The present technology relates to vehicles having dual air intake systems.
Vehicles that include an internal combustion engine and a continuously variable transmission (CVT) typically require air flow to both the engine and the CVT. Notably, the engine requires air for performing combustion of fuel, while the CVT requires air for cooling its components (e.g., a fiber-reinforced rubber belt). However, providing an air intake system for each of the engine and the CVT can be challenging given the usually limited space available for such air intake systems, particularly in on-road straddle seat vehicles. Moreover, engines with higher power require an increased volumetric flow rate of air both for combustion and CVT cooling and thus efficient air intake systems for the engine and the CVT are desirable.
There is thus a need for a vehicle with efficient yet compact engine and CVT air intake systems.
It is an object of the present technology to ameliorate at least some of the inconveniences mentioned above.
In accordance with one aspect of the present technology, there is provided a vehicle including a frame, a plurality of ground-engaging members, a steering assembly operatively connected to at least one ground-engaging member of the plurality of ground-engaging members for steering the vehicle, an internal combustion engine supported by the frame, and a continuously variable transmission (CVT) operatively connecting the engine to at least one of the plurality of ground-engaging members. The engine defines an engine air inlet for receiving air therein. The CVT defines a cooling air inlet for receiving air therein. The vehicle also includes an engine air intake system fluidly communicating with the engine air inlet for providing air to the engine, and a CVT air intake system fluidly communicating with the cooling air inlet for providing air to the CVT. The engine air intake system includes a first air inlet facing generally forwardly, and a first rearwardly-extending conduit portion extending rearwardly from the first air inlet located on a first lateral side of a longitudinal centerplane of the vehicle and fluidly communicating with the engine air inlet. The CVT air intake system includes a second air inlet facing generally forwardly, and a second rearwardly-extending conduit portion extending rearwardly from the second air inlet located on a second lateral side of the longitudinal centerplane of the vehicle and fluidly communicating with the cooling air inlet. The engine is disposed at least in part laterally between the first and second rearwardly-extending conduit portions.
In some implementations, the first air inlet and the second air inlet are disposed on opposite lateral sides of the engine.
In some implementations, the engine air intake system also includes a first transversely-extending conduit portion fluidly communicating the first rearwardly-extending conduit portion to the engine air inlet and extending laterally across the longitudinal centerplane.
In some implementations, the first transversely-extending conduit portion is located in front of the CVT.
In some implementations, the engine air intake system also includes a throttle body fluidly communicating the first transversely-extending conduit portion to the engine air inlet.
In some implementations, the throttle body and the engine air inlet are located on the second lateral side of the longitudinal centerplane.
In some implementations, the engine air intake system also includes an air filter.
In some implementations, the air filter is disposed between the first rearwardly-extending conduit portion and the engine air inlet.
In some implementations, at least one of the first and second rearwardly-extending conduit portions is openable for providing access to an engine component.
In some implementations, the first rearwardly-extending conduit portion is removable for providing access to the air filter.
In some implementations, the first rearwardly-extending conduit portion comprises a Helmholtz resonator.
In some implementations, the first transversely-extending conduit portion comprises a Helmholtz resonator.
In some implementations, the CVT includes a primary pulley operatively connected to the engine, a secondary pulley, a belt interconnecting the primary pulley to the secondary pulley, and a housing for enclosing the primary pulley, the secondary pulley and the belt therein. The housing defines the cooling air inlet. The housing defines an air outlet located on an opposite lateral side of the longitudinal centerplane than the cooling air inlet.
In some implementations, the CVT air intake system also includes a second transversely-extending conduit portion fluidly communicating the second rearwardly-extending conduit portion to the cooling air inlet and extending, laterally towards the longitudinal centerplane from the second rearwardly-extending conduit portion.
In some implementations, the second transversely-extending conduit portion extends downwardly and laterally inwardly toward the cooling air inlet.
In some implementations, the engine air intake system also includes a plenum fluidly communicating the throttle body to the engine air inlet.
In some implementations, the vehicle also includes a straddle seat. The first and second air inlets are located forwardly of the straddle seat.
In some implementations, the steering assembly includes a handlebar for steering the vehicle. The first and second air inlets are positioned forwardly of the handlebar.
In some implementations, the vehicle also includes first and second footrests located on either lateral side of the vehicle for resting a driver's feet. The first and second air inlets are positioned forwardly of and vertically higher than the footrests.
In some implementations, the plurality of ground-engaging members includes two front ground-engaging members. The vehicle also includes front suspension assemblies connecting the front ground-engaging members to the frame. The first and second air inlets are positioned rearwardly of the front suspension assemblies.
In some implementations, the plurality of ground-engaging members is a plurality of wheels. The plurality of wheels includes a single rear wheel.
In some implementations, the second rearwardly-extending conduit portion is pivotable for providing access to an oil dipstick of the engine.
For the purpose of this application, terms related to spatial orientation such as downwardly, rearward, forward, front, rear, left, right, above and below are as they would normally be understood by a driver of the vehicle sitting thereon in an upright position with the vehicle in a straight ahead orientation (i.e. not steered left or right), and in an upright position (i.e. not tilted).
Implementations of the present technology each have at least one of the above-mentioned object and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present technology that have resulted from attempting to attain the above-mentioned object may not satisfy this object and/or may satisfy other objects not specifically recited herein.
Additional and/or alternative features, aspects, and advantages of implementations of the present technology will become apparent from the following description, the accompanying drawings, and the appended claims.
For a better understanding of the present technology, as well as other aspects and further features thereof, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
The present technology is being described with respect to a three-wheeled straddle-type vehicle 10.
With reference to
The vehicle 10 is a three-wheeled vehicle 10 including a left front wheel 14 mounted to the frame 12 by a left front suspension assembly 70, a right front wheel 14 mounted to the frame 12 by a right front suspension assembly 70, and a single rear wheel 16 mounted to the frame 12 by a rear suspension assembly 80. The left and right front wheels 14 and the rear wheel 16 each have a tire secured thereto. It is contemplated that both front wheels 14 and/or the rear wheel 16 could have more than one tire secured thereto. The front wheels 14 are disposed equidistant from the longitudinal centerplane 3, and the rear wheel 16 is centered with respect to the longitudinal centerplane 3. The front wheels 14 each rotate about a corresponding rotation axis 14a. The rear wheel 16 rotates about a rotation axis 16a. In the illustrated implementation of the vehicle 10, each of the rotation axes 14a, 16a of the wheels 14, 16 is disposed horizontally. When the vehicle 10 is placed on level ground and without a driver, passenger, and/or any cargo loaded thereon, the rotation axes 14a, 16a of the wheels 14, 16, are all contained in a common plane 15 extending generally horizontally, referred to hereinafter as a rotation plane 15 (
In the illustrated implementation, each front suspension assembly 70 is a double A-arm type suspension, also known as a double wishbone suspension. It is contemplated that other types of suspensions, such as a McPherson strut suspension, or swing arm could be used. Each front suspension assembly 70 includes an upper A-arm 72, a lower A-arm 74 and a shock absorber 76. The right front suspension assembly 70 is a mirror image of the left front suspension assembly 70, and as such only the left front suspension assembly 70 will be described herein. Each A-arm 72, 74 has a front member and a rear member. The laterally outer ends of the front and rear members are connected to each other while the laterally inner ends of the front and rear members of each A-arm 72, 74 are spaced apart from each other. The lower end of the shock absorber 76 is connected to the front and rear members of the lower A-arm 74 slightly laterally inward of the laterally outer ends. The laterally inner ends of the upper and lower A-arms 72, 74 are pivotally connected to the frame 12 as will be described below. The laterally outer ends of the upper and lower A-arms 72, 74 are pivotally connected to the top and bottom respectively of a spindle 78 (
The rear suspension assembly 80 includes a swing arm 82 and a shock absorber 84. The swing arm 82 is pivotally mounted at a front thereof to the frame 12. The rear wheel 16 is rotatably mounted to the rear end of the swing arm 82 which extends on a left side of the rear wheel 16. The shock absorber 84 is connected between the swing arm 82 and the frame 12.
The vehicle 10 is a straddle-type vehicle having a straddle seat 20 mounted to the frame 12 and disposed along the longitudinal centerplane 3. The straddle seat is disposed longitudinally forward of the rear wheel 16. In the illustrated implementation, the straddle seat 20 is intended to accommodate a single adult-sized rider, i.e. the driver. It is however contemplated that the straddle seat 20 could be configured to accommodate more than one adult-sized rider (the driver and one or more passengers). A driver footrest 26 is disposed on either side of the vehicle 10 and vertically lower than the straddle seat 20 to support the driver's feet. In the implementation of the vehicle 10 illustrated herein, the driver footrests 26 are in the form of foot pegs disposed longitudinally forward of the straddle seat 20. It is also contemplated that the footrests 26 could be in the form of footboards. It is contemplated that the vehicle 10 could also be provided with one or more passenger footrests disposed rearward of the driver footrest 26 on each side of the vehicle 10, for supporting a passenger's feet when the seat 20 is configured to accommodate one or more passengers in addition to the driver. A brake operator 28, in the form of a foot-operated brake pedal, is connected to the right driver footrest 26 for braking the vehicle 10. The brake operator 28 extends upwardly and forwardly from the right driver footrest 26 such that the driver can actuate the brake operator 28 with a front portion of the right foot while a rear portion of the right foot remains on the right driver footrest 26.
A handlebar 42, which is part of a steering assembly 40, is disposed in front of the seat 20. The handlebar 42 is used by the driver to turn the front wheels 14 to steer the vehicle 10. A central portion of the handlebar 42 is connected to an upper end of a steering column 44. From the handlebar 42, the steering column 44 extends downwardly and leftwardly. A lower end of the steering column 44 is connected to a left pitman arm 46 and a right pitman arm 46. A left steering rod 48 connects the left pitman arm 46 to the steering arm 79 of the left suspension assembly 70 and a right steering rod 48 connects the right pitman arm 46 to the steering arm 79 of the right suspension assembly 70 such that turning the handlebar 42 turns the steering column 44 which, through the pitman arm 46 and the steering rods 48, turns the wheels 14. In the illustrated implementation of the vehicle 10, the steering assembly 40 includes a power steering unit (not shown) to facilitate steering of the vehicle 10. It is contemplated that the power steering unit could be omitted.
A left hand grip is placed around the left side of the handlebar 42 near the left end thereof and a right hand grip is placed respectively right sides of the handlebar 42 near the right end to facilitate gripping for turning the handlebar 42 and thereby steering the vehicle 10. In the illustrated implementation, the right hand grip is a throttle operator 50, in the form of a rotatable hand grip, which can be rotated by the driver to control power delivered by the engine 30. It is contemplated that the throttle operator could be in the form of a thumb-operated or finger-operated lever and/or that the throttle operator 50 could be connected near the right end of the handlebar 42. The handlebar 42 has connected thereto various controls such as an engine start-up button and an engine cut-off switch located laterally inwardly of the left and right grips.
The frame 12 supports and houses a motor 30 located forwardly of the straddle seat 20. In the illustrated implementation of the vehicle 10, the motor 30 is in the form of an internal combustion engine. It is however contemplated that the motor 30 could be other than an internal combustion engine. For example, the motor 30 could be an electric motor, a hybrid or the like. The motor 30 will be referred to hereinafter as engine 30 for convenience. In the illustrated implementation of
The engine 30 is operatively connected to the rear wheel 16 to drive the rear wheel 16. The rear wheel 16 is operatively connected to the crankshaft 31 of the engine 30 via an engine output shaft 32 (
As can be seen in
A radiator 52 is mounted to the vehicle frame 12 and disposed in front of the engine 30. The radiator 52 is disposed longitudinally forward of the engine 30 and overlapping therewith in the lateral and vertical directions. The radiator 52 is fluidly connected to the engine 30 for cooling the engine 30. The radiator 52 is disposed longitudinally forward of the front suspension assemblies 70, 80. The radiator 52 is disposed between the front left and right suspension assemblies 70, 80 in the lateral directions. The front left and right suspension assemblies 70, 80 extend vertically higher than the radiator 52.
With reference to
Although not shown, the vehicle 10 includes fairings which are connected to the frame 12 to enclose and protect the internal components of the vehicle 10 such as the engine 30. The fairings include a hood disposed at the front of the vehicle 10 between the front wheels 14, a rear deflector disposed over the rear wheel 16.
The vehicle frame 12 will now be described with reference to
The vehicle frame 12 includes a forward portion 200 and a rearward portion 201. The forward portion 200 includes a U-shaped lower frame member 202 formed of a tubular brace. The U-shaped frame member 202 has a central portion 204 (
As can be seen best in
The forward portion 200 also includes an upper frame member 216 extending above the lower frame member 202. The upper frame member 216 has a left arm 218 and a right arm 218 connected together by central portion 220 extending laterally and horizontally at the front end. The left arm 218 has a horizontal portion 222 extending rearwardly and laterally outwardly from the left end of the central portion 220 to a vertical portion 224 of the left arm 218. The vertical portion 224 of the left arm 218 extends downwardly and laterally inwardly to the upper surface of left arm 206 of the lower frame member 202 near the rear end thereof. The right arm 218 has a horizontal portion 222 extending rearwardly and laterally outwardly from the right end of the central portion 220 to a vertical portion 224. The vertical portion 224 of the right arm 218 extends downwardly and laterally inwardly to the upper surface of right arm 206 of the lower frame member 202 near the rear end thereof. The lower ends of the left and right vertical portions 218 are respectively connected to the upper surfaces of the left and right arms 206 by welding. The horizontal 220 and vertical portions 218 are formed from a single tubular brace bent to form the structure describe above. The radiator 52 is mounted to the central portions 204 and 220 as can be seen in
A plate member 226 is connected to the horizontal portion 222 and extends downwardly and rearwardly therefrom. The plate member 226 is used to mount various components of the vehicle 10 such as the power steering unit, a battery 54 (shown schematically in
The forward portion 200 also includes a left front suspension mounting bracket 230 and a right front suspension mounting bracket 230. The right front suspension mounting bracket 230 is generally a mirror image of the left front suspension mounting bracket 230, and as such, only the left front suspension mounting bracket 230 will be described herein. The left front suspension mounting bracket 230 includes two vertical members 232 connected together by three cross-members 234 extending horizontally therebetween. The members 232, 234 are formed by stamping metal sheets. The upper ends of the front and rear vertical members 232 are connected to the horizontal portion of the left arm 218 of the upper frame member 216. From their respective upper ends, the front and rear vertical members 232 each extend downwardly and laterally inwardly. The lower end of the front vertical member 232 is connected to the front cross-member 210 near the left end thereof. The lower end of the rear vertical member 232 is connected to the rear cross-member 212 near the left end of One of the cross-members 234 extends between the front and rear vertical members 232 just above the left arm 206 of the lower frame member 202. Bolt holes 236 are defined in each of the front and rear vertical members 232 near the connection with the cross-member 234 for pivotally connecting the lower A-arm 74 of the left front suspension 70. Bolt holes 238 are defined in each of the front and rear vertical members 232 near their respective upper ends for connecting the upper A-arm 72 of the left front suspension 70.
A left shock absorber mounting bracket 240 is connected to the horizontal portion 222 of the left arm 218 of the upper frame member 216 between the front and rear vertical members 232 for connecting the upper end of the shock absorber 76 of the left front suspension assembly 70. The left shock absorber mounting bracket 240 is connected to the upper and laterally outer surface of the horizontal portion 222. The left shock absorber mounting bracket 240 extends upwardly and laterally outwardly from the horizontal portion 222. The left shock absorber mounting bracket 240 is U-shaped in cross-section with two spaced apart generally planar flanges extending parallel to each another and another planar flange extending between the two parallel flanges. A throughhole is defined in each of the two parallel flanges. The upper end of the shock absorber 76 is pivotally connected to the shock absorber mounting bracket 240 by a bolt inserted through the throughholes and the upper end of the shock absorber 76 disposed therebetween. A right shock absorber mounting bracket 240 is similarly connected to the horizontal portion 222 of the right arm 218 of the upper frame member 216 between the front and rear vertical members 232 for connecting the upper end of the shock absorber 76 of the right front suspension assembly 80. The right shock absorber mounting bracket 240 is generally a mirror image of the left shock absorber mounting bracket 240, and as such, will not be described herein.
A front left bracket 250 is connected to the horizontal portion 222 of the left arm 218 of the upper frame member 216 just rearwardly of the left shock absorber mounting bracket 240. The front left bracket 250 extends laterally inwardly from the horizontal portion 222. The front left bracket 250 has two vertical spaced apart flanges connected together at their lower ends by a horizontal plate having a central aperture. Similarly, a front right bracket 250 is connected to the horizontal portion of the right arm 218 of the upper frame member 216 just rearwardly of the right shock absorber mounting bracket 240. The front right bracket 250 is generally a mirror image of the front left bracket 250, and as such will not be described herein in detail. The brackets 250 are formed by stamping metal sheets. The brackets 250 are connected to the horizontal portion 222 by welding. A front portion of the engine 30 is connected to the left and right brackets 250 as will be described below in further detail.
The rearward portion 201 of the vehicle frame 12 includes a lower left frame member 260 extending rearwardly from the vertical portion 224 of the left arm 218 of the lower frame member 202 and a lower right frame member 260 extending rearwardly from the vertical portion 224 of the right arm 218 of the lower frame member 202. The lower left frame member 260 is formed of a tubular brace and extends generally horizontally. The front end of the lower left frame member 260 is connected to the vertical portion 224 just above the lower end thereof. From the front end, the lower left frame member extends generally horizontally and laterally inwardly towards a rear end portion 262. Just forward of the rear end portion 262, the lower left frame member 260 curves sharply laterally inwardly. The lower right frame member 260 is generally a mirror image of the lower left frame member 260 and as such, only the lower left frame member 260 will be described herein.
The rearward portion 201 includes a generally U-shaped rear upper frame member 270 disposed above the lower left frame member 260. The rear upper frame member 270 includes a left arm 272, a right arm 272 and a central portion 274 extending therebetween. The right arm 272 is generally a mirror image of the left arm 272 and as such, only the left arm will be described herein. The front end of the left arm 272 is connected to the vertical portion 224 of the left arm 218 of the lower frame member 202 above the lower left frame member 260. From the front end, left arm 272 extends generally longitudinally and laterally inwardly toward the central portion 274. A front portion 276 of the left arm 272 extends generally horizontally. A rear portion 278 of the left arm 272 extends upwardly and rearwardly away from the horizontal front portion 276 thereof. The central portion 274 extends generally laterally between the rear ends of the left and right arms 272. The central portion 274 is disposed vertically higher than the central portion 220. The rear upper frame member 270 is formed of a single tubular brace bent to form the portions 272, 274 described above.
Another U-shaped rear member 266 of the rearward portion 201 is connected to the rear portion 278 of the rear upper frame member 270. The rear member 266 is disposed below the upper frame member 270 and above the lower left and right frame members 260. The rear member 266 has a left arm 268, a right arm 268 and a central portion 269 connecting therebetween. A front end of the left arm 268 is connected to the rear portion 278 of the upper frame member left arm 272 and a front end of the right arm 268 is connected to the rear portion 278 of the upper frame member right arm 272. Each of the left and right arms 268 extend rearwardly and gently upwardly from the respective front ends to the central portion 269. The central portion 269 is disposed longitudinally forwardly of the rear upper frame member central portion 274. The rear member 266 is formed of a single tubular brace bent to form the portions 268, 269 described above.
A rear left bracket 252 is connected to the horizontal front portion 276 of the left arm 272 of the rear upper frame member 270 just forward of the bend where the left arm 272 begins to extend upwardly. Similarly, a rear right bracket 252 is connected to the horizontal front portion 276 of the right arm 272 of the rear upper frame member 270 just forward of the bend where the right arm 272 begins to extend upwardly. The transfer case 36 is mounted to the rear left and right brackets 252 as will be described below in further detail.
A left bracket 280 is connected between the left arm 268 of the rear member 266 and the lower left frame member 260. A left bracket 282 is connected between the left arm 268 of the rear member 266 and the left arm 272 of the upper frame member 270. A left bracket 283 extends upwardly from the left arm 272 above the left bracket 282. The vehicle frame 12 similarly includes a right bracket 280 connected between the right arm 268 of the rear member 266 and the lower right frame member 260. A right bracket 282 is connected between the right arm 268 of the rear member 266 and the right arm 272 of the upper frame member 270. A right bracket 283 extends upwardly from the right arm 272 above the right bracket 282. The brackets 280, 282 enhance the rigidity of the vehicle frame 12. The left and right bracket 283 are connected to the left and right sides respectively of the fuel tank 60 for mounting the fuel tank 60 to the vehicle frame 12 as can be seen in
The vehicle frame 12 defines an engine cradle 290. The engine cradle 290 is defined by the forward frame portion 200, the front portions 276 of the left and right upper frame members 270 and the respective front portions of the left and right lower frame members 260. The engine 30 is disposed in the engine cradle 290 and mounted to the vehicle frame 12 via the front left and right brackets 250 as can be seen in
The powertrain 100 now be described with reference to
As mentioned above, the vehicle powertrain 100 is formed by the engine 30, the engine output shaft 32, the CVT 34, the transfer case 36 and the driveshaft 38 in the illustrated implementation of the vehicle 10.
The engine 30 has a crankcase 102, a cylinder block 104 disposed on and connected to the crankcase 102, and a cylinder head assembly 106 disposed on and connected to the cylinder block 104. The crankshaft 31 (shown schematically in
The cylinder block 104 defines three cylinders 108 (shown schematically in
As can be seen in
As can be seen in
In the illustrated implementation, the cylinder plane 112 is parallel to the longitudinal centerplane 3 and laterally offset therefrom. The cylinder plane 112 is disposed slightly to the right of the longitudinal centerplane 3. It is contemplated that the lateral offset of the cylinder plane 112 with respect to the longitudinal centerplane 3 could be different from that shown herein. For example, the cylinder plane 112 could be disposed on a left side of the longitudinal centerplane 3, or aligned therewith, instead of being on a right side thereof. It is also contemplated that the cylinders 108 could be arranged in an inline configuration such that the cylinder plane 112 could be disposed at an angle with respect to the longitudinal centerplane 3.
As can be seen in
In the lateral direction, the cylinders 108 of the engine 30 are entirely disposed between the connection of the left footrest 26 to the vehicle frame 12 and the connection of the right footrest 26 to the vehicle frame 12 as can be seen in
With reference to
With reference to
With reference to
With reference to
As is known, each of the pulleys 160, 162 includes a movable sheave that can move axially relative to a fixed sheave to modify an effective diameter of the corresponding pulley 160, 162. The moveable sheave of the primary pulley 160 has centrifugal weights such that the effective diameter of the primary pulley 160 increases with the rotational speed of the primary pulley. The effective diameters of the pulleys 160, 162 are in inverse relationship. In the illustrated implementation, the CVT 34 is a purely mechanical CVT 34, in which the effective diameter of the primary pulley 160 depends on the rotational speed of the engine output shaft 32 and the crankshaft 31. The belt 164 is made of a fiber-reinforced rubber but it is contemplated that the belt 164 could be made of metal or other suitable material. The rear cover 156 is disposed spaced from the fuel tank 60 so that the rear cover 156 can be easily removed to access the components inside for maintenance and repair.
As can be seen in
The CVT housing 150 may be configured differently in other implementations. For instance,
The vehicle 10 includes a CVT air intake system 124 fluidly communicating with the CVT air inlet 378 for providing air to the CVT 34. More particularly, as shown in
In this implementation, the conduit 161 is formed by the CVT housing 150. However, it is contemplated that, in alternative implementations, the conduit 161 could form part of the CVT air intake system 124. In such implementations, the conduit 161 is separate from the CVT housing 150 and extends, from the CVT air duct 410, inside the CVT housing 150 laterally towards the longitudinal centerplane 3. Moreover, the conduit 161 is connected to the CVT housing 150 such that the CVT air inlet 378 of the conduit 161 opens into the CVT housing 150 adjacent to the primary pulley 160.
With reference to
As shown in
The outer cover 608 extends from a front end 611 defining the air inlet 602 to a rear end 613 (
As shown in
The CVT air duct 610 pivots about a hinge 614 (
The CVT air duct 610 may be entirely removable in other implementations. Moreover, in other implementations, other engine components (i.e., components associated with the engine 30 and the vehicle 10″) may be accessible when the CVT air duct 610 is in the open position. For example, any of a battery, a coolant reservoir, an oil filter, spark plugs, injectors, fuses and a diagnostic connector may be accessible in other implementations by moving the CVT air duct 610 to the open position.
In this implementation, the CVT air duct 610 is formed separately from the engine air duct 420.
With reference now to
The output sprocket 172 selectively engages the driveshaft 38 via the gear selection assembly 180 (shown schematically in
The front end of the driveshaft 38 is enclosed by the transfer case housing 140 and is splined to enable the gear selection assembly 180 to engage the driveshaft 38 for rotating the driveshaft 38. The driveshaft 38 extends longitudinally and rearwardly out of the opening 182 (
Still referring to
Referring now to
With reference to
It is contemplated that the driveshaft 38 could be omitted and the output sprocket 172 of the transfer case 36 could be connected to the rear wheel 16 via a chain or belt instead of the driveshaft 38.
In the illustrated implementation, the CVT 34, the transfer case 36 and the gear selection assembly 180 form a transmission assembly 400 of the vehicle 10. It is contemplated that the gear selection assembly 180 could be omitted from the vehicle 10. It is also contemplated that the vehicle 10 could have a transmission assembly 400 in which the CVT 34, the transfer case 36 and the gear selection assembly 180 are replaced by a discrete gear transmission.
The mounting of the powertrain 100 to the vehicle frame 12 will now be described with reference to
As can be seen in
As can be seen in
With reference to
The vibration damping element 304 is sandwiched between the engine mounting bracket 250 and the bracket 302 in order to isolate the engine 30 from the vehicle frame 12. The frame bolt 308 connects the vibration damping element 304 to the bracket 302 and the vibration damping element 304 is connected to the front left bracket 250 of the vehicle frame 12 by other bolts (not shown).
The engine 30 is disposed in the engine cradle 290 such that the left boltholes 130 are aligned with corresponding boltholes of the vertical flange of the bracket 302. The engine bolts 306 are inserted through the aligned boltholes of the bracket 302 and the left boltholes 130 of the engine 30 to secure the engine 30 to the vehicle frame 12.
The front right mounting assembly 300 comprises a bracket 302, a vibration damping element 304, three engine bolts 306 and a frame bolt 308 similar to the corresponding components of the front left mounting assembly 300. The front right mounting assembly 300 secures the engine 30 to the front right bracket 250 of the vehicle frame 12 in the same manner as described above for the front left assembly 300. As such, the front right mounting assembly 300 will not be described herein in detail.
It is contemplated that configuration of the left boltholes 130 on the left side of the crankcase 102 and/or the right boltholes 130 on the right side of the crankcase 102 could be different from that shown herein. It is also contemplated that the front portion of the engine 30 could be mounted to the vehicle frame 12 by a single bracket 250 disposed laterally centrally and a single mounting assembly 300 including a single vibration damping element 304 rather than the pair of left and right brackets 250 and the corresponding pair of left and right mounting assemblies 300 as shown herein.
With reference to
The right side of the transfer case housing 140 is connected to the rear right bracket 252 of the vehicle frame via a bracket 312 and a vibration damping element 314 of a rear right mounting assembly 311 similarly as described above for the left side of the transfer case housing 140, and as such will not be described again herein in detail.
In the illustrated implementation of the vehicle 10, the components of the powertrain 100, i.e., the engine 30, the CVT 34 and the transfer case 36, are all secured to the vehicle frame 12 via the four mounting points provided by the brackets 250, 252. It is contemplated that the CVT housing 150 and/or a rear portion of the engine 30 could be secured to the vehicle frame 12 instead of the transfer case housing 140. It is also contemplated that the rear portion of the engine 30 and/or the CVT housing 150 could be connected to the vehicle frame 12 in addition to the transfer case housing 140.
The air intake system 120 connected to the engine 30 will now be described with reference to
As can be seen in
As can be seen, the air inlet 326 is facing leftwardly. In some implementations, as shown in
As mentioned above, in the illustrated implementation, the engine air duct 420 is formed integrally with the CVT air duct 410. It is however contemplated that the engine air duct 420 could be formed separately from the CVT air duct 410.
Returning now to
As can be seen, the air inlet 502 faces generally forwardly. The air inlet 502 is said to face generally forwardly in that air from in front of the vehicle 10″ can enter the air inlet 502 when the vehicle 10″ is in motion and that a projection of the air inlet 502 onto a plane normal to a longitudinal axis of the vehicle 10″ defines a surface area. The forwardly facing configuration of the air inlet 502 functions as a ram-air intake causing a static air pressure increase within the air intake system 120′ as a result of the dynamic pressure created by forward motion of the vehicle. This results in higher volumetric flow and pressure to the engine 30.
As shown in
With reference to
The outer cover 508 extends from a front end 507 defining the air inlet 502 to a rear end 509. The outer cover 508 has a convex outer side and a concave inner side facing laterally inward towards the base member 506. The outer cover 508 includes a grille 510 at the air inlet 502 to prevent oversized debris from entering the engine air intake system 120′. The grille 510 includes a plurality of generally horizontal slats 537 and a deflector 512 for removing at least some of the water entrained with air entering the engine air duct 504. More specifically, while entering the air inlet 502, air deflects around the deflector 512. This deflecting causes at least some of the water entrained with the air to be separated from the air that will continue to flow toward the engine 30. As shown in
The base member 506 extends from a front end 513 to a rear end 515. The front end 513 of the base member 506 has tabs 516 for interlocking with the outer cover 508. More specifically, the front end 513 of the base member 506 is configured to be received in a groove 518 formed at the front end 507 of the outer cover 508 (
The base member 506 is removably connected to the conduit 505 via fasteners 539 (
As shown in
In use, the outer cover 508 is secured to the inner conduit 520 via fasteners 526 (
Furthermore, in this implementation, the engine air duct 504 includes a Helmholtz resonator 532 for attenuating sounds of a given band of frequencies. The Helmholtz resonator 532 is located on an outer side of the inner conduit 520. Notably, in this implementation, the resonator 532 includes a chamber 534 defined in part by a pocket 536 provided on the outer side of the inner conduit 520. The resonator 532 also includes a resonator cover 538 that is attached to the inner conduit 520 to cover the pocket 536 and thus defines the chamber 534 between the pocket 536 and an inner surface 531 of the resonator cover 538. The resonator cover 538 is disposed between the inner conduit 520 and the outer cover 508. An opening 535 defined in the pocket 536 of the inner conduit 520 fluidly communicates the air inlet 502 with the chamber 534. The chamber 534 has a specified volume that determines the band of frequencies that is attenuated by the Helmholtz resonator 532. In this implementation, a periphery 540 of the resonator cover 538 includes a projecting edge 542 (
The conduit 505 extends generally transversely and fluidly communicates the engine air duct 504 to the engine air inlet 315. As shown in
As shown in
In use, the engine air duct 504 covers the engine air filter 328. However, as shown in
As will be described in more detail below, the conduit 505 also includes a Helmholtz resonator 568 for attenuating sounds of a given band of frequencies, different from those attenuated by the Helmholtz resonator 532 described above. The Helmholtz resonator 568 includes a chamber 570 formed between a resonator cover 574 and the base member 550 and the tubular passageway 558 (
Returning to
The chamber 570 is defined in part by an outer surface 572 of the base member 550 and an inner surface 576 of the resonator cover 574. An opening 578 defined in the tubular passageway 558, fluidly communicates the air inlet 554 with the chamber 570. The chamber 570 has a specified volume that determines the band of frequencies that is attenuated by the Helmholtz resonator 568. Thus, in this implementation, the engine air intake system 120′ includes a Helmholtz resonator upstream (the resonator 532) and downstream (the resonator 568) of the engine air filter 328.
The resonator cover 574 is secured to the base member 550 in a similar manner to the outer cover 552. Notably, the base member 550 includes an interior edge 580 surrounding the part of the outer surface 572 that defines the chamber 570. The interior edge 580 includes a protrusion 582 that extends continuously along a length of the interior edge 580. A channel 584 of a peripheral edge 586 of the resonator cover 574 is configured to receive the protrusion 582 therein. An interlocking fit between the protrusion 582 and the channel 584 connects the resonator cover 574 to the base member 550. Fasteners (e.g., bolts) may also be provided to additionally retain the resonator cover 574 with the base member 550. Moreover, a sealing member (e.g., a gasket, such as an O-ring) may be provided at the peripheral edge 586 to ensure an air-tight seal between the resonator cover 574 and the base member 550.
An air outlet of the conduit 505 includes an elbow 325 that is connected to the throttle body 322 which fluidly communicates the conduit 505 to the engine air inlet 315. More specifically, as described above, one end of the throttle body 322 (opposite the end connected to the elbow 325) is connected via the conduit 323 to the airbox 324. In turn, the airbox 324 fluidly communicates the throttle body 322 to the engine air inlet 315 of the engine 30 as described above. It is contemplated that the airbox 324 could be omitted from the engine air intake system 120′ in other implementations. In such implementations, the throttle body 322 could be connected to the engine air inlet 315 via a manifold.
As shown in
The positioning of the engine air duct 504 and the CVT air duct 610 also cover a part of the engine 30. Notably, with reference to
In addition, the positioning of the engine air duct 504 and the CVT air duct 610 does not interfere with other components or driver ergonomics and does not reduce visibility or significantly raise the vehicle's center of gravity.
The exhaust system 122 connected to the engine 30 will now be described with reference to
Each cylinder 108 has an exhaust port 340 defined in the left side thereof. The exhaust system 122 includes an exhaust manifold 342 having three conduits 344. Each conduit 344 is connected to the exhaust port 340 of a corresponding cylinder and extends leftwardly and downwardly therefrom. The exhaust manifold 342 connects the exhaust ports 340 to an exhaust conduit 346 extending longitudinally and rearwardly from the exhaust manifold 342 to a muffler 350 disposed under the seat 20. In the illustrated implementation, the muffler 350 is laterally centered with respect to the longitudinal centerplane 3. The muffler 350 is aligned with the seat 20 in the lateral and longitudinal directions. Thus, there is an overlap between the seat 20 and the muffler 350 when viewed from a top or bottom. It is however contemplated that muffler 350 could not be aligned with the seat 20 in the lateral and/or longitudinal directions. It is contemplated that the muffler 350 could not be laterally centered with respect to the longitudinal centerplane 3. In the illustrated implementation of the vehicle 10, the driveshaft 38 is disposed vertically higher than the muffler 350 when the vehicle 10 is placed on level ground without any driver, passenger, and/or cargo.
The engine 30 is also connected to other systems and components which aid in the functioning of the engine 30.
As best seen in
As best seen in
With reference to
The oil in the lubrication system is cooled by a water cooling system including a water pump 370 located at the front end of the cylinder block 104 on a right side of the oil cooler 366.
Other details regarding the engine 30 can be found in United States Patent Application Publication No. 2009/0007878, published on Jan. 8, 2009, and European Patent Application Publication No. 2348201 A1, published on Jul. 27, 2011, the entirety of which are incorporated herein by reference.
The configuration of the vehicle 10 provides a center of gravity positioned at a low and longitudinally forward position compared to other straddle-seat vehicles. The generally vertically oriented inline configuration of the engine 30, the generally vertically oriented CVT 34, the generally vertically oriented transfer case 36, and their longitudinal arrangement allows the vehicle 10 to have a slim profile in the lateral direction. The slim lateral direction profile allows the driver to ride in a foot-forward stance. The narrow lateral direction profile and the lower center of gravity of the vehicle 10 also provide are also dynamically advantageous for three-wheeled straddle-seat vehicles.
The above described vehicle 10 is a member of a family of vehicles.
With reference to
The vehicle 10′ has many features that correspond to features of the vehicle 10 above. Corresponding and similar features of the vehicles 10 and 10′ have been labeled with the same reference numbers and will not be described again herein in detail. Features of the vehicle 10′ that are different from corresponding features of the vehicle 10 described above have been labeled with the same reference number followed by an apostrophe. The vehicle 10′ will only be discussed in detail with regard to the differences from the vehicle 10.
The vehicle 10 and 10′ have the same vehicle frames 12, wheels 14, 16, suspension assemblies 70, 80 and steering assembly 40.
A powertrain 100′ of the vehicle 10′ includes an engine 30′ which is similar to the engine 30 except that the engine 30′ has one cylinder 108 fewer than the engine 30. The engine 30′ is an inline two cylinder engine 30′, including a front cylinder 108 and a rear cylinder 108, instead of the inline three cylinder engine 30 of the vehicle 10. The engine 30′ is mounted to the vehicle frame 12 such that the rear cylinder 108 of the engine 30′ is in the same location as the rearmost cylinder 108 of the engine 30 in the vehicle 10, and the front cylinder 108 of the engine 30′ is in the same location as the middle cylinder 108 in the vehicle 10. In the illustrated implementation, the cylinder axis 110 of the rear cylinder 108 of the engine 30′ is in the same longitudinal position as the cylinder axis 110 of the rearmost cylinder 108 of the engine 30 in the vehicle 10, and the cylinder axis 110 of the front cylinder 108 of the engine 30′ is in the same longitudinal position as the middle cylinder 108 in the vehicle 10. A forward portion of the front cylinder 108 of the engine 30′ extends forward of the front wheel plane 18 as can be seen best in
It is contemplated that the engine 30′ could be mounted to the vehicle frame 12 such that the front cylinder 108 of the engine 30′ is in the same location as the front cylinder 108 of the engine 30 in the vehicle 10, and the rear cylinder 108 of the engine 30′ is in the same location as the middle cylinder 108 in the vehicle 10. In the illustrated implementation, the cylinder axis 110 of the front cylinder 108 of the engine 30′ is in the same longitudinal position as the cylinder axis 110 of the front cylinder 108 of the engine 30 in the vehicle 10, and the cylinder axis 110 of the rear cylinder 108 of the engine 30′ is in the same longitudinal position as the middle cylinder 108 in the vehicle 10.
It is also contemplated that the engine 30′ could have one cylinder 108 instead of two cylinders 108 as shown herein.
The vehicle 10′ has a transfer case 36′ that is different from the transfer case 36 of the vehicle 10. The transfer case housing 140 is the same in the respective transfer cases, 36 and 36′, in both of the vehicles 10 and 10′. The transfer case housing 140 is mounted to the vehicle frame 12 in the same manner in both vehicles 10 and 10′. In the vehicle 10′ however, the gear ratio defined by the input sprocket (not shown) and the output sprocket (not shown) of the transfer case 36′ is different than the gear ratio defined by the input sprocket 170 and output sprocket 172 of the transfer case 36 in the vehicle 10. Thus, one or both of the input and output sprockets of the transfer case 36′ could be different from the corresponding sprocket 170, 172 in the transfer case 36.
In the illustrated implementation of the vehicle 10′, the exhaust manifold 342′ is different from the exhaust manifold 342 connected to the engine 30. The exhaust manifold 342′ has two conduits 344 corresponding to the two cylinders 108 of the engine 30′.
Similarly, the fuel rail (not shown) of the vehicle 10′ is configured for connecting to two cylinders 108 rather than three cylinders 108 and is thus different from the fuel rail 216 of the vehicle 10.
In the illustrated implementation of the vehicle 10′, the airbox 324 is identical to the airbox 324 of the engine 30 in the vehicle 10. In the vehicle 10′ however, the forwardmost outlets of the airbox 324 is plugged while in the vehicle 10, the forwardmost outlet of the airbox 324 is connected to the third cylinder 108 of the engine 30. Using the same airbox 324 for both engines 30, 30′ allows for a reduction in the number of different types of parts that need to be manufactured and stocked for the assembly of the vehicle 10, 10′, thereby ultimately leading to an increase in efficiency and cost savings of assembly and/or manufacture. It is however contemplated that a different airbox could be used in the vehicle 10′ than in the vehicle 10. The vehicle 10′ could have an airbox having two outlets corresponding to the two cylinders of the engine 30′ instead of the airbox 324 with three outlets used for the three-cylinder engine 30 of the vehicle 10.
Since the engine 30′ is smaller than the engine 30, the oil tank 360 which is formed integrally with the engine 30′ is smaller than the oil tank 360 formed integrally with the engine 30. The starter motor 374′ of the vehicle 10′ is also less powerful than the starter motor 374 in the vehicle 10. In the illustrated implementation of the vehicle 10 and 10′, some of the components connected to the engine 30′ are however identical to the corresponding components connected to the engine 30. For example, the magneto, the water pump 370, the oil cooler 366, and oil filter housing 368 are identical in the vehicles 10 and 10′. It is also contemplated that any of the magneto, the water pump 370, the oil cooler 366, and oil filter housing 368 used in the vehicle 10′ could be different from the corresponding component used in the vehicle 10.
Components connected to the front of the engine 30′ such as the magneto, the water pump 370, the oil cooler 366, and oil filter housing 368 are disposed in the same relative location with respect to the front cylinder 108 of the engine 30′ as with the respect to forwardmost cylinder 108 of the engine 30. The respective locations of these components with respect to the vehicle frame 12 is thus different in the vehicle 10′ compared to the vehicle 10. Relative to the vehicle frame 12, the position of each of these components, has been displaced longitudinally rearwardly in the vehicle 10′ compared with their corresponding position in the vehicle 10′ as can be seen in
Since, in the illustrated implementation, the front of the engine 30′ is disposed longitudinally rearwardly with respect to the engine mounting brackets 250, the engine 30′ is mounted to the engine mounting brackets 250 using spacers 310 in addition to the brackets 302 of the mounting assembly 300 as can be seen best in
Since the engine cradle 290 is dimensioned to house the larger engine 30, the engine cradle 290 (
A left spacer 310, similar to the right spacer 310, has throughholes corresponding to the left boltholes (not shown for the engine 30′ but identical to the left boltholes 130 of the engine 30) of the engine 30′ and the vertical flange of the bracket 302 of the left mounting assembly 300. The left spacer 310 is used to connect the left side of the front of the engine 30′ to the vehicle frame similarly as the right spacer 310 described above.
It is contemplated that the front of the engine 30′ could be disposed in the same longitudinal position with respect to the engine mounting brackets 250 as the front of the engine 30′. In this case, it is contemplated that a spacer could be used to mount the transfer case housing 140 to each bracket 252. It is also contemplated that the CVT housing 150 and/or a rear portion of the engine 30′ could be secured to the vehicle frame 12 instead of, or in addition to, the transfer case housing 140.
It is contemplated that the family of vehicles could have more than two members. All of the members of the family of vehicles are assembled using the same vehicle frame 12. In general, at least one member of the family of vehicles is assembled using a corresponding engine that is different from the engine used to assemble at least one other member of the family of vehicles. Thus the family of vehicles includes at least a first member (vehicle 10) with a first engine 30 and a second member (vehicle 10′) with a second engine 30′. The engines 30, 30′ of the first and second member have a different number of cylinders 108, but each engine 30, 30′ is arranged in the corresponding vehicle 10, 10′ in an inline configuration with the cylinder plane 112 extending generally vertically and longitudinally.
In general, individual components of the powertrain 100, 100′ of each vehicle 10, 10′ of the family of vehicles could be different from the corresponding components of the powertrain 100, 100′ of another member 10, 10′ of the family of vehicles. However, in each member 10, 10′ of the family of vehicles, the components of the powertrain 100, 100′ are arranged in the same configuration relative to other components of the powertrain 100, 100′. Thus, in each member 10, 10′ of the family of vehicles, the engine 30, 30′ is disposed longitudinally forward of the seat 20 and the transmission assembly 400 is disposed longitudinally rearward of the engine 30, 30′ and longitudinally forward of the seat 20.
The manufacture and assembly of a family of vehicles including a plurality of members 10, 10′ is made more efficient by using components that are common to more than one member 10, 10′ of the family of vehicles. As will be understood, the use of common components also leads to a reduction in the numbers of parts that need to be manufactured which could result in a reduction in manufacturing costs.
Modifications and improvements to the above-described implementations of the present vehicle may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting. The scope of the present technology is therefore intended to be limited solely by the scope of the appended claims.
The present application claims priority to U.S. Provisional Patent Application No. 62/664,639 filed on Apr. 30, 2018, and is a continuation-in-part of International Patent Application No. PCT/IB2017/050492 filed on Jan. 30, 2017 which claims priority to U.S. Provisional Patent Application No. 62/289,155 filed on Jan. 29, 2016, the entirety of each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62664639 | Apr 2018 | US | |
62289155 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2017/050492 | Jan 2017 | US |
Child | 16047803 | US |