22 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Aug. 10, 2018, for Australian Patent Application No. 2015328248; 2 pages.
First drive: Ferrari's easy-drive supercar, GoAuto.com.au, Feb. 16, 2010; 4 pages.
Ingalls, Jake; Facebook post https://www.facebook.com/groups/877984048905836/permalink/110447996625624-2; Sep. 11, 2016; 1 page.
International Preliminary Report on Patentability issued by the European Patent Office, dated Apr. 11, 2017, for International Patent Application No. PCT/US2015/054296; 7 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated May 12, 2015, for International Application No. PCT/US2013/068937; 7 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Feb. 18, 2014, for International Application No. PCT/US2013/068937; 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/054296, dated Dec. 18, 2015, 9 pages.
International Search Report issued by the International Searching Authority, dated Jun. 7, 2018, for related International Patent Application No. PCT/US2017/062303; 7 pages.
International Search Report of the International Searching Authority, dated Aug. 31, 2018, for International Patent Application No. PCT/US2018/036383; 7 pages.
Unno et al.; Development of Electronically Controlled DVT Focusing on Rider's Intention of Acceleration and Deceleration; SAE International; Oct. 30, 2007.
Written Opinion issued by the International Searching Authority, dated Jun. 7, 2018, for related International Patent Application No. PCT/US2017/062303; 22 pages.
Written Opinion of the International Searching Authority, dated Aug. 31, 2018, for International Patent Application No. PCT/US2018/036383; 8 pages.
Related Publications (1)
Number Date Country
20210162830 A1 Jun 2021 US
Divisions (1)
Number Date Country
Parent 16198280 Nov 2018 US
Child 17175888 US