The present description relates generally to vehicles, and more particularly, but not exclusively, to a vehicle having a non-axial drive system.
Vehicles often include various numbers, sizes and configurations of wheels used for converting a propulsive force into vehicle motion. Such wheels are generally rotatably attached, directly or indirectly, to the vehicle. The wheels rotate about a rotational axis and a connection between the wheel and vehicle, or a drive path between a propulsion source and the wheel, is generally located co-axially with the rotational axis. However, such an attachment and drive arrangement between existing vehicles and wheels may limit vehicle design or vehicle performance characteristics.
According to various aspects of the subject technology, a two-wheeled vehicle is provided. According to one aspect, the two-wheeled vehicle includes a chassis having a height, a length and a width, a first wheel rotatably connected to the chassis, the first wheel having a perimeter, a diameter and a geometric center, and the diameter of the first wheel being at least 75% of the height of the chassis, a motor for providing a drive energy to the first wheel, an axle rotated by the motor, a drive gear connected with the axle such that the drive gear rotates with a rotation of the axle, and a plurality of teeth disposed about the first wheel and mechanically engaged with the drive gear at a location closer to the perimeter of the first wheel than to the geometric center of the first wheel.
According to some aspects of the subject technology, a two-wheeled vehicle includes a chassis having a height, a length and a width, a first wheel rotatably connected to the chassis, the first wheel having a perimeter, a diameter and a geometric center, and the diameter of the first wheel being at least 75% of the height of the chassis, drive means for providing a drive energy to the first wheel, said drive means being coupled to the chassis, and coupling means for coupling the drive means to the first wheel, said coupling means mechanically engaging with the first wheel at a location closer to the perimeter of the first wheel than to the geometric center of the first wheel.
According to various aspects of the subject technology, a two-wheeled vehicle is provided. According to one aspect, the two-wheeled vehicle includes a chassis having a height, a length, a width, a front and a back, a first wheel rotatably connected to the chassis, the first wheel having a perimeter, a diameter and a geometric center, and the diameter of the first wheel being at least 75% of the height of the chassis, a second wheel rotatably connected to the chassis, the second wheel having a perimeter, a diameter and a geometric center, and the diameter of the second wheel being at least 75% of the height of the chassis, and a counterweight coupled to the chassis such that the counterweight can adjust an orientation of the chassis in response to a change in pitch of the chassis about an axis passing through the geometric centers of the first and second wheels.
According to another aspect of the subject technology, a method for stabilizing a two-wheeled vehicle having a chassis, a first wheel, and a second wheel, wherein the diameters of the first and second wheels are at least 75% of a height of the chassis includes determining, by a processor, based on sensor data, an orientation of the chassis or a change in orientation of the chassis, and controlling, by the processor, responsive to the chassis orientation determination, a counterweight adjustment drive to move a counterweight to maintain a substantially constant chassis orientation about an axis passing through the geometric centers of the first and second wheels.
According to another aspect of the subject technology, a two-wheeled vehicle includes a chassis having a height, a length and a width, a first wheel rotatably connected to the chassis, the first wheel having a perimeter, a diameter and a geometric center, and the diameter of the first wheel being at least 75% of the height of the chassis, drive means for providing a drive energy to the first wheel, said drive means being coupled to the chassis, coupling means for coupling the drive means to the first wheel, and stabilizing means for adjusting a pitch of the chassis in response to an acceleration of the two-wheeled vehicle or to a measured chassis orientation.
The accompanying drawings, which are included to provide further understanding and are incorporated in and constitute a part of this specification, illustrate disclosed aspects and together with the description serve to explain the principles of the disclosed aspects.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive implementations. The subject matter disclosed is capable of considerable modifications, alterations, combinations and equivalents in form and function, without departing from the scope of this disclosure.
While this disclosure is susceptible of implementations in many different forms, there is shown in the drawings and will herein be described in detail implementations of the disclosure with the understanding that the present disclosure is to be considered as an exemplification of the principles of the disclosure and is not intended to limit the broad aspects of the disclosure to the implementations illustrated.
Disclosed herein are various implementations of a vehicle. In certain aspects, as shown in
The chassis 14 also includes a second sidewall 34. The floor 18 and the second sidewall 34 are joined at a substantially right angle, although other arrangements are within the scope of this disclosure. The second sidewall 34 includes a second sidewall upper portion 36, a second sidewall lower portion 38 and second sidewall aperture 40. The second sidewall aperture 40 is disposed at the second sidewall upper portion 36 and forms a second handle 42.
In certain implementations, the chassis 14 includes a cargo cavity 50, as best shown in
In certain aspects, the present disclosure provides for a wheel 100 as best shown in
The wheel 100 also includes an inner surface 112 and the inner surface 112 is disposed on an opposite side of the wheel 100 from the outer surface 110. The inner surface 112 includes a plurality of teeth 116. The plurality of teeth 116 are connected to the rim 104 such that a rotation of the plurality of teeth 116 corresponds to a rotation of the rim 104. In some implementations, the plurality of teeth 116 are integrally formed with the inner surface 112. In some implementations, the plurality of teeth 116 are, permanently or removably, attached to the inner surface 112. In these implementations, the inner surface 112 and the plurality of teeth 116 effectively form a ring gear 120 on the inner surface 112 of the wheel 100. The plurality of teeth 116 and the inner surface 112 are formed from a metal, metal alloy, ceramic, polymer, composite material or any other suitable material.
In some implementations, the plurality of teeth 116 are disposed on a toothed belt 124, as best shown in
The vehicle 10 includes a second wheel 126 having a second perimeter 130, a second geometric center 134 and a second diameter 138, a second rim 142, a second tire 146, a second outer surface 150, a second inner surface 154, a second plurality of teeth 158, a second ring gear 162 and a second toothed belt 166, as best shown in
Aspects of the present disclosure additionally include a drive system 190 as best shown in
The plurality of drive gear teeth 210 engage with, and drive, the plurality of teeth 116 of the wheel 100. In operation, the motor 194 rotates the axle 208 and the drive gear 204, which rotates the wheel 100 through the engagement of the plurality of teeth 116 and the plurality of drive gear teeth 210. An idler gear 212 also engages with the wheel 100 via the plurality of teeth 116, and is rotatably attached to the chassis 14. A second motor 213 provides a drive force to the second wheel 126 via a second axle 214 and a second drive gear 215, in a similar manner as the motor 194 and the wheel 100.
Additionally, in certain implementations the vehicle 10 includes a tensioning system 216 as best shown in
When the tensioner gear insert 228 is rotated in the tensioner gear aperture 224, which may be performed manually, the location of the tensioner gear mount 232 is changed relative to the locations of the idler gear 212 and the drive gear 204. As the tensioner gear 220 is rotatably attached to the tensioner gear mount 232 away from the geometric center of the tension gear insert 228, the location of the tensioner gear 220 relative to the idler gear 212 and the drive gear 204 is changed as the tensioner gear mount 232 is rotated within the tensioner gear aperture 224. In this manner, as the wheel 100 is substantially inflexible and the locations of the idler gear 212 and the drive gear 204 are substantially fixed relative to the chassis 14, the tension of the wheel 100 when mounted to the combination of the idler gear 212, drive gear 204 and tensioner gear 220 can be adjusted by rotating the tensioner gear mount 232 within the tensioner gear aperture 224. Additionally, in an implementation, the idler gear 212, drive gear 204 and tensioner gear mount 232 generally form vertices of a substantially equilateral triangle when mounted on the chassis 14.
In some implementations, the vehicle 10 includes a stabilization system 250, as illustrated in
In some implementations of the present disclosure, the vehicle 10 includes one or more sensors 276, as best shown in
The one or more sensors 276 determine and output a measurement of a state of the vehicle 10 and/or chassis 14. The determination is sent to the memory 294 and processor 292, which orders an operation of the stabilization motor 254. For example, the pitch sensor 280 determines a pitch of the vehicle 10 and/or chassis 14 and outputs the measured pitch to the memory 294 and processor 292, which command an operation of the stabilization motor. In this manner the vehicle 10 can determine, by a processor 292 and based on sensor 276 data, an orientation, acceleration or speed of the vehicle 10 and/or chassis 14. In some implementations, the sensor 276 can make multiple determinations at different times or continuously to determine a change in orientation, acceleration or speed of the vehicle 10 and/or chassis 14, or rate of change in orientation, acceleration or speed of the vehicle 10.
In some implementations, once the above determination of an orientation, acceleration or speed, or of a change (or rate of change) in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 is made, the processor 292 and/or memory 294 control the stabilization motor 254 to move the counterweight 252 in response to the measured determination. In one aspect, the processor 292 and/or memory 294 control the stabilization motor 254 to move the counterweight 252 to maintain a substantially constant vehicle 10 and/or chassis 14 orientation about an axis 300 passing through the geometric centers 102, 134 of the first and second wheels 100, 126. In some implementations, the counterweight 252 is coupled to the chassis 14 such that the counterweight 252 can adjust an orientation of the vehicle 10 and/or chassis 14 in response to a change in pitch of the vehicle 10 and/or chassis 14 about an axis 300 passing through the geometric centers 102, 134 of the first and second wheels 100, 126.
In some implementations of the present disclosure, once the above determination of an orientation, acceleration or speed, or of a change in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 is made, the processor 292 and/or memory 294 control the motor 194 to move the wheel 100 in response to the measured determination. In some implementations, once the above determination of an orientation, acceleration or speed, or of a change in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 is made, the processor 292 and/or memory 294 control the stabilization motor 254 to move the counterweight 252 in response to the measured determination and further control the motor 194 to move the wheel 100 in response to the measured determination.
In some implementations, a motion of the counterweight 252 can be determined using various algorithms. In one example, acceleration of the vehicle 10 can be characterized by solving a torque balance equation. The resultant equation of motion is represented by Equation 1, shown below, in some implementations:
R=(1/I_robot)[τ_motor-(m_chassis L_chassis+m_payload L_payload)sin θ-m_payload x cos θ-C_damping R] Equation 1
In Equation 1, R=Rotational acceleration of chassis and payload, I_robot=Rotational moment of inertia of chassis and payload, τ_motor=Torque of the motor, m_chassis=Mass of the chassis, L_chassis=Distance from origin to center of chassis (positive down), m_payload=Mass of the payload (cargo), L_payload=Vertical distance from origin to center of payload(positive down), x=Horizontal distance from origin to center of payload (positive forward), and C_damping=Damping coefficient, proportional to angular velocity.
From the calculation of Equation 1, “R”, or the rotational acceleration of the chassis and payload, can be used to determine a movement of the counterweight 252. A proportional-integral-derivative (PID) controller can be used with a simple formulation, represented by Equation 2, illustrated below:
H=Pθ+Iθdt+DR Equation 2
In Equation 2, P=Proportional gain, I=Integral gain, dt=time increment, D=Derivative gain, H=movement of the counterweight 252.
In some implementations, the counterweight 252 is moved along a track 310 by the stabilization motor 254. The track 310 may be disposed on the chassis 14 or on another part of the vehicle 10.
In one aspect of the present disclosure, the vehicle 10 includes a linear track 320 as best shown in
In this arrangement, the stabilization motor 254 moves the translator 328, and thus the counterweight 252, towards the front and rear of the chassis 321, 322. In some implementations, the stabilization motor 254 moves the translator 328, and thus the counterweight 252, towards the front and rear of the chassis 321, 322 in response to a determination of an orientation, acceleration or speed, or of a change in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 made by the sensor 276, and to a corresponding command from the processor 292 and/or memory 294. In some implementations, the battery 202 is the counterweight 252, and is thus moved towards the front and rear of the chassis 321, 322 by the stabilization motor 254. In some implementations, the battery 202 is moved towards the front and rear of the chassis 321, 322 within the battery channel 72 by the stabilization motor 254. Further, in some implementations, the battery 202 is disposed below the chassis 14.
In some implementations of the present disclosure, the vehicle 10 includes an arcuate track 350 as best shown in
In some implementations, the stabilization motor 254 moves the counterweight 252 along an arcuate path. Further, in some implementation, the stabilization motor 254 moves the counterweight 252 along the arcuate track 350 and towards the front and rear of the chassis 321, 322. In some implementations, the stabilization motor 254 moves the counterweight 252 towards the front and rear of the chassis 321, 322 in response to a determination of an orientation, acceleration or speed, or of a change in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 made by the sensor 276, and to a corresponding command from the processor 292 and/or memory 294. In some implementations, the battery 202 is disposed below the chassis 14. In some implementations, a motion of the counterweight 252 can be determined using various algorithms. In some implementations, a motion of the counterweight 252 can be determined using a proportional-integral-derivative (PID) controller algorithm.
In some implementations of the present disclosure, the vehicle 10 includes a harness 370 as best shown in
In this arrangement, the cargo container motor 419 rotates the cargo container 382, or counterweight 252, about the cargo container axis 406 according to a drive force provided by the cargo container motor 419. In some implementations, the cargo container motor 419 moves the cargo container 382, or counterweight 252, about the cargo container axis 406 in response to a determination of an orientation, acceleration or speed, or of a change in the orientation, acceleration or speed, of the vehicle 10 and/or chassis 14 made by the sensor 276, and to a corresponding command from the processor 292 and/or memory 294. In some implementations, the battery 202 is disposed within the cargo container 382. Further, in some implementations, the battery 202 is disposed below the cargo container 382. In some implementations, a motion of the counterweight 252 can be determined using various algorithms. In some implementations, a motion of the counterweight 252 can be determined using a proportional-integral-derivative (PID) controller algorithm.
The disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular implementations disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative implementations disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/057529 | 10/18/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/075013 | 4/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
282299 | Freeman | Jul 1883 | A |
1819924 | Seppol | Aug 1931 | A |
3123173 | Jacobs | Mar 1964 | A |
3418005 | Allina | Dec 1968 | A |
3776353 | Roth | Dec 1973 | A |
3858673 | Browning | Jan 1975 | A |
3921740 | Forster | Nov 1975 | A |
4179006 | Lenack et al. | Dec 1979 | A |
4222452 | Fachini et al. | Sep 1980 | A |
4714140 | Hatton et al. | Dec 1987 | A |
4794999 | Hester | Jan 1989 | A |
4986387 | Thompson et al. | Jan 1991 | A |
5094375 | Wright | Mar 1992 | A |
5248011 | Richards | Sep 1993 | A |
5261684 | Soto | Nov 1993 | A |
5322140 | Bussinger | Jun 1994 | A |
5343974 | Rabek | Sep 1994 | A |
5366036 | Perry | Nov 1994 | A |
5439240 | Tichenor et al. | Aug 1995 | A |
5558174 | Avitan et al. | Sep 1996 | A |
5669619 | Kim | Sep 1997 | A |
5818189 | Uchiyama et al. | Oct 1998 | A |
6260645 | Pawlowski | Jul 2001 | B1 |
6311794 | Morrell et al. | Nov 2001 | B1 |
6328125 | Van Den Brink et al. | Dec 2001 | B1 |
6553271 | Morrell | Apr 2003 | B1 |
6571892 | Kamen et al. | Jun 2003 | B2 |
6880654 | Plishner | Apr 2005 | B2 |
6974399 | Lo | Dec 2005 | B2 |
7017696 | Pal | Mar 2006 | B2 |
7124854 | Huang | Oct 2006 | B2 |
7185726 | Young | Mar 2007 | B2 |
7337862 | Greenley et al. | Mar 2008 | B1 |
7841435 | Raue | Nov 2010 | B2 |
7938210 | Kunzler et al. | May 2011 | B2 |
7996109 | Zini et al. | Aug 2011 | B2 |
7997361 | Bell et al. | Aug 2011 | B1 |
8002060 | Komatsu | Aug 2011 | B2 |
8083013 | Bewley et al. | Dec 2011 | B2 |
8096378 | Xie | Jan 2012 | B2 |
8123237 | Takemura | Feb 2012 | B2 |
8160794 | Fuwa | Apr 2012 | B2 |
8170781 | Fuwa | May 2012 | B2 |
8186467 | Yoshino et al. | May 2012 | B2 |
8244387 | Tolstedt et al. | Aug 2012 | B2 |
8490723 | Heinzmann et al. | Jul 2013 | B2 |
8684123 | Chen | Apr 2014 | B2 |
8807250 | Chen | Aug 2014 | B2 |
8807254 | Manus | Aug 2014 | B2 |
8932170 | Ishizuka | Jan 2015 | B2 |
8985264 | Shirley | Mar 2015 | B2 |
9010474 | Martinelli et al. | Apr 2015 | B2 |
9045190 | Chen | Jun 2015 | B2 |
9364766 | Mielniczek | Jun 2016 | B2 |
9511811 | Andreev | Dec 2016 | B2 |
9557740 | Crawley | Jan 2017 | B2 |
9630447 | Yoshino et al. | Apr 2017 | B2 |
9701012 | Theobald | Jul 2017 | B1 |
9764592 | Hays et al. | Sep 2017 | B1 |
9776327 | Pinter et al. | Oct 2017 | B2 |
9789017 | Hays et al. | Oct 2017 | B2 |
9789415 | Mielniczek | Oct 2017 | B2 |
9849047 | Hays et al. | Dec 2017 | B2 |
10076954 | Burtov et al. | Sep 2018 | B2 |
10093168 | Hays et al. | Oct 2018 | B2 |
10144478 | Ying et al. | Dec 2018 | B2 |
10173738 | Schnapp | Jan 2019 | B2 |
10223848 | Browning et al. | Mar 2019 | B2 |
10293676 | Schnapp | May 2019 | B2 |
10322718 | Lian et al. | Jun 2019 | B2 |
10343740 | Kama et al. | Jul 2019 | B2 |
10675960 | Higuchi | Jun 2020 | B2 |
20010042650 | Van Den Berg | Nov 2001 | A1 |
20020011368 | Berg | Jan 2002 | A1 |
20020121394 | Kamen et al. | Sep 2002 | A1 |
20020149172 | Field et al. | Oct 2002 | A1 |
20040124023 | Plishner | Jul 2004 | A1 |
20040182625 | Pal | Sep 2004 | A1 |
20050016785 | Young | Jan 2005 | A1 |
20050056479 | Huang | Mar 2005 | A1 |
20050176542 | Lo | Aug 2005 | A1 |
20060254841 | Strong | Nov 2006 | A1 |
20070129849 | Zini et al. | Jun 2007 | A1 |
20080041654 | Raue | Feb 2008 | A1 |
20080230285 | Bewley et al. | Sep 2008 | A1 |
20080245593 | Kim | Oct 2008 | A1 |
20090166112 | Yoshino et al. | Jul 2009 | A1 |
20090315286 | Takemura | Dec 2009 | A1 |
20090319124 | Fuwa | Dec 2009 | A1 |
20100057319 | Inaji et al. | Mar 2010 | A1 |
20100063633 | Tolstedt et al. | Mar 2010 | A1 |
20100070132 | Doi | Mar 2010 | A1 |
20100161206 | Naito | Jun 2010 | A1 |
20100168993 | Doi et al. | Jul 2010 | A1 |
20100252338 | Xie | Oct 2010 | A1 |
20110010066 | Fuwa | Jan 2011 | A1 |
20110208357 | Yamauchi | Aug 2011 | A1 |
20110209929 | Heinzmann et al. | Sep 2011 | A1 |
20110220427 | Chen | Sep 2011 | A1 |
20110303035 | Niebergall et al. | Dec 2011 | A1 |
20130032423 | Chen | Feb 2013 | A1 |
20130069420 | Manus | Mar 2013 | A1 |
20130228385 | Chen | Sep 2013 | A1 |
20140011625 | Thompson | Jan 2014 | A1 |
20140116799 | Pettigrew et al. | May 2014 | A1 |
20140131126 | Martinelli et al. | May 2014 | A1 |
20140230602 | Shirley | Aug 2014 | A1 |
20140326525 | Doerksen | Nov 2014 | A1 |
20150012163 | Crawley | Jan 2015 | A1 |
20150093956 | Mielniczek | Apr 2015 | A1 |
20160031515 | Andreev | Feb 2016 | A1 |
20160068056 | Burtov et al. | Mar 2016 | A1 |
20160229058 | Pinter et al. | Aug 2016 | A1 |
20160303900 | Yoshino et al. | Oct 2016 | A1 |
20160325585 | Hays et al. | Nov 2016 | A1 |
20160332086 | Mielniczek | Nov 2016 | A1 |
20160346142 | Hays et al. | Dec 2016 | A1 |
20180009311 | Hays et al. | Jan 2018 | A1 |
20180072366 | Kama et al. | Mar 2018 | A1 |
20180082502 | Browning et al. | Mar 2018 | A1 |
20180105033 | Schnapp et al. | Apr 2018 | A1 |
20180105215 | Schnapp et al. | Apr 2018 | A1 |
20180148121 | Ying et al. | May 2018 | A1 |
20180230285 | Bueno Lopez et al. | Aug 2018 | A1 |
20180237001 | Lian et al. | Aug 2018 | A1 |
20180237065 | Yamamoto et al. | Aug 2018 | A1 |
20190031017 | Hays | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
102008379 | Apr 2011 | CN |
104590476 | May 2015 | CN |
202007011698 | Jan 2009 | DE |
0705724 | Apr 1996 | EP |
1889743 | Jun 2008 | EP |
2058216 | May 2009 | EP |
2163467 | Mar 2010 | EP |
2516619 | Feb 2015 | GB |
59195965 | Dec 1984 | JP |
57760 | Feb 1993 | JP |
0620176 | Mar 1994 | JP |
H0692273 | Apr 1994 | JP |
06134049 | May 1994 | JP |
06061680 | Aug 1994 | JP |
0920250 | Jan 1997 | JP |
09215713 | Aug 1997 | JP |
2000502636 | Mar 2000 | JP |
2000355293 | Dec 2000 | JP |
2001339812 | Dec 2001 | JP |
2004129435 | Apr 2004 | JP |
2006116186 | May 2006 | JP |
2006123854 | May 2006 | JP |
3993883 | Oct 2007 | JP |
2007313980 | Dec 2007 | JP |
2008055951 | Mar 2008 | JP |
2009040379 | Feb 2009 | JP |
2012122250 | Jun 2012 | JP |
2014519446 | Aug 2014 | JP |
2015523933 | Aug 2015 | JP |
2019003540 | Jan 2019 | JP |
200412471 | Mar 2006 | KR |
2020080003926 | Sep 2008 | KR |
101272035 | Jun 2013 | KR |
101598132 | Feb 2016 | KR |
0115962 | Mar 2001 | WO |
03065963 | Aug 2003 | WO |
2008067822 | Jun 2008 | WO |
2011107674 | Sep 2011 | WO |
2015140767 | Sep 2015 | WO |
2018075013 | Apr 2018 | WO |
2018140071 | Aug 2018 | WO |
2019075002 | Apr 2019 | WO |
2019213264 | Nov 2019 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jan. 17, 2020 issued in corresponding International Application No. PCT/US2019/057472. |
European Office Action dated Jul. 16, 2020 issued in corresponding European Application No. 16790806.0. |
Japanese Office Action dated Feb. 2, 2021 issued in corresponding Japanese Application No. 2019-540385, with machine translation to English. |
International Search Report and Written Opinion dated Jul. 22, 2019 issued in corresponding International Application No. PCT/US2019/030208. |
Beroud, Annick. “L'intralogistique au service de la performance” a la matinale de l'Aslog (with English machine translation) L'antenne, Sep. 27, 2016. Retrieved from URL: http://www.lantenne.com/L-intralogistique-au-service-de-la-performance-a-la-matinale-de-l-Aslog_a33383.html. |
Goher, K. M., et al. Dynamic Modeling and Control of a Two Wheeled Robotic Vehicle With a Virtual Payload, ARPN Journal of Engineering and Applied Sciences, vol. 6, No. 3, Mar. 2011. |
Hay, Benjamin. TwinswHeel, le livreur de colis de demain? (with English machine translation) Tumblr French IoT, Oct. 6, 2016.Retrieved from URL: htlp://french-iot.tumblr.com/post/151417346436/twinswheel-le-livreur-de-colis-de-demain-la. |
Hu, J., & Yan, G. (2014). Analysis of two-wheeled self-balancing mobile robots based on ADRC. Jidian Gongcheng/Mechanical & Electrical Engineering Magazine, 31(2), 159-164. doi:http://dx.doi.org/10.3969/j.ssn.1001-4551.2014.02.006—Abstract Only. |
Huang et al., “Modeling and Velocity Control for a Novel Narrow Vehicle Based on Mobile Wheeled Inverted Pendulum”, IEEE Transactions on Control Systems Technology, vol. 21 No. 5, Sep. 2013, pp. 1607-1617. (Year: 2013). |
Huang et al., “Nonlinear Disturbance Observer-Based Dynamic Surface Control of Mobile Wheeled Inverted Pendulum”, IEEE Transactions on Control Systems Technology, vol. 23 No. 6, Nov. 2015, pp. 2400-2407. (Year: 2015). |
International Search Report and Written Opinion dated Feb. 20, 2017 in PCT Application No. PCT/US2016/057529. |
Ji, P., Zhu, Y., Cheng, C. et al. (2014). Design of self-balancing two-wheeled vehicle control system based on STM32. Dianzi Keji—Electronic Science and Technology, 27(11), 96-99, 105. Retrieved from http://search.proquest.com/docview/1651444797?accountid=10920—Abstract Only. |
Larimi, S. R., Zarafshan, P., & Moosavian, S. A. A. A new stabilization algorithm for a two-wheeled mobile robot aided by reaction wheel. Journal of Dynamic Systems, Measurement, and Control (Transactions of the ASME), vol. 137, No. 1, Jan. 2015. |
Libeskind, Jerome. A quoi ressemblera le dernier kilometre dans 10 ans? (with English machine translation) Logicites. Sep. 26, 2016. Retrieved from URL: http://www.logicites.fr/2016/09/26/a-quoi-ressemblera-dernier-Kilometre-10-ans/. |
Rahman, M. T. A., Ahmad, S., Akmeliawati, R. et al. Centre of gravity (C.O.G)—based analysis on the dynamics of the extendable double-link two-wheeled mobile robot. IOP Conference Series: Materials Science and Engineering, vol. 53, No. 1, 2013. |
Ruan, X., Chen, J., Cai, J. et al. (2011). Research on stable control for two-wheeled self-balancing robot in complex environment. Beijing Gongye Daxue Xuebao (Journal of Beijing University ofTechnology), 37(9), 1310-1316. Retrieved from http:1/search .proquest.com/docview/963872724 ?accountid= 10920—Abstract Only. |
Sales, J., Marti, J_ V., Mann, R et al. CompaRob: the shopping cart assistance robot. International Journal of Distributed Sensor Networks, 2016. |
Van der Wijk, V., & Herder, J. L. Force balancing of variable payload by active force-balanced reconfiguration of the mechanism. In Reconfigurable Mechanisms and Robots, 2009. ReMAR 2009. ASME/IFToMM International Conference, IEEE, Jun. 2009. |
Wang, Kun, et al. Enhanced active dynamic balancing of the planar robots using a three-rotating-bar balancer, Mvances in Mechanical Engineering, vol. 8, No. 4, pp. 1-10, 2016. |
Wu, K., Li, W., Liu, C. et al. (2006). Dynamic control of two-wheeled mobile robot. Yuhang Xuebao I Journal of 13 Astronautics, 27(2), 272-275. Retrieved from http:I/search.proquest.com/docview/29224261?accountid=10920—Abstract Only. |
YouTube video uploaded on Nov. 21, 2016, titled “TwinswHeel M6 1945 2016 11 18” downloaded from: https:I/www.youtube.com/watch?v=e3laoGU56nY&feature=youtu.be on Jan. 19, 2017. |
YouTube video uploaded on Sep. 15, 2016, titled “TwinswHeel Lyon 2016 09 13 EN” downloaded from: https:I/www.youtube.com/watch?v=ysYtN3Wm5Dw&feature=youtu.be on Jan. 19, 2017. |
Zhao, Y., Woo, C., & Lee, J. (2015). Balancing control of mobile manipulator with sliding mode controller. International Conference on Control, Automation and Systems (ICCAS), 802-805. |
International Search Report and Written Opinion dated Oct. 24, 2017 issued in corresponding International Application No. PCT/US2017/031944. |
Italian Search Report dated Sep. 27, 2017 issued in corresponding Italian Application No. 201700007710, with English translation. |
International Search Report and Written Opinion dated Dec. 14, 2018 issued in corresponding International Application No. PCT/US18/55135. |
Goher, K. “A two-wheeled machine with a handling mechanism in two different directions”; Robot. Biomim, vol. 3, No. 17; Publication [online]. 2016 [retrieved Nov. 26, 2018).Retrieved from the Internet: URL: https://jrobio.springeropen.com/track/pdf/10.1186/s40638-016-0049-8; entire document. |
European Office Action dated Mar. 10, 2021 issued in corresponding European Application No. 16790806.0. |
Japanese Office Action dated Dec. 1, 2020 issued in corresponding Japanese Application No. 2019-521784, with English translation. |
European Office Action dated Nov. 4, 2020 issued in corresponding European Application No. 17725412.5. |
Extended European Search Report dated Aug. 3, 2021 issued in corresponding European Application No. 18866624.2. |
Extended European Search Report dated Oct. 7, 2021 issued in corresponding European Application No. 19795777.2. |
Loper et al. “Mobile human-robot teaming with environmental tolerance”, Human-Robot Interaction (HRI), 4th ACM/IEEE International Conference, Mar. 9, 2009, pp. 157-164. |
Zender et al. “Human and Situation-Aware People Following”, Robot and Human Interactive Communication, The 16th IEEE International Symposium, Aug. 26, 2007, pp. 1131-1136. |
Japanese Office Action dated Sep. 21, 2021 issued in corresponding Japanese Application No. 2019-540385, with machine translation to English. |
Japanese Notice of Allowance dated Jan. 18, 2022 issued in corresponding Japanese Application No. 2019-540385, with machine translation to English. |
Japanese Office Action dated Jun. 8, 2021 issued in corresponding Japanese Application No. 2021-510268, with English summary. |
Number | Date | Country | |
---|---|---|---|
20200047826 A1 | Feb 2020 | US |