Vehicle having suspension with continuous damping control

Information

  • Patent Grant
  • 11970036
  • Patent Number
    11,970,036
  • Date Filed
    Monday, June 27, 2022
    2 years ago
  • Date Issued
    Tuesday, April 30, 2024
    6 months ago
Abstract
A damping control system for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame includes at least one adjustable shock absorber having an adjustable damping characteristic. The system also includes a controller coupled to each adjustable shock absorber to adjust the damping characteristic of each adjustable shock absorber, and a user interface coupled to the controller and accessible to a driver of the vehicle. The user interface includes at least one user input to permit manual adjustment of the damping characteristic of the at least one adjustable shock absorber during operation of the vehicle. Vehicle sensors are also be coupled to the controller to adjust the damping characteristic of the at least one adjustable shock absorber based vehicle conditions determined by sensor output signals.
Description
BACKGROUND AND SUMMARY OF THE DISCLOSURE

The present disclosure relates to improved suspension for a vehicle having continuous “on-the-go” damping control for shock absorbers.


Currently some off-road vehicles include adjustable shock absorbers. These adjustments include spring preload, high and low speed compression damping and/or rebound damping. In order to make these adjustments, the vehicle is stopped and the operator makes an adjustment at each shock absorber location on the vehicle. A tool is often required for the adjustment. Some on-road automobiles also include adjustable electric shocks along with sensors for active ride control systems. However, these systems are normally controlled by a computer and are focused on vehicle stability instead of ride comfort. The system of the present disclosure allows an operator make real time “on-the-go” adjustments to the shocks to obtain the most comfortable ride for given terrain and payload scenarios.


Vehicles often have springs (coil, leaf, or air) at each wheel, track, or ski to support a majority of the load. The vehicle of the present disclosure also has electronic shocks controlling the dynamic movement of each wheel, ski, or track. The electronic shocks have a valve that controls the damping force of each shock. This valve may control compression damping only, rebound damping only, or a combination of compression and rebound damping. The valve is connected to a controller having a user interface that is within the driver's reach for adjustment while operating the vehicle. In one embodiment, the controller increases or decreases the damping of the shock absorbers based on user inputs received from an operator. In another embodiment, the controller has several preset damping modes for selection by the operator. The controller is also coupled to sensors on the suspension and chassis to provide an actively controlled damping system.


In an illustrated embodiment of the present disclosure, a damping control method is provided for a vehicle having a suspension located between a plurality of wheels and a vehicle frame, a controller, a plurality of vehicle condition sensors, and a user interface, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, a rear right shock absorber, and a rear left shock absorber. The damping control method includes receiving with the controller a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle; receiving with the controller a plurality of inputs from the plurality of vehicle condition sensors including a brake sensor, a throttle sensor, and a vehicle speed sensor; determining with the controller whether vehicle brakes are actuated based on an input from the brake sensor; determining with the controller a throttle position based on an input from the throttle sensor; and determining with the controller a speed of the vehicle based on an input from the vehicle speed sensor. The illustrative damping control method also includes operating the damping control in a brake condition if the brakes are actuated, wherein in the brake condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed; operating the damping control in a ride condition if the brakes are not actuated and a throttle position is less than a threshold Y, wherein in the ride condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the vehicle speed; operating the damping control in the ride condition if the brakes are not actuated, the throttle position in greater than the threshold Y, and the vehicle speed is greater than a threshold value Z; and operating the damping control in a squat condition if the brakes are not actuated, the throttle position in greater than the threshold Y, and the vehicle speed is less than the threshold value Z, wherein in the squat condition the controller adjusts damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode, the vehicle speed, and a throttle percentage.


Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many additional features of the present system and method will become more readily appreciated and become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings.



FIG. 1 is a block diagram illustrating components of a vehicle of the present disclosure having a suspension with a plurality of continuous damping control shock absorbers and a plurality of sensors integrated with the continuous damping controller;



FIG. 2 illustrates an exemplary user interface for controlling damping at a front axle and a rear axle of the vehicle;



FIG. 3 illustrates another exemplary embodiment of a user interface for continuous damping control of shock absorbers of the vehicle;



FIG. 4 illustrates yet another user interface for setting various modes of operation of the continuous damping control depending upon the terrain being traversed by the vehicle;



FIG. 5 illustrates an adjustable damping shock absorber coupled to a vehicle suspension;



FIG. 6 is a flow chart illustrating vehicle platform logic for controlling various vehicle parameters in a plurality of different user selectable modes of operation;



FIG. 7 is a block diagram illustrating a plurality of different condition modifiers used as inputs in different control modes to modify damping characteristics of electronically adjustable shock absorbers or dampers in accordance with the present disclosure;



FIG. 8 is a flow chart illustrating a damping control method for controlling the vehicle operating under a plurality of vehicle conditions based upon a plurality of sensor inputs in accordance with one embodiment of the present invention;



FIG. 9 is a flow chart illustrating another embodiment of a damping control method of the present disclosure;



FIG. 10 is a flow chart illustrating yet another damping control method of the present disclosure;



FIG. 11 is a sectional view of a stabilizer bar of the present disclosure which is selectively decoupled under certain vehicle conditions;



FIG. 12 illustrates the stabilizer bar of FIG. 11 with an actuator in a locked position to prevent movement of a piston of the stabilizer bar;



FIG. 3 is a sectional view similar to FIG. 12 illustrating an actuator in an unlocked position disengaged from the piston of the stabilizer bar to permit movement of the piston relative to a cylinder; and



FIG. 14 illustrates an x-axis, a y-axis, and a z-axis for a vehicle such as an ATV.





Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present disclosure.


DETAILED DESCRIPTION OF THE DRAWINGS

For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It is understood that no limitation of the scope of the invention is thereby intended. The invention includes any alterations and further modifications in the illustrated devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates.


Referring now to FIG. 1, the present disclosure relates to a vehicle 10 having a suspension located between a plurality of ground engaging members 12 and a vehicle frame 14, The ground engaging members 12 include wheels, skis, guide tracks, treads or the like. The suspension typically includes springs 16 and shock absorbers 18 coupled between the ground engaging members 12 and the frame 14. The springs 16 may include, for example, coil springs, leaf springs, air springs or other gas springs. The air or gas springs 16 may be adjustable. See, for example, U.S. Pat. No. 7,950,486 incorporated herein by reference. The springs 16 are often coupled between the vehicle frame 14 and the ground engaging members 12 through an A-arm linkage 70 (See FIG. 5) or other type linkage. Adjustable shock absorbers 18 are also coupled between the ground engaging members 12 and the vehicle frame 14. An illustrating embodiment, a spring 16 and shock 18 are located adjacent each of the ground engaging members 12. In an ATV, for example, four springs 16 and adjustable shocks 18 are provided adjacent each wheel 12. Some manufacturers offer adjustable springs 16 in the form of either air springs or hydraulic preload rings. These adjustable springs 16 allow the operator to adjust the ride height on the go. However, a majority of ride comfort comes from the damping provided by shock absorbers 18.


In an illustrated embodiment, the adjustable shocks 18 are electrically controlled shocks for adjusting damping characteristics of the shocks 18. A controller 20 provides signals to adjust damping of the shocks 18 in a continuous or dynamic manner. The adjustable shocks 18 may be adjusted to provide differing compression damping, rebound damping or both.


In an illustrated embodiment of the present disclosure, a user interface 22 is provided in a location easily accessible to the driver operating the vehicle. Preferably, the user interface 22 is either a separate user interface mounted adjacent the driver's seat on the dashboard or integrated onto a display within the vehicle. User interface 22 includes user inputs to allow the driver or a passenger to manually adjust shock absorber 18 damping during operation of the vehicle based on road conditions that are encountered. In another illustrated embodiment, the user inputs are on a steering wheel, handle bar, or other steering control of the vehicle to facilitate actuation of the damping adjustment. A display 24 is also provided on or next to the user interface 22 or integrated into a dashboard display of the vehicle to display information related to the shock absorber damping settings.


In an illustrated embodiment, the adjustable shock absorbers 18 are model number CDC (continuous damping control) electronically controlled shock absorbers available from ZF Sachs Automotive. See Causemann, Peter; Automotive Shock Absorbers: Features, Designs, Applications, ISBN 3-478-93230-0, Verl. Moderne Industrie, Second Edition, 2001, pages 53-63, incorporated by reference herein for a description of the basic operation of the shock absorbers 18 in the illustrated embodiment. It is understood that this description is not limiting and there are other suitable types of shock absorbers available from other manufacturers.


The controller 20 receives user inputs from the user interface 22 and adjusts the damping characteristics of the adjustable shocks 18 accordingly. As discussed below, the user can independently adjust front and rear shock absorbers 18 to adjust the ride characteristics of the vehicle. In certain other embodiments, each of the shocks 18 is independently adjustable so that the damping characteristics of the shocks 18 are changed from one side of the vehicle to another. Side-to-Side adjustment is desirable during sharp turns or other maneuvers in which different damping characteristics for shock absorbers 18 on opposite sides of the vehicle improves the ride. The damping response of the shock absorbers 18 can be changed in a matter of microseconds to provide nearly instantaneous changes in damping for potholes, dips in the road, or other driving conditions.


A plurality of sensors are also coupled to the controller 20. For example, the global change accelerometer 25 is coupled adjacent each ground engaging member 12. The accelerometer provides an output signal coupled to controller 20. The accelerometers 25 provide an output signal indicating movement of the ground engaging members and the suspension components 16 and 18 as the vehicle traverses different terrain.


Additional sensors may include a vehicle speed sensor 26, a steering sensor 28 and a chassis accelerometer 30 all having output signals coupled to the controller 20. Accelerometer 30 is illustratably a three-axis accelerometer located on the chassis to provide an indicating of forces on the vehicle during operation. Additional sensors include a brake sensor 32, a throttle position sensor 34, a wheel speed sensor 36, and a gear selection sensor 38. Each of these sensors has an output signal coupled to the controller 20.


In an illustrated embodiment of the present disclosure, he user interface 22 shown in FIG. 2 includes manual user inputs 40 and 42 for adjusting damping of the front and rear axle shock absorbers 18. User interface 22 also includes first and second displays 44 and 46 for displaying the damping level settings of the front shock absorbers and rear shock absorbers, respectively. In operation, the driver or passenger of the vehicle can adjust user inputs 40 and 42 to provide more or less damping to the shock absorbers 18 adjacent the front axle and rear axle of the vehicle. In the illustrated embodiment, user inputs 40 and 42 are rotatable knobs. By rotating knob 40 in a counter clockwise direction, the operator reduces damping of the shock absorbers 18 adjacent the front axle of the vehicle. This provides a softer ride for the front axle. By rotating the knob 40 in a clockwise direction, the operator provides more damping on the shock absorbers 18 adjacent the front axle to provide a stiffer ride. The damping level for front axle is displayed in display 44. The damping level may be indicated by any desired numeric range, such as for example, between 0-10, with 10 being the most stiff and 0 the most soft.


The operator rotates knob 42 in a counter clockwise direction to reduce damping of the shock absorbers 18 adjacent the rear axle. The operator rotates the knob 42 in a clockwise direction to provide more damping to the shock absorbers 18 adjacent the rear axle of the vehicle. The damping level setting of the rear shock absorbers 18 is displayed in display window 46.


Another embodiment of the user interface 22 is illustrated in FIG. 3. In this embodiment, push buttons 50 and 52 are provided for adjusting the damping level of shock absorbers 18 located adjacent the front axle and push buttons 54 and 56 are provided for adjusting the damping of shock absorbers 18 located adjacent rear axle. By pressing button 50, the operator increases the damping of shock absorbers 18 located adjacent the front axle and pressing button 52 reducing the damping of shock absorbers 18 located adjacent front axle. The damping level of shock absorbers 18 adjacent front axle is displayed within display window 57. As discussed above, the input control switches can be located any desired location on the vehicle. For example, in other illustrated embodiments, the user inputs are on a steering wheel, handle bar, or other steering control of the vehicle to facilitate actuation of the damping adjustment.


Similarly, the operator presses button 54 to increase damping of the shock absorbers located adjacent the rear axle. The operator presses button 56 to decrease damping of the shock absorbers located adjacent the rear axle. Display window 58 provides a visual indication of the damping level of shock absorbers 18 adjacent the rear axle. In other embodiments, different user inputs such as touch screen controls, slide controls, or other inputs may be used to adjust the damping level of shock absorbers 18 adjacent the front and rear axles. In other embodiments, different user inputs such as touch screen controls, slide controls, or other inputs may be used to adjust the damping level of shock absorbers 18 adjacent all four wheels at once.



FIG. 4 illustrates yet another embodiment of the present disclosure in which the user interface 22 includes a rotatable knob 60 having a selection indicator 62. Knob 60 is rotatable as illustrated by double-headed arrow 64 to align the indicator 62 with a particular driving condition mode. In the illustrated embodiment, five modes are disclosed including a smooth road mode, a rough trail mode, a rock crawl mode, a chatter mode, and a whoops/jumps mode. Depending on the driving conditions, the operating rotates the control knob 60 to select the particular driving mode. Controller 20 automatically adjusts damping levels of adjustable shocks 18 adjacent front and rear axles of the vehicle based on the particular mode selected.


It is understood that various other modes may be provided including a sport mode, trail mode, or other desired mode, In addition, different modes may be provided for operation in two-wheel drive, four-wheel drive, high and low settings for the vehicle. Illustrative operation modes include:

    • Smooth Road Mode—Very stiff settings designed to minimize transient vehicle pitch and roll through hard acceleration, braking, and cornering.
    • Normal Trail Mode—Similar to smooth road mode, but a little bit softer set-up to allow for absorption of rocks, roots, and potholes but still have good cornering, accelerating, and braking performance.
    • Rock Crawl Mode—This would be the softest setting allowing for maximum wheel articulation for slower speed operation. In one embodiment, the rock crawl mode is linked to vehicle speed sensor 26.
    • High Speed Harsh Trail (Chatter)—This setting is between Normal Trail Mode and Rock Crawl Mode allowing for high speed control but very plush ride (bottom out easier).
    • Whoops and Jumps Mode—This mode provides stiffer compression in the dampers but less rebound to keep the tires on the ground as much as possible.
    • These modes are only examples one skilled in the art would understand there could be many more modes depending on the desired/intended use of the vehicle.


In addition to the driving modes, the damping control may be adjusted based on outputs from the plurality of sensors coupled with the controller 20. For instance, the setting of adjustable shock absorbers 18 may be adjusted based on vehicle speed from speed sensor 26 or outputs from the accelerometers 25 and 30. In vehicles moving slowly, the damping of adjustable shock absorbers 18 is reduced to provide a softer mode for a better ride. As vehicle's speed increases, the shock absorbers 18 are adjusted to a stiffer damping setting. The damping of shock absorbers 18 may also be coupled and controlled by an output from a steering sensor 28. For instance, if the vehicle makes a sharp turn, damping of shock absorbers 18 on the appropriate side of the vehicle may be adjusted instantaneously to improve ride.


The continuous damping control of the present disclosure may be combined with adjustable springs 16. The springs 16 may be a preload adjustment or a continuous dynamic adjustment based on signals from the controller 20.


An output from brake sensor 32 may also be monitored and used by controller 20 to adjust the adjustable shocks 18. For instance, during heavy braking, damping levels of the adjustable shocks 18 adjacent the front axle may be adjusted to reduce “dive” of the vehicle, In an illustrated embodiment, dampers are adjusted to minimize pitch by determining which direction the vehicle is traveling, by sensing an input from the gear selection sensor 38 and then adjusting the damping when the brakes are applied as detected by the brake sensor 32. In an illustrative example, for improved braking feel, the system increases the compression damping for shock absorbers 18 in the front of the vehicle and adds rebound damping for shock absorbers 18 in the rear of the vehicle for a forward traveling vehicle.


In another embodiment, an output from the throttle position sensor is used by controller 20 to adjust the adjustable shock absorbers 18 to adjust or control vehicle squat which occurs when the rear of the vehicle drops or squats during acceleration. For example, controller 20 may stiffen the damping of shock absorbers 18 adjacent rear axle during rapid acceleration of the vehicle. Another embodiment includes driver-selectable modes that control a vehicle's throttle map and damper settings simultaneously. By linking the throttle map and the CDC damper calibrations together, both the throttle (engine) characteristics and the suspension settings simultaneously change when a driver changes operating modes.


In another embodiment, a position sensor is provided adjacent the adjustable shock absorbers 18. The controller 20 uses these position sensors to stiffen the damping of the adjustable shocks 18 near the ends of travel of the adjustable shocks. This provides progressive damping control for the shock absorbers. In one illustrated embodiment, the adjustable shock position sensor is an angle sensor located on an A-arm of the vehicle suspension. In another embodiment, the adjustable shocks include built in position sensors to provide an indication when the shock is near the ends of its stroke.


In another illustrated embodiment, based on gear selection detected by gear selection sensor 38, the system limits the range of adjustment of the shock absorbers 18. For example, the damping adjustment range is larger when the gear selector is in low range compared to high range to keep the loads in the accepted range for both the vehicle and the operator.



FIG. 5 illustrates an adjustable shock absorber 18 mounted on an A-arm linkage 70 having a first end coupled to the vehicle frame 14 and a second end coupled to a wheel 12. The adjustable shock absorber 18 includes a first end 72 pivotably coupled to the A-arm 70 and a second end (not shown) pivotably coupled to the frame 14. A damping control activator 74 is coupled to controller 20 by a wire 76.


DEMONSTRATION MODE

In an illustrated embodiment of the present disclosure, a battery 80 is coupled to controller 20 as shown in FIG. 1. For operation in a demonstration mode in a showroom, the controller 20, user interface 22 and display 24 are activated using a key in an ignition of the vehicle or a wireless key to place the vehicle in accessory mode. This permits adjustment of the adjustable shock absorbers 18 without starting the vehicle. Therefore, the operation of the continuous damping control features of the present disclosure may be demonstrated to customers in a show room where it is not permitted to start the vehicle due to the enclosed space. This provides an effective tool for demonstrating how quickly the continuous damping control of the present disclosure works to adjust damping of front and rear axles of the vehicle.


As described herein, the system of the present disclosure includes four levels or tiers of operation. In the first tier, the adjustable shock absorbers 18 are adjusted by manual input only using the user interface 22 and described herein. In the second tier of operation, the system is semi-active and uses user inputs from the user interface 22 combined with vehicle sensors discussed above to control the adjustable shock absorbers 18. In the third tier of operation, input accelerometers 25 located adjacent the ground engaging members 12 and a chassis accelerometer 30 are used along with steering sensor 28 and shock absorber stroke position sensors to provide additional inputs for controller 20 to use when adjusting the adjustable shock absorbers 18. In the forth tier of operation, the controller 20 cooperates with a stability control system to adjust the shock absorbers 18 to provide enhanced stability control for the vehicle 10.


In another illustrated embodiment, vehicle loading information is provided to the controller 20 and used to adjust the adjustable shock absorbers 18. For instance, the number of passengers may be used or the amount of cargo may be input in order to provide vehicle loading information. Passenger or cargo sensors may also be provided for automatic inputs to the controller 20. In addition, sensors on the vehicle may detect attachments on the front or rear of the vehicle that affect handling of the vehicle. Upon sensing heavy attachments on the front or rear of the vehicle, controller 20 adjusts the adjustable shock absorbers 18. For example, when a heavy attachment is put on to the front of a vehicle, the compression damping of the front shocks may be increased to help support the additional load.


In other illustrative embodiments of the present disclosure, methods for actively controlling damping of electronically adjustable shocks using both user selectable modes and a plurality of sensor inputs to actively adjust damping levels are disclosed. A central controller is used to read inputs from the plurality of vehicle sensors continuously and send output signals to control damping characteristics of the electronically adjustable shocks. Illustrative embodiments control damping of the plurality of electronically adjustable shocks based on one or more of the following control strategies:

    • Vehicle speed based damping table
    • Roll control: Vehicle steering angle and rate of steer damping table
    • Jump control: Detect air time and adjust damping accordingly
    • Pitch control: Brake, dive, and squat
    • Use of a lookup table or a multi-variable equation based on sensor inputs
    • Acceleration sensing: Select damping based on frequency of chassis acceleration
    • Load sensing: Increase damping based on vehicle/box load
    • Oversteer/understeer detection
    • Factory defaults, key-on mode selection
    • Fail safe defaults to full firm
    • Time delay that turns solenoid off after a set period of time to conserve power at idle


In illustrative embodiments of the present disclosure, a user selectable mode provides damping control for the electronic shocks. In addition to the methods discussed above, the present disclosure includes modes selectable by the user through a knob, touch screen, push button or other user input. Illustrative user selectable modes and corresponding sensors and controls include:


In addition to damping control, the following bullet point items can also be adjusted in each mode:


1. Factory Default Mode


2. Soft/Comfort Mode

    • Vehicle speed
    • Turning
    • Air born—jumps
    • eCVT: Maintain low RPM>quiet
    • higher assist EPS calibration


3. Auto/Sport Mode

    • Pitch control
    • Tied to brake switch
    • Throttle (CAN) position
    • Roll control
    • Lateral acceleration
    • Steering position (EPS sensor)
    • Vehicle speed
    • “Auto” means use damping table or algorithm, which incorporates all these inputs


4. Firm/Race Mode

    • eCTV: Higher engagement
    • Aggressive throttle pedal map
    • Firm (lower assist at speed) EPS calibration
    • Full firm damping


5. Rock Crawling Mode

    • Increase ride height—spring preload
    • Rebound increase to deal with extra preload
    • Soft stabilizer bar
    • Speed limit


6. Desert/Dunes Mode

    • Soft stabilizer bar
    • Speed based damping
    • Firmer damping than “Soft”


7. Trail/Cornering Mode

    • Lower ride height
    • Stiffer stabilizer bar
    • Increase damping
    • Firm EPS calibration


8. Work Mode (Lock-out, full firm)

    • eCVT: Smooth engagement
    • eCVT: Maintain low RP>quiet, dependent on engine load
    • Load sensing damping & preload


9. Economy Mode

    • Lower ride height
    • Engine cal
    • eCVT cal


In illustrative embodiments of the present disclosure, sensor inputs include one or more of the following:

    • Damping mode selection
    • Vehicle speed
    • 4WD mode
    • ADC mode
    • Transmission mode—CVT and other transmission types
    • EPS mode
    • Ambient temp
    • Steering angle
    • Chassis Acceleration (lateral, long, vertical)
    • Steering Wheel Acceleration
    • Gyroscope
    • GPS location
    • Shock position
    • Shock temperature
    • Box load/distribution
    • Engine sensors (rpm, temp, CAN)
    • Throttle pedal
    • Brake input/pressure
    • Passenger Sensor (weight or seatbelt)


In illustrative embodiments of the present disclosure, damping control system is integrated with other vehicle systems as follow:


Vehicle Systems Integration


EPS calibration

    • Unique calibrations for each driver mode. Full assist in work or comfort mode.


Automatic preload adjustment setting (electronic and/or hydraulic control)

    • Load leveling
    • Smooth trail/on-road mode=lower, Rock crawl=higher
    • Increase rebound damping for higher preloads
    • Haul mode=increased preload in rear. Implement mode=increased preload in front


Vehicle speed limits

    • Increase damping with vehicle speed for control and safety using lookup table or using an algorithm
      • adjusts the minimum damping level in all modes beside “Firm”
      • firm mode would be at max damping independent of vehicle speed
      • lower ride height (preload) with vehicle speed in certain modes


eCVT calibration

    • Unique calibrations for each driver mode that ties in with electronic damping and preload. (comfort mode=low rpm, soft damping)


Engine/pedal map calibration

    • Unique calibrations for each driver mode that ties in with electronic damping and preload. (comfort mode=soft pedal map, soft damping)


Steer by wire


Load sensing


Decoupled wheel speed for turning


4 wheel steer


Active Stabilizer Bar Adjustment


Traction Control


Stability Control


ABS


Active Brake Bias


Preload control



FIG. 6 is a flow chart illustration vehicle mode platform logic for a system and method of the present disclosure. In the illustrated embodiment, a user selects a user mode as illustrated at block 100. The selection may be a rotary knob, a button, a touch screen input, or other user input. A controller 20 uses a look up cable or algorithm to determine preload adjustments for adjustable springs at the front right, front left, rear right and rear left of the vehicle to adjust a target ride height for the vehicle as illustrated at bock 102. Controller 20 receives a ride height and/or load sensor input as illustrated at block 104 so that the controller 20 adjusts the spring preload based on vehicle loads.


Controller 20 then determines whether a sway bar or stabilizer bar should be connected or disconnected as illustrated at block 106. As discussed in detail below, the stabilizer bar may be connected or disconnected depending upon the selected mode and sensor inputs.


Controller 20 also implements damping control logic as discussed below and illustrated at block 108. Controller 20 uses a damper profile for the front right, front left, rear right, and rear left adjustable shocks as illustrated block 110. A plurality of sensor inputs are provided to the controller 20 as illustrated at block 112 and discussed in detail below to continuously control the damping characteristics of the adjustable shocks.


Controller 20 uses a stored map for calibration of an electronic power steering (EPS) of the vehicle as illustrated at block 114. Finally, the controller 20 uses a map to calibrate a throttle pedal position of the vehicle as illustrated at block 116. The damping control method of the present discloses uses a plurality of different condition modifiers to control damping characteristics of the electrically adjustable shocks. Exemplary condition modifiers include parameters set by the particular user mode selected as illustrated at block 118, a vehicle speed as illustrated at block 120, a throttle percentage as illustrated at block 122. Additional condition modifiers include a drive mode sensor such as 4-wheel drive sensor as illustrated at block 124, a steering position sensor as illustrated at block 126, and a steering rate sensor as illustrated at block 128. Drive mode sensor 124 may include locked front, unlocked front, locked rear, unlocked rear, or high and low transmission setting sensors. Condition modifiers further include an x-axis acceleration sensor as illustrated at block 130, a y-axis acceleration sensor as illustrated at block 132, and a z-axis acceleration sensor illustrated at block 134. The x-axis, y-axis, and z-axis for a vehicle such as an ATV are shown in FIG. 14. Another illustrative condition modifier is a yaw rate sensor as illustrated at block 136. The various condition modifiers illustrated in FIG. 7 are labeled 1-10 and correspond to the modifiers which influence operation of the damping control logic under the various drive conditions shown in FIGS. 8-10.


In a passive method for controlling the plurality of electronic shock absorbers, the user selected mode discussed above sets discrete damping levels at all corners of the vehicle. Front and rear compression and rebound are adjusted independently based on the user selected mode of operation without the use of active control based on sensor inputs.


One illustrated method for active damping control of the plurality of electronic shock absorbers is illustrated in FIG. 8. The method of FIG. 8 uses a throttle sensor 138, a vehicle speed sensor 140, and a brake switch or brake pressure sensor 142 as logic inputs. The controller 20 determines whether the brakes are on as illustrated at block 144. If so, the controller 20 operates the damping control method in a brake condition as illustrated at block 146. In the brake condition, front suspension compression (dive) is detected as a result of longitudinal acceleration from braking input. In the Brake Condition 146, the condition modifiers include the user selected mode 118 and the vehicle speed 120 to adjust damping control. In the vehicle conditions of FIGS. 8-10, the selected user mode modifier 118 determines a particular look-up table that defines damping characteristics for adjustable shocks at the front right, front left, rear right, and rear left of the vehicle. In brake condition 146, compression damping of the front shocks and/or rebound damping on the rear shocks is provided based on the brake signal.


In the Brake Condition 146, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on front and/or rebound damping on the rear shocks based on brake sensor signal. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the brakes are not on at block 144, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 148. If not, controller 20 operates the vehicle in a Ride Condition as illustrated at block 150. In the ride condition, the vehicle is being operated in generally a straight line where vehicle ride and handling performance while steering and cornering is not detected. In the Ride Condition 150, condition modifiers used to control damping include user mode 118, vehicle speed 120, and a drive mode sensor such as 4-wheel drive sensor 124. In the Ride Condition 150, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the throttle position in greater than the threshold Y at block 148, the controller 20 determines whether a vehicle speed is greater than a threshold value Z at block 152. If so, the controller 20 operates the vehicle in the Ride Condition at block 150 as discussed above. If the vehicle speed is less than the threshold value Z at block 152, the controller 20 operates the vehicle in a Squat Condition as illustrated at block 154. In the Squat Condition 154, condition modifiers for controlling damping include the user selected mode 118, the vehicle speed 120, and the throttle percentage 122. During a Squat Condition 154, compression damping on the rear shocks and/or rebound damping on the front shocks is increased based upon the throttle sensor signal and vehicle speed. Rear suspension compression (squat) is a result of longitudinal acceleration from throttle input.


In the Squat Condition 154, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on rear and/or rebound damping on the front shocks based on the throttle sensor signal and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


Another embodiment of the present disclosure including different sensor input options is illustrated in FIG. 9. In the FIG. 9 embodiment, a throttle sensor 138, vehicle speed sensor 140, and brake sensor 142 are used as inputs as discussed in FIG. 8. In addition, a steering rate sensor 156 and steering position sensor 158 also provide inputs to the controller 20. Controller 20 determines whether an absolute value of the steering position is greater than a threshold X or an absolute value of the steering rate is greater than a threshold B as illustrated at block 160. If not, controller 20 determines whether the brakes are on as illustrated at block 162. If not, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 164. If the throttle position is greater than the threshold Y at block 164, controller 20 operates the vehicle in the Ride Condition as illustrated at block 150 and discussed above. In the Ride Condition 150, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the throttle position is greater than the threshold. Y at block 164, controller 20 determines whether the vehicle speed is greater than a threshold Z as illustrated at block 166. If so, controller 20 operates the vehicle in the Ride Condition as illustrated at block 150. If the vehicle speed is less than the threshold Z at block 166, controller 20 operates the vehicle in Squat Condition 154 discussed above with reference to FIG. 8. In the Squat Condition 154, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on rear and/or rebound damping on the front shocks based on the throttle sensor signal and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the brakes are on at block 162, controller 20 operates the vehicle in the Brake Condition 146 as discussed above with reference to FIG. 8. In the Brake Condition 146, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on front and/or rebound damping on the rear shocks based on brake sensor signal. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the absolute value of the steering position is greater than the threshold X or the absolute value of the steering rate is greater than the threshold. B at block 160, controller 20 determines whether the brakes are on as illustrated at block 168. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 170. In the Brake Condition 170, mode modifiers for controlling damping include the user input 118, the vehicle speed 120, and the steering rate 128.


In the Brake Condition 170, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside front corner shock based on inputs from the steering sensor, brake sensor, and vehicle speed sensor. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the brakes are not on at block 168, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 172. If not, vehicle controller 20 operates the vehicle in a Roll/Cornering Condition as illustrated at block 174. In the Roll/Cornering Condition at block 174, the condition modifiers for controlling damping include user mode 118, the steering position 126, and the steering rate 128. In a Roll/Cornering Condition, vehicle body roll occurs as a result of lateral acceleration due to steering and cornering inputs.


In the Roll/Cornering Condition 174, the controller 20 increases damping based on increasing vehicle speed. Further controller 20 increases compression damping on the outside corner shocks and/or rebound damping on the inside corner shocks when a turn event is detected via steering sensor. For a left hand turn, the outside shock absorbers are the front right and rear right shock absorbers and the inside shock absorbers are front left and rear left shock absorbers. For a right hand turn, the outside shock absorbers are the front left and rear left shock absorbers and the inside shock absorbers are front right and rear right shock absorbers. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the throttle position is greater than the threshold Y at block 172, controller 20 operates the vehicle in a Squat Condition as illustrated at block 176. In the Squat Condition 176, controller 20 uses the mode modifiers for user mode 118, vehicle speed 120, throttle percentage 122, steering position 126, and steering rate 128 to control the damping characteristics. Again, damping is increased base on increasing vehicle speed. In addition, compression damping is increased on outside rear corners based upon steering sensor, throttle sensor and vehicle speed.


In the Squat Condition 176, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside rear corner shock based on inputs from the steering sensor, throttle sensor, and vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.



FIG. 10 illustrates yet another embodiment of a damping control method of the present disclosure including different sensor input options compared to the embodiments of FIGS. 8 and 9. In addition to throttle sensor 138, vehicle speed sensor 140, brake sensor 142, steering position sensor 158, and steering rate sensor 156, the embodiment of FIG. 10 also uses a z-axis acceleration sensor 180 and an x-axis acceleration sensor 182 as inputs to the controller 20.


Controller 20 first determines whether acceleration from the z-axis sensor 180 is less than a threshold C for a time greater than a threshold N as illustrated at block 184. If so, controller 20 determines that the vehicle is in a jump and controls the vehicle in a Jump/Pitch condition as illustrated at block 186 where the suspension is allowed to drop out and the tires lose contact with the ground surface. In the Jump/Pitch Condition 186, controller 20 uses condition modifiers for the user input 118, the vehicle speed 120, and the z-axis acceleration sensor 134 to control the damping characteristics.


In the Jump/Pitch Condition 186, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on shocks at all four corners when an airborne event is detected (and the duration of the airborne event) via negative vertical acceleration detected by the z-axis acceleration sensor 134. The controller 20 maintains the damping increase for a predetermined duration after the jump event. If positive vertical acceleration is detected by z-axis acceleration sensor 134 having a magnitude greater than a threshold value and for longer than a threshold duration (such as when contact with the ground is made after an airborne event), whereas greater acceleration reduces the duration threshold required, rebound damping may be increased to the rear and/or front shocks for an amount of time. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If an airborne event is not detected at block 184, controller 20 determines whether an absolute value of the steering position is greater than a threshold X or an absolute value of the steering rate is greater than a threshold B at block 188. If not, controller 20 determines whether the brakes are on and the x-axis acceleration is greater than a threshold value A at block 190. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 192.


In the Brake Condition 192, condition modifiers for the user input 118, the vehicle speed 120, the x-axis accelerometer 130, and the y-axis accelerometer 132 are used as inputs for the damping control. In the Brake Condition 192, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on an outside front corner shock based on inputs from steering sensor 158, brake sensor 142, vehicle speed sensor 140, and/or acceleration sensor 180. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the determination at block 190 is negative, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 194. If not, controller 20 operates the vehicle in a Ride Condition as illustrated at block 196. In the Ride Condition 196, controller 20 uses condition modifiers for the user-selected mode 118, the vehicle speed 120, a drive mode sensor such as four-wheel drive sensor 124, and the z-axis accelerometer 134 to control damping characteristics. In the Ride Condition 196, the controller 20 increases damping based on the vehicle speed. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the throttle position is greater than threshold Y at block 194, controller 20 determines whether the vehicle speed is greater than a threshold Z as illustrated at block 198. If so, the controller 20 operates the vehicle and the Ride Condition 196 as discussed above. If not, the controller 20 operates the vehicle in a Squat Condition as illustrated at block 200. In the Squat Condition 200, controller 20 uses condition modifiers for the user mode 118, vehicle speed 120, throttle percentage 122, and y-axis accelerometer 132 for damping control. In the Squat Condition 200, the controller 20 increases damping based on the vehicle speed. Further, the controller 20 increases compression damping on the rear shocks and/or rebound damping on the front shocks based on inputs from throttle sensor 138, vehicle speed sensor 140, and/or acceleration sensor 180. Additional adjustments are made based on time duration and longitudinal acceleration. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the absolute value of the steering position is greater than the threshold X or the absolute value of the steering rate is greater than the threshold B at block 188, then controller 20 determines whether the brakes are on and whether the x-axis acceleration is greater than a threshold A as illustrated at block 202. If so, controller 20 operates the vehicle in a Brake Condition as illustrated at block 204. In the Brake Condition 204, controller 20 uses condition modifiers for the user mode 118, vehicle speed 120, steering position 126, x-axis acceleration 130, and y-axis acceleration 132 to adjust the damping control characteristics of the electrically adjustable shocks. In the Brake Condition 204, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on an outside front corner shock based on inputs from steering sensor 158, brake sensor 142, vehicle speed sensor 140, and/or acceleration sensor 180. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If a negative determination is made at block 202, controller 20 determines whether the throttle position is greater than a threshold Y as illustrated at block 206. If not, controller 20 operates the vehicle in a Roll/Cornering Condition as illustrated at block 208. In the Roll/Cornering Condition 208, controller 20 uses condition modifiers for the user mode 118, the steering position 126, the steering rate 128, the y-axis acceleration 132, and the yaw rate 136 to control the damping characteristics of the adjustable shocks. In the Roll/Cornering Condition 208, the controller 20 increases damping based on increasing vehicle speed. Further, controller 20 increases compression damping on the outside corner shocks and/or rebound damping on the inside corner shocks when a turn event is detected via steering sensor 156 and accelerometer 182. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


If the throttle position is greater than the threshold Y at block 206, controller 20 operates the vehicle in a Squat Condition as illustrated at block 210. In the Squat Condition 210, controller 20 uses condition modifiers for the user mode 118, the vehicle speed 120, the throttle percentage 122, steering position 126, the steering rate 128, and the y-axis acceleration 132 to control the damping characteristics of the adjustable shocks. In the Squat Condition 210, the controller 20 increases damping based on the vehicle speed. Further, the controller 20 increases compression damping on the outside rear corner shock based on inputs from throttle sensor 138, vehicle speed sensor 140, and/or acceleration sensors 180 or 182. User mode modifiers 118 select the lookup table and/or algorithm that defines the damping characteristics at each corner based on above inputs.


Another embodiment of the present disclosure is illustrated in FIGS. 11-13. As part of the damping control system, a stabilizer bar linkage 220 is selectively locked or unlocked. The linkage 220 includes a movable piston 222 located within a cylinder 224. An end 226 of piston 222 as illustratively coupled to a stabilizer bar of the vehicle. An end 228 of cylinder 224 as illustratively coupled to a suspension arm or component of the vehicle. It is understood that this connection could be reversed.


A locking mechanism 230 includes a movable solenoid 232 which is biased by a spring 234 in the direction of arrow 236. The controller 20 selectively energizes the solenoid 232 to retract the removable solenoid 232 in the direction of arrow 238 from an extended position shown in FIGS. 11 and 12 to a retracted position shown in FIG. 13. In the retracted position, the end of solenoid 232 disengages a window 240 of movable piston 232 to permit free movement between the piston 222 and the cylinder 224. If the solenoid 232 is in the extended position shown in FIGS. 11 and 12 engaged with window 240, the piston 222 is locked relative to the cylinder 224.


When the linkage 220 is unlocked, the telescoping movement of the piston 222 and cylinder 224 removes the function of the stabilizer bar while the solenoid 232 is disengaged as shown in FIG. 13. When the controller 20 removes the signal from the solenoid 232, the solenoid piston 232 moves into the window 240 to lock the piston 222 relative to the cylinder 220. The solenoid 232 also enters the lock position if power is lost due to the spring 234. In other words, the solenoid 232 fails in the locked position. The vehicle is not required to be level in order for the solenoid 232 to lock the piston 222.


Unlocking the stabilizer bar 220 provides articulation benefits for the suspension system during slow speed operation. Therefore, the stabilizer bar 220 is unlocked in certain low speed conditions. For higher speeds, the stabilizer bar 220 is locked. The controller 20 may also use electronic throttle control (ETC) to limit vehicle speed to a predetermined maximum speed when stabilizer bar 220 is unlocked.


While embodiments of the present disclosure have been described as having exemplary designs, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. A damping control method for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame, a controller, a plurality of vehicle condition sensors, and a user interface, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, and at least one rear shock absorber and the suspension further including a stabilizer bar linkage coupled between a first portion of the suspension and the vehicle frame, the damping control method comprising: receiving with the controller a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle;receiving with the controller a plurality of inputs from the plurality of vehicle condition sensors including a z-axis acceleration sensor;determining with the controller when the vehicle is in an airborne event, the airborne event being determined when the input from the z-axis acceleration sensor indicates z-acceleration of less than a first threshold that is sustained for a time greater than a second threshold to identify the airborne event;operating the damping control according to an airborne condition when the airborne event is determined, wherein in the airborne condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and z-axis acceleration;operating the damping control according to the airborne condition, wherein in the airborne condition the controller increases compression damping as a function of detected duration of the airborne event; andoperating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage.
  • 2. The method of claim 1, wherein in the airborne condition the controller increases compression damping on the front right shock absorber, front left shock absorber, and at least one rear shock absorber.
  • 3. The method of claim 1, wherein the controller maintains the damping increase of the airborne condition for a predetermined duration after conclusion of the airborne event giving rise to the airborne condition.
  • 4. The method of claim 1, further comprising: detecting positive vertical acceleration via the input from the z-axis acceleration sensor;determining with the controller when the vehicle is in a landing condition, the landing condition being determined when the input from the z-axis acceleration sensor indicates z-acceleration of greater than a third threshold that is sustained for a time greater than a fourth threshold;operating the damping control according to the landing condition when a landing condition is determined, wherein in the landing condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and z-axis acceleration; andoperating the damping control according to the landing condition, wherein in the landing condition the controller increases rebound damping.
  • 5. The method of claim 4, wherein the fourth threshold is a dynamic threshold that is inversely correlated to the magnitude of the determined positive z-axis acceleration.
  • 6. The method of claim 1, wherein the z-axis acceleration sensor is coupled to the vehicle frame.
  • 7. The method of claim 1, further including: determining with the controller when the vehicle is not in the airborne event; anddetermining when the vehicle experiences at least one of: 1) an absolute value of a steering position is greater than a fifth threshold; and 2) an absolute value of a steering rate is greater than a sixth threshold.
  • 8. The method of claim 7, further including operating in a brake condition upon: determining that the vehicle is not experiencing at least one of: 1) an absolute value of a steering position is greater than a fifth threshold; and 2) an absolute value of a steering rate is greater than a sixth threshold; anddetermining when the brakes are activated and x-axis acceleration is greater than a seventh threshold.
  • 9. The damping method of claim 1, wherein the step of operating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage includes operating the stabilizer bar linkage based on the user selected mode.
  • 10. The damping method of claim 9, wherein the stabilizer bar linkage may be operated to be stiffer in a first user selected mode than a second user selected mode.
  • 11. The damping method of claim 10, wherein the stabilizer bar linkage may be toggled between a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
  • 12. The damping method of claim 1, wherein the step of operating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage includes operating the stabilizer bar linkage based on the at least one of the plurality of inputs from the plurality of vehicle condition sensors.
  • 13. The damping method of claim 12, wherein the stabilizer bar linkage may be operated to be stiffer based on a sensed vehicle movement characteristic.
  • 14. The damping method of claim 13, wherein the sensed vehicle movement characteristic is a vehicle speed.
  • 15. The damping method of claim 13, wherein the stabilizer bar linkage may be toggled between a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
  • 16. A vehicle having: a frame;a suspension located between a plurality of ground engaging members and the frame, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, and at least one rear shock absorber and further including a stabilizer bar linkage coupled between a first portion of the suspension and the frame;a plurality of vehicle condition sensors,a user interface,a controller operable to control operation of the suspension, the controller including instructions thereon that when interpreted by the controller cause the controller to:receive a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle;receive a plurality of inputs from the plurality of vehicle condition sensors including a z-axis acceleration sensor;determine when the vehicle is in an airborne event, the airborne event being determined when the input from the z-axis acceleration sensor indicates z-acceleration of less than a first threshold that is sustained for a time greater than a second threshold;operate the suspension according to an airborne condition when the airborne event is determined, wherein in the airborne condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and z-axis acceleration;operate the damping control according to the airborne condition, wherein in the airborne condition the controller increases compression damping as a function of detected duration of the airborne event; andoperate the stabilizer bar linkage based on at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage.
  • 17. The vehicle of claim 16, wherein in the airborne condition the controller increases compression damping on the front right shock absorber, front left shock absorber, and at least one rear shock absorber.
  • 18. The vehicle of claim 16, wherein the instructions further cause the controller to maintain the damping increase of the airborne condition for a predetermined duration after conclusion of the airborne event giving rise to the airborne condition.
  • 19. The vehicle of claim 16, wherein the instructions further cause the controller to: detect positive vertical acceleration via the input from the z-axis acceleration sensor;determine when the vehicle is in a landing condition, the landing condition being determined when the input from the z-axis acceleration sensor indicates z-acceleration of greater than a third threshold that is sustained for a time greater than a fourth threshold;operate the damping control according to the landing condition when a landing condition is determined, wherein in the landing condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and z-axis acceleration; andoperate the damping control according to the landing condition, wherein in the landing condition the controller increases rebound damping.
  • 20. The vehicle of claim 19, wherein the fourth threshold is a dynamic threshold that is inversely correlated to the magnitude of the determined positive z-axis acceleration.
  • 21. The vehicle of claim 16, wherein the z-axis acceleration sensor is coupled to the vehicle frame.
  • 22. The vehicle of claim 16, wherein the instructions further cause the controller to: determine with the controller when the vehicle is not in the airborne event; anddetermine when the vehicle experiences at least one of: 1) an absolute value of a steering position is greater than a fifth threshold; and 2) an absolute value of a steering rate is greater than a sixth threshold.
  • 23. The vehicle of claim 16, wherein the instructions further cause the controller to operate in a brake condition upon: determining that the vehicle is not experiencing at least one of: 1) an absolute value of a steering position is greater than a fifth threshold; and 2) an absolute value of a steering rate is greater than a sixth threshold; anddetermining when the brakes are activated and x-axis acceleration is greater than a seventh threshold.
  • 24. The vehicle of claim 16, wherein the stiffness of the stabilizer bar linkage is increased based on a sensed vehicle movement characteristic.
  • 25. The vehicle of claim 24, wherein the sensed vehicle movement characteristic is a vehicle speed.
  • 26. The vehicle of claim 16, wherein the stabilizer bar linkage has a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
  • 27. A vehicle having: a frame;a suspension located between a plurality of ground engaging members and the frame, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, and at least one rear shock absorber and further including a stabilizer bar linkage coupled between a first portion of the suspension and the frame;a plurality of vehicle condition sensors,a user interface,a controller operable to control operation of the suspension, the controller including instructions thereon that when interpreted by the controller cause the controller to:receive a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle;receive a plurality of inputs from the plurality of vehicle condition sensors including a z-axis acceleration sensor;detect positive vertical acceleration via the input from the z-axis acceleration sensor;determine when the vehicle is in a landing condition, the landing condition being determined when the input from the z-axis acceleration sensor indicates z-acceleration of greater than a first threshold that is sustained for a time greater than a second threshold;operate the damping control according to the landing condition when a landing condition is determined, wherein in the landing condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and z-axis acceleration;operate the damping control according to the landing condition, wherein in the landing condition the controller increases rebound damping; andoperate the stabilizer bar linkage based on the user selected mode to adjust a stiffness of the stabilizer bar linkage.
  • 28. The vehicle of claim 27, wherein the second threshold is a dynamic threshold that is inversely correlated to the magnitude of the determined positive z-axis acceleration.
  • 29. The vehicle of claim 27, wherein in the landing condition the controller increases rebound damping on the front right shock absorber, front left shock absorber, and at least one rear shock absorber.
  • 30. The vehicle of claim 27, wherein the z-axis acceleration sensor is mounted on the vehicle frame.
  • 31. The vehicle of claim 27, wherein the stiffness of the stabilizer bar linkage is increased for a first user selected mode compared to a second user selected mode.
  • 32. The vehicle of claim 31, wherein the stabilizer bar linkage has a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
  • 33. A damping control method for a vehicle having a suspension located between a plurality of ground engaging members and a vehicle frame, a controller, a plurality of vehicle condition sensors, and a user interface, the suspension including a plurality of adjustable shock absorbers including a front right shock absorber, a front left shock absorber, and at least one rear shock absorber and the suspension further including a stabilizer bar linkage coupled to between a first portion of the suspension and the vehicle frame, the damping control method comprising: receiving with the controller a user input from the user interface to provide a user selected mode of damping operation for the plurality of adjustable shock absorbers during operation of the vehicle;receiving with the controller a plurality of inputs from the plurality of vehicle condition sensors;determining with the controller when the vehicle is in an airborne event based upon at least one input of the plurality of inputs;operating the damping control according to an airborne condition when the airborne event is determined, wherein in the airborne condition the controller defines damping characteristics of the plurality of adjustable shock absorbers based on condition modifiers including the user selected mode and the at least one input;operating the damping control according to the airborne condition, wherein in the airborne condition the controller increases compression damping as a function of detected duration of the airborne event; andoperating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage.
  • 34. The damping method of claim 33, wherein the step of operating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage includes operating the stabilizer bar linkage based on the user selected mode.
  • 35. The damping method of claim 34, wherein the stabilizer bar linkage may be operated to be stiffer in a first user selected mode than a second user selected mode.
  • 36. The damping method of claim 35, wherein the stabilizer bar linkage may be toggled between a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
  • 37. The damping method of claim 33, wherein the step of operating the stabilizer bar linkage based on at least one of (i) the user selected mode and (ii) at least one of the plurality of inputs from the plurality of vehicle condition sensors to adjust a stiffness of the stabilizer bar linkage includes operating the stabilizer bar linkage based on the at least one of the plurality of inputs from the plurality of vehicle condition sensors.
  • 38. The damping method of claim 37, wherein the stabilizer bar linkage may be operated to be stiffer based on a sensed vehicle movement characteristic.
  • 39. The damping method of claim 38, wherein the sensed vehicle movement characteristic is a vehicle speed.
  • 40. The damping method of claim 38, wherein the stabilizer bar linkage may be toggled between a locked condition and an unlocked condition, the locked condition being stiffer than the unlocked condition.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 17/100,451, filed Nov. 20, 2020, which is a continuation of U.S. application Ser. No. 16/013,210, now U.S. Pat. No. 11,124,036, filed Jun. 20, 2018, which is a continuation of U.S. application Ser. No. 15/377,640, now U.S. Pat. No. 10,005,335, filed Dec. 13, 2016, which is a continuation of U.S. application Ser. No. 14/935,184, now U.S. Pat. No. 9,527,362, filed Nov. 6, 2015, which is a continuation of U.S. application Ser. No. 14/507,355, now U.S. Pat. No. 9,205,717, filed Oct. 6, 2014, which is a continuation-in-part of U.S. application Ser. No. 14/074,340, now U.S. Pat. No. 9,662,954, filed on Nov. 7, 2013, which claims the benefit of U.S. Application Ser. No. 61/723,623, filed on Nov. 7, 2012, the disclosures of which are expressly incorporated herein by reference.

US Referenced Citations (843)
Number Name Date Kind
3013442 Fox et al. Dec 1961 A
3623565 Ward et al. Nov 1971 A
3737001 Rasenberger Jun 1973 A
3760246 Wright et al. Sep 1973 A
3861229 Domaas Jan 1975 A
3933213 Trowbridge Jan 1976 A
3952829 Gray Apr 1976 A
3982446 Van Dyken Sep 1976 A
4075841 Hamma et al. Feb 1978 A
4112885 Iwata et al. Sep 1978 A
4116006 Wallis Sep 1978 A
4319658 Collonia et al. Mar 1982 A
4327948 Beck et al. May 1982 A
4340126 Larson Jul 1982 A
4453516 Filsinger Jun 1984 A
4462480 Yasui et al. Jul 1984 A
4508078 Takeuchi et al. Apr 1985 A
4580537 Uchiyama Apr 1986 A
4600215 Kuroki et al. Jul 1986 A
4620602 Capriotti Nov 1986 A
4658662 Rundle Apr 1987 A
4671235 Hosaka Jun 1987 A
4688533 Otobe Aug 1987 A
4691676 Kikuchi Sep 1987 A
4691677 Hotate et al. Sep 1987 A
4722548 Hamilton et al. Feb 1988 A
4741554 Okamoto May 1988 A
4749210 Sugasawa Jun 1988 A
4759329 Nobuo et al. Jul 1988 A
4765296 Ishikawa et al. Aug 1988 A
4779895 Rubel Oct 1988 A
4781162 Ishikawa et al. Nov 1988 A
4785782 Tanaka et al. Nov 1988 A
4787353 Ishikawa et al. Nov 1988 A
4805923 Soltis Feb 1989 A
4809179 Klingler et al. Feb 1989 A
4809659 Tamaki et al. Mar 1989 A
4817466 Kawamura et al. Apr 1989 A
4819174 Furuno et al. Apr 1989 A
4826205 Kouda et al. May 1989 A
4827416 Kawagoe et al. May 1989 A
4831533 Skoeldheden May 1989 A
4838780 Yamagata et al. Jun 1989 A
4856477 Hanaoka et al. Aug 1989 A
4860708 Yamaguchi et al. Aug 1989 A
4862854 Oda et al. Sep 1989 A
4867474 Smith Sep 1989 A
4881428 Ishikawa et al. Nov 1989 A
4893501 Sogawa Jan 1990 A
4895343 Sato Jan 1990 A
4898137 Fujita et al. Feb 1990 A
4898138 Nishimura et al. Feb 1990 A
4901695 Kabasin et al. Feb 1990 A
4903983 Fukushima et al. Feb 1990 A
4905783 Bober Mar 1990 A
4913006 Tsuyama et al. Apr 1990 A
4919097 Mitui et al. Apr 1990 A
4926636 Tadokoro et al. May 1990 A
4927170 Wada May 1990 A
4930082 Harara et al. May 1990 A
4934667 Pees et al. Jun 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4961146 Kajiwara Oct 1990 A
4966247 Masuda Oct 1990 A
4969695 Maehata et al. Nov 1990 A
5000278 Morishita Mar 1991 A
5002028 Arai et al. Mar 1991 A
5002148 Miyake et al. Mar 1991 A
5015009 Ohyama et al. May 1991 A
5018408 Bota et al. May 1991 A
5024460 Hanson Jun 1991 A
5029328 Kamimura et al. Jul 1991 A
5033328 Shimanaka Jul 1991 A
5036939 Johnson et al. Aug 1991 A
5037128 Okuyama et al. Aug 1991 A
5040114 Ishikawa et al. Aug 1991 A
5054813 Kakizaki Oct 1991 A
5060744 Katoh et al. Oct 1991 A
5062657 Majeed Nov 1991 A
5071157 Majeed Dec 1991 A
5071158 Yonekawa et al. Dec 1991 A
5076385 Terazawa et al. Dec 1991 A
5078109 Yoshida et al. Jan 1992 A
5080392 Bazergui Jan 1992 A
5083811 Sato et al. Jan 1992 A
5088464 Meaney Feb 1992 A
5092298 Suzuki et al. Mar 1992 A
5092624 Fukuyama et al. Mar 1992 A
5096219 Hanson et al. Mar 1992 A
5105923 Iizuka Apr 1992 A
5113345 Mine et al. May 1992 A
5113821 Fukui et al. May 1992 A
5114177 Fukunaga et al. May 1992 A
5129475 Kawano et al. Jul 1992 A
5144559 Kamimura et al. Sep 1992 A
5150635 Minowa et al. Sep 1992 A
5163538 Derr et al. Nov 1992 A
5170343 Matsuda Dec 1992 A
5174263 Meaney Dec 1992 A
5189615 Rubel et al. Feb 1993 A
5218540 Ishikawa et al. Jun 1993 A
5233530 Shimada et al. Aug 1993 A
5253728 Matsuno et al. Oct 1993 A
5265693 Rees et al. Nov 1993 A
5307777 Sasajima et al. May 1994 A
5314362 Nagahora May 1994 A
5315295 Fujii May 1994 A
5337239 Okuda Aug 1994 A
5342023 Kuriki et al. Aug 1994 A
5343396 Youngblood Aug 1994 A
5343780 McDaniel et al. Sep 1994 A
5350187 Shinozaki Sep 1994 A
5361209 Tsutsumi Nov 1994 A
5361213 Fujieda et al. Nov 1994 A
5366236 Kuriki et al. Nov 1994 A
5375872 Ohtagaki et al. Dec 1994 A
5377107 Shimizu et al. Dec 1994 A
5383680 Bock et al. Jan 1995 A
5384705 Inagaki et al. Jan 1995 A
5390121 Wolfe Feb 1995 A
5391127 Nishimura Feb 1995 A
RE34906 Tamaki et al. Apr 1995 E
5406920 Murata et al. Apr 1995 A
5413540 Streib et al. May 1995 A
5443558 Ibaraki et al. Aug 1995 A
5444621 Matsunaga et al. Aug 1995 A
5446663 Sasaki et al. Aug 1995 A
5467751 Kumagai Nov 1995 A
5475593 Townend Dec 1995 A
5475596 Henry et al. Dec 1995 A
5483448 Liubakka et al. Jan 1996 A
5485161 Vaughn Jan 1996 A
5490487 Kato et al. Feb 1996 A
5510985 Yamaoka et al. Apr 1996 A
5514049 Kamio et al. May 1996 A
5515273 Sasaki et al. May 1996 A
5521825 Unuvar et al. May 1996 A
5524724 Nishigaki et al. Jun 1996 A
5550739 Hoffmann et al. Aug 1996 A
5555499 Yamashita et al. Sep 1996 A
5575737 Weiss Nov 1996 A
5586032 Kallenbach et al. Dec 1996 A
5611309 Kumagai et al. Mar 1997 A
5632503 Raad et al. May 1997 A
5645033 Person et al. Jul 1997 A
5678847 Izawa et al. Oct 1997 A
5713428 Linden et al. Feb 1998 A
5774820 Linden et al. Jun 1998 A
5832398 Sasaki et al. Nov 1998 A
5845726 Kikkawa et al. Dec 1998 A
5873802 Tabata et al. Feb 1999 A
5880532 Stopher Mar 1999 A
5890870 Berger et al. Apr 1999 A
5897287 Berger et al. Apr 1999 A
5921889 Nozaki et al. Jul 1999 A
5922038 Horiuchi et al. Jul 1999 A
5938556 Lowell Aug 1999 A
5957992 Kiyono Sep 1999 A
5992558 Noro et al. Nov 1999 A
6000702 Streiter Dec 1999 A
6002975 Schiffmann et al. Dec 1999 A
6016795 Ohki Jan 2000 A
6019085 Sato et al. Feb 2000 A
6032752 Karpik et al. Mar 2000 A
6038500 Weiss Mar 2000 A
6070681 Catanzarite Jun 2000 A
6073072 Ishii et al. Jun 2000 A
6073074 Saito et al. Jun 2000 A
6076027 Raad et al. Jun 2000 A
6078252 Kulczycki et al. Jun 2000 A
6086510 Kadota Jul 2000 A
6094614 Hiwatashi Jul 2000 A
6112866 Boichot et al. Sep 2000 A
6120399 Okeson et al. Sep 2000 A
6122568 Madau et al. Sep 2000 A
6124826 Garthwaite et al. Sep 2000 A
6125326 Ohmura et al. Sep 2000 A
6125782 Takashima et al. Oct 2000 A
6134499 Goode et al. Oct 2000 A
6138069 Ellertson et al. Oct 2000 A
6148252 Iwasaki et al. Nov 2000 A
6154703 Nakai et al. Nov 2000 A
6155545 Noro et al. Dec 2000 A
6157297 Nakai Dec 2000 A
6157890 Nakai et al. Dec 2000 A
6161908 Takayama et al. Dec 2000 A
6167341 Gourmelen et al. Dec 2000 A
6170923 Iguchi et al. Jan 2001 B1
6176796 Lislegard Jan 2001 B1
6178371 Light et al. Jan 2001 B1
6181997 Badenoch Jan 2001 B1
6192305 Schiffmann Feb 2001 B1
6206124 Mallette et al. Mar 2001 B1
6217480 Iwata et al. Apr 2001 B1
6226389 Lemelson et al. May 2001 B1
6240365 Bunn May 2001 B1
6244398 Girvin et al. Jun 2001 B1
6244986 Mori et al. Jun 2001 B1
6249728 Streiter Jun 2001 B1
6249744 Morita Jun 2001 B1
6260650 Gustavsson Jul 2001 B1
6263858 Pursifull et al. Jul 2001 B1
6275763 Lotito et al. Aug 2001 B1
6276333 Kazama et al. Aug 2001 B1
6288534 Starkweather et al. Sep 2001 B1
6290034 Ichimaru Sep 2001 B1
6318337 Pursifull Nov 2001 B1
6318490 Laning Nov 2001 B1
6343248 Rizzotto et al. Jan 2002 B1
6351704 Koerner Feb 2002 B1
6352142 Kim Mar 2002 B1
6370458 Shal Apr 2002 B1
6370472 Fosseen Apr 2002 B1
6371884 Channing Apr 2002 B1
6379114 Schott et al. Apr 2002 B1
6427115 Sekiyama Jul 2002 B1
6456908 Kumar Sep 2002 B1
6463385 Fry Oct 2002 B1
6470852 Kanno Oct 2002 B1
6476714 Mizuta Nov 2002 B2
6483201 Klarer Nov 2002 B1
6483467 Kushida et al. Nov 2002 B2
6485340 Kolb et al. Nov 2002 B1
6488609 Morimoto et al. Dec 2002 B1
6502025 Kempen Dec 2002 B1
6507778 Koh Jan 2003 B2
6513611 Ito et al. Feb 2003 B2
6526342 Burdock et al. Feb 2003 B1
6551153 Hattori Apr 2003 B1
6573827 McKenzie Jun 2003 B1
6581710 Sprinkle et al. Jun 2003 B2
6604034 Speck et al. Aug 2003 B1
6644318 Adams et al. Nov 2003 B1
6647328 Walker Nov 2003 B2
6655233 Evans et al. Dec 2003 B2
6657539 Yamamoto et al. Dec 2003 B2
6675577 Evans Jan 2004 B2
6684140 Lu Jan 2004 B2
6685174 Behmenburg et al. Feb 2004 B2
6699085 Hattori Mar 2004 B2
6704643 Suhre et al. Mar 2004 B1
6738705 Kojima et al. May 2004 B2
6738708 Suzuki et al. May 2004 B2
6752401 Burdock Jun 2004 B2
6757606 Gonring Jun 2004 B1
6761145 Matsuda et al. Jul 2004 B2
6772061 Berthiaume et al. Aug 2004 B1
6795764 Schmitz et al. Sep 2004 B2
6820712 Nakamura Nov 2004 B2
6834736 Kramer et al. Dec 2004 B2
6839630 Sakamoto Jan 2005 B2
6845314 Fosseen Jan 2005 B2
6845829 Hafendorfer Jan 2005 B2
6848420 Ishiguro et al. Feb 2005 B2
6848956 Ozawa Feb 2005 B2
6851495 Sprinkle et al. Feb 2005 B2
6851679 Downey et al. Feb 2005 B2
6860826 Johnson Mar 2005 B1
6874467 Hunt et al. Apr 2005 B2
6876924 Morita et al. Apr 2005 B2
6880532 Kerns et al. Apr 2005 B1
6886529 Suzuki et al. May 2005 B2
6887182 Nakatani et al. May 2005 B2
6889654 Ito May 2005 B2
6895318 Barton May 2005 B1
6895518 Wingen May 2005 B2
6897629 Wilton et al. May 2005 B2
6938508 Saagge Sep 2005 B1
6941209 Liu Sep 2005 B2
6942050 Honkala et al. Sep 2005 B1
6945541 Brown Sep 2005 B2
6964259 Raetzman Nov 2005 B1
6964260 Samoto et al. Nov 2005 B2
6976689 Hibbert Dec 2005 B2
6990401 Neiss et al. Jan 2006 B2
7005976 Hagenbuch Feb 2006 B2
7011174 James Mar 2006 B1
7032895 Folchert Apr 2006 B2
7035836 Caponetto et al. Apr 2006 B2
7036485 Koerner May 2006 B1
7044260 Schaedler et al. May 2006 B2
7055454 Whiting et al. Jun 2006 B1
7055497 Maehara et al. Jun 2006 B2
7055545 Mascari et al. Jun 2006 B2
7058490 Kim Jun 2006 B2
7058506 Kawase et al. Jun 2006 B2
7066142 Hanasato Jun 2006 B2
7070012 Fecteau Jul 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7077713 Watabe et al. Jul 2006 B2
7077784 Banta et al. Jul 2006 B2
7086379 Blomenberg et al. Aug 2006 B2
7092808 Lu et al. Aug 2006 B2
7096851 Matsuda et al. Aug 2006 B2
7097166 Folchert Aug 2006 B2
7104352 Weinzierl Sep 2006 B2
7123189 Lalik et al. Oct 2006 B2
7124865 Turner et al. Oct 2006 B2
7136729 Salman et al. Nov 2006 B2
7140619 Hrovat et al. Nov 2006 B2
7163000 Ishida et al. Jan 2007 B2
7168709 Niwa et al. Jan 2007 B2
7171945 Matsuda et al. Feb 2007 B2
7171947 Fukushima et al. Feb 2007 B2
7182063 Keefover et al. Feb 2007 B2
7184873 Idsinga et al. Feb 2007 B1
7185630 Takahashi et al. Mar 2007 B2
7220153 Okuyama May 2007 B2
7233846 Kawauchi et al. Jun 2007 B2
7234707 Green et al. Jun 2007 B2
7235963 Wayama Jun 2007 B2
7249986 Otobe et al. Jul 2007 B2
7259357 Walker Aug 2007 B2
7260319 Watanabe et al. Aug 2007 B2
7260471 Matsuda et al. Aug 2007 B2
7270335 Hio et al. Sep 2007 B2
7280904 Kaji Oct 2007 B2
7286919 Nordgren et al. Oct 2007 B2
7287511 Matsuda Oct 2007 B2
7305295 Bauerle et al. Dec 2007 B2
7311082 Yokoi Dec 2007 B2
7315779 Rioux et al. Jan 2008 B1
7316288 Bennett et al. Jan 2008 B1
7318410 Yokoi Jan 2008 B2
7322435 Lillbacka et al. Jan 2008 B2
7325533 Matsuda Feb 2008 B2
7331326 Arai et al. Feb 2008 B2
7354321 Takada et al. Apr 2008 B2
7359787 Ono et al. Apr 2008 B2
7367247 Horiuchi et al. May 2008 B2
7367316 Russell et al. May 2008 B2
7367854 Arvidsson May 2008 B2
7380538 Gagnon et al. Jun 2008 B1
7386378 Lauwerys et al. Jun 2008 B2
7399210 Yoshimasa Jul 2008 B2
7401794 Laurent et al. Jul 2008 B2
7413196 Borowski Aug 2008 B2
7416458 Suemori et al. Aug 2008 B2
7421954 Bose Sep 2008 B2
7422495 Kinoshita et al. Sep 2008 B2
7427072 Brown Sep 2008 B2
7431013 Hotta et al. Oct 2008 B2
7433774 Sen et al. Oct 2008 B2
7441789 Geiger et al. Oct 2008 B2
7445071 Yamazaki et al. Nov 2008 B2
7454282 Mizuguchi Nov 2008 B2
7454284 Fosseen Nov 2008 B2
7458360 Irihune et al. Dec 2008 B2
7461630 Maruo et al. Dec 2008 B2
7475746 Tsukada et al. Jan 2009 B2
7478689 Sugden et al. Jan 2009 B1
7483775 Karaba et al. Jan 2009 B2
7486199 Tengler et al. Feb 2009 B2
7505836 Okuyama et al. Mar 2009 B2
7506633 Cowan Mar 2009 B2
7510060 Izawa et al. Mar 2009 B2
7523737 Deguchi et al. Apr 2009 B2
7526665 Kim et al. Apr 2009 B2
7529609 Braunberger et al. May 2009 B2
7530345 Plante et al. May 2009 B1
7533750 Simmons et al. May 2009 B2
7533890 Chiao May 2009 B2
7571039 Chen et al. Aug 2009 B2
7571073 Gamberini et al. Aug 2009 B2
7598849 Gallant et al. Oct 2009 B2
7600762 Yasui et al. Oct 2009 B2
7611154 Delaney Nov 2009 B2
7630807 Yoshimura et al. Dec 2009 B2
7641208 Barron et al. Jan 2010 B1
7644934 Mizuta Jan 2010 B2
7647143 Ito et al. Jan 2010 B2
7684911 Seifert et al. Mar 2010 B2
7707012 Stephens Apr 2010 B2
7711468 Levy May 2010 B1
7740256 Davis Jun 2010 B2
7751959 Boon et al. Jul 2010 B2
7771313 Cullen et al. Aug 2010 B2
7778741 Rao et al. Aug 2010 B2
7810818 Bushko Oct 2010 B2
7815205 Barth et al. Oct 2010 B2
7822514 Erickson Oct 2010 B1
7823106 Baker et al. Oct 2010 B2
7823891 Bushko et al. Nov 2010 B2
7826959 Namari et al. Nov 2010 B2
7862061 Jung Jan 2011 B2
7885750 Lu Feb 2011 B2
7899594 Messih et al. Mar 2011 B2
7912610 Saito et al. Mar 2011 B2
7926822 Ohletz et al. Apr 2011 B2
7940383 Noguchi et al. May 2011 B2
7942427 Lloyd May 2011 B2
7950486 Van et al. May 2011 B2
7959163 Beno et al. Jun 2011 B2
7962261 Bushko et al. Jun 2011 B2
7963529 Oteman et al. Jun 2011 B2
7970512 Lu et al. Jun 2011 B2
7975794 Simmons Jul 2011 B2
7984915 Post et al. Jul 2011 B2
8005596 Lu et al. Aug 2011 B2
8027775 Takenaka et al. Sep 2011 B2
8032281 Bujak et al. Oct 2011 B2
8050818 Mizuta Nov 2011 B2
8050857 Lu et al. Nov 2011 B2
8056392 Ryan et al. Nov 2011 B2
8065054 Tarasinski et al. Nov 2011 B2
8075002 Pionke et al. Dec 2011 B1
8086371 Furuichi et al. Dec 2011 B2
8087676 McIntyre Jan 2012 B2
8095268 Parison et al. Jan 2012 B2
8108104 Hrovat et al. Jan 2012 B2
8113521 Lin et al. Feb 2012 B2
8116938 Itagaki et al. Feb 2012 B2
8121757 Song et al. Feb 2012 B2
8170749 Mizuta May 2012 B2
8190327 Poilbout May 2012 B2
8195361 Kajino Jun 2012 B2
8204666 Takeuchi et al. Jun 2012 B2
8209087 Haegglund et al. Jun 2012 B2
8214106 Ghoneim et al. Jul 2012 B2
8219262 Stiller Jul 2012 B2
8229642 Post et al. Jul 2012 B2
8260496 Gagliano Sep 2012 B2
8271175 Takenaka et al. Sep 2012 B2
8296010 Hirao et al. Oct 2012 B2
8308170 Van et al. Nov 2012 B2
8315764 Chen et al. Nov 2012 B2
8315769 Braunberger et al. Nov 2012 B2
8321088 Brown et al. Nov 2012 B2
8322497 Marjoram et al. Dec 2012 B2
8352143 Lu et al. Jan 2013 B2
8355840 Ammon et al. Jan 2013 B2
8359149 Shin Jan 2013 B2
8374748 Jolly Feb 2013 B2
8376373 Conradie Feb 2013 B2
8396627 Jung et al. Mar 2013 B2
8417417 Chen et al. Apr 2013 B2
8424832 Robbins et al. Apr 2013 B2
8428839 Braunberger et al. Apr 2013 B2
8434774 Leclerc et al. May 2013 B2
8437935 Braunberger et al. May 2013 B2
8442720 Lu et al. May 2013 B2
8444161 Leclerc et al. May 2013 B2
8447489 Murata et al. May 2013 B2
8457841 Knoll et al. Jun 2013 B2
8473157 Savaresi et al. Jun 2013 B2
8517395 Knox et al. Aug 2013 B2
8532896 Braunberger et al. Sep 2013 B2
8534397 Grajkowski et al. Sep 2013 B2
8534413 Nelson et al. Sep 2013 B2
8548678 Ummethala et al. Oct 2013 B2
8550221 Paulides et al. Oct 2013 B2
8571776 Braunberger et al. Oct 2013 B2
8573605 Di Maria Nov 2013 B2
8626388 Oikawa Jan 2014 B2
8626389 Sidlosky Jan 2014 B2
8641052 Kondo et al. Feb 2014 B2
8645024 Daniels Feb 2014 B2
8666596 Arenz Mar 2014 B2
8672106 Laird et al. Mar 2014 B2
8672337 Van et al. Mar 2014 B2
8676440 Watson Mar 2014 B2
8682530 Nakamura Mar 2014 B2
8682550 Nelson et al. Mar 2014 B2
8682558 Braunberger et al. Mar 2014 B2
8684887 Krosschell Apr 2014 B2
8700260 Jolly et al. Apr 2014 B2
8712599 Westpfahl Apr 2014 B1
8712639 Lu et al. Apr 2014 B2
8718872 Hirao et al. May 2014 B2
8725351 Selden et al. May 2014 B1
8725380 Braunberger et al. May 2014 B2
8731774 Yang May 2014 B2
8770594 Tominaga et al. Jul 2014 B2
8827019 Deckard et al. Sep 2014 B2
8903617 Braunberger et al. Dec 2014 B2
8954251 Braunberger et al. Feb 2015 B2
8972712 Braunberger Mar 2015 B2
8994494 Koenig et al. Mar 2015 B2
8997952 Goetz Apr 2015 B2
9010768 Kinsman et al. Apr 2015 B2
9027937 Ryan May 2015 B2
9038791 Marking May 2015 B2
9123249 Braunberger et al. Sep 2015 B2
9151384 Kohler et al. Oct 2015 B2
9162573 Grajkowski et al. Oct 2015 B2
9205717 Brady Dec 2015 B2
9211924 Safranski et al. Dec 2015 B2
9327726 Braunberger et al. May 2016 B2
9365251 Safranski et al. Jun 2016 B2
9371002 Braunberger Jun 2016 B2
9381810 Nelson et al. Jul 2016 B2
9381902 Braunberger et al. Jul 2016 B2
9428242 Ginther et al. Aug 2016 B2
9429235 Krosschell et al. Aug 2016 B2
9527362 Brady Dec 2016 B2
9643538 Braunberger et al. May 2017 B2
9662954 Brady May 2017 B2
9665418 Arnott May 2017 B2
9695899 Smith Jul 2017 B2
9771084 Norstad Sep 2017 B2
9802621 Gillingham et al. Oct 2017 B2
9809195 Giese et al. Nov 2017 B2
9830821 Braunberger et al. Nov 2017 B2
9834184 Braunberger Dec 2017 B2
9834215 Braunberger et al. Dec 2017 B2
9855986 Braunberger et al. Jan 2018 B2
9868385 Braunberger Jan 2018 B2
9878693 Braunberger Jan 2018 B2
9920810 Smeljanskij Mar 2018 B2
9945298 Braunberger et al. Apr 2018 B2
10005335 Brady Jun 2018 B2
10046694 Braunberger et al. Aug 2018 B2
10086698 Grajkowski et al. Oct 2018 B2
10154377 Post et al. Dec 2018 B2
10195989 Braunberger et al. Feb 2019 B2
10202159 Braunberger et al. Feb 2019 B2
10220765 Braunberger Mar 2019 B2
10227041 Braunberger et al. Mar 2019 B2
10266164 Braunberger Apr 2019 B2
10363941 Norstad Jul 2019 B2
10384682 Braunberger et al. Aug 2019 B2
10391989 Braunberger Aug 2019 B2
10406884 Oakden-Graus et al. Sep 2019 B2
10410520 Braunberger et al. Sep 2019 B2
10436125 Braunberger et al. Oct 2019 B2
10704640 Galasso Jul 2020 B2
10723408 Pelot Jul 2020 B2
10731724 Laird Aug 2020 B2
11001120 Cox May 2021 B2
11110913 Krosschell et al. Sep 2021 B2
11124036 Brady et al. Sep 2021 B2
11148748 Galasso Oct 2021 B2
11162555 Haugen Nov 2021 B2
11279198 Marking Mar 2022 B2
11285964 Norstad et al. Mar 2022 B2
11306798 Cox Apr 2022 B2
11351834 Cox Jun 2022 B2
11400784 Brady et al. Aug 2022 B2
11400785 Brady et al. Aug 2022 B2
11400786 Brady et al. Aug 2022 B2
11400787 Brady et al. Aug 2022 B2
11413924 Cox Aug 2022 B2
11479075 Graus et al. Oct 2022 B2
20010005803 Cochofel et al. Jun 2001 A1
20010021887 Obradovich et al. Sep 2001 A1
20010035166 Kerns et al. Nov 2001 A1
20010052756 Noro et al. Dec 2001 A1
20020082752 Obradovich Jun 2002 A1
20020113185 Ziegler Aug 2002 A1
20020113393 Urbach Aug 2002 A1
20020115357 Hiki et al. Aug 2002 A1
20020177949 Katayama et al. Nov 2002 A1
20020193935 Hashimoto et al. Dec 2002 A1
20030014174 Giers Jan 2003 A1
20030036360 Russell et al. Feb 2003 A1
20030036823 Mahvi Feb 2003 A1
20030038411 Sendrea Feb 2003 A1
20030046000 Morita et al. Mar 2003 A1
20030047994 Koh Mar 2003 A1
20030054831 Bardmesser Mar 2003 A1
20030062025 Samoto et al. Apr 2003 A1
20030125857 Madau et al. Jul 2003 A1
20030187555 Lutz et al. Oct 2003 A1
20030200016 Spillane et al. Oct 2003 A1
20030205867 Coelingh et al. Nov 2003 A1
20040010383 Lu et al. Jan 2004 A1
20040015275 Herzog et al. Jan 2004 A1
20040024515 Troupe et al. Feb 2004 A1
20040026880 Bundy Feb 2004 A1
20040034460 Folkerts et al. Feb 2004 A1
20040041358 Hrovat et al. Mar 2004 A1
20040090020 Braswell May 2004 A1
20040094912 Niwa et al. May 2004 A1
20040107591 Cuddy Jun 2004 A1
20040216550 Fallak et al. Nov 2004 A1
20040226538 Cannone et al. Nov 2004 A1
20040245034 Miyamoto et al. Dec 2004 A1
20050004736 Belcher et al. Jan 2005 A1
20050023789 Suzuki et al. Feb 2005 A1
20050027428 Glora et al. Feb 2005 A1
20050045148 Katsuragawa et al. Mar 2005 A1
20050098964 Brown May 2005 A1
20050131604 Lu Jun 2005 A1
20050133006 Frenz et al. Jun 2005 A1
20050149246 McLeod Jul 2005 A1
20050155571 Hanasato Jul 2005 A1
20050217953 Bossard Oct 2005 A1
20050267663 Naono Dec 2005 A1
20050279244 Bose Dec 2005 A1
20050280219 Brown Dec 2005 A1
20050284446 Okuyama Dec 2005 A1
20060014606 Sporl et al. Jan 2006 A1
20060017240 Laurent et al. Jan 2006 A1
20060018636 Watanabe et al. Jan 2006 A1
20060052909 Cherouny Mar 2006 A1
20060064223 Voss Mar 2006 A1
20060065239 Tsukada et al. Mar 2006 A1
20060112930 Matsuda et al. Jun 2006 A1
20060162681 Kawasaki Jul 2006 A1
20060191739 Koga Aug 2006 A1
20060224294 Kawazoe et al. Oct 2006 A1
20060226611 Xiao et al. Oct 2006 A1
20060229811 Herman et al. Oct 2006 A1
20060235602 Ishida et al. Oct 2006 A1
20060243246 Yokoi Nov 2006 A1
20060243247 Yokoi Nov 2006 A1
20060247840 Matsuda et al. Nov 2006 A1
20060270520 Owens Nov 2006 A1
20060278197 Takamatsu Dec 2006 A1
20060284387 Klees Dec 2006 A1
20070028888 Jasem Feb 2007 A1
20070039770 Barrette et al. Feb 2007 A1
20070045028 Yamamoto et al. Mar 2007 A1
20070050095 Nelson et al. Mar 2007 A1
20070050125 Matsuda et al. Mar 2007 A1
20070068490 Matsuda Mar 2007 A1
20070073461 Fielder Mar 2007 A1
20070096672 Endo et al. May 2007 A1
20070118268 Inoue et al. May 2007 A1
20070119419 Matsuda May 2007 A1
20070120332 Bushko et al. May 2007 A1
20070126628 Lalik et al. Jun 2007 A1
20070142167 Kanafani et al. Jun 2007 A1
20070151544 Arai et al. Jul 2007 A1
20070158920 Delaney Jul 2007 A1
20070168125 Petrik Jul 2007 A1
20070169744 Maruo et al. Jul 2007 A1
20070178779 Takada et al. Aug 2007 A1
20070192001 Tatsumi et al. Aug 2007 A1
20070213920 Igarashi et al. Sep 2007 A1
20070239331 Kaplan Oct 2007 A1
20070240917 Duceppe Oct 2007 A1
20070244619 Peterson Oct 2007 A1
20070246010 Okuyama et al. Oct 2007 A1
20070247291 Masuda et al. Oct 2007 A1
20070255462 Masuda et al. Nov 2007 A1
20070255466 Chiao Nov 2007 A1
20070271026 Hijikata Nov 2007 A1
20080004773 Maeda Jan 2008 A1
20080015767 Masuda et al. Jan 2008 A1
20080022969 Frenz et al. Jan 2008 A1
20080059034 Lu Mar 2008 A1
20080078355 Maehara et al. Apr 2008 A1
20080091309 Walker Apr 2008 A1
20080114521 Doering May 2008 A1
20080115761 Deguchi et al. May 2008 A1
20080119984 Hrovat May 2008 A1
20080172155 Takamatsu et al. Jul 2008 A1
20080178838 Ota Jul 2008 A1
20080178839 Oshima et al. Jul 2008 A1
20080178840 Oshima et al. Jul 2008 A1
20080183353 Post et al. Jul 2008 A1
20080243334 Bujak Oct 2008 A1
20080243336 Fitzgibbons Oct 2008 A1
20080269989 Brenner et al. Oct 2008 A1
20080275606 Tarasinski et al. Nov 2008 A1
20080287256 Unno Nov 2008 A1
20080300768 Hijikata Dec 2008 A1
20090008890 Woodford Jan 2009 A1
20090037051 Shimizu et al. Feb 2009 A1
20090071437 Samoto et al. Mar 2009 A1
20090076699 Osaki et al. Mar 2009 A1
20090093928 Getman et al. Apr 2009 A1
20090095252 Yamada Apr 2009 A1
20090095254 Yamada Apr 2009 A1
20090096598 Tengler et al. Apr 2009 A1
20090108546 Ohletz et al. Apr 2009 A1
20090132154 Fuwa et al. May 2009 A1
20090171546 Tozuka et al. Jul 2009 A1
20090173562 Namari et al. Jul 2009 A1
20090229568 Nakagawa Sep 2009 A1
20090234534 Stempnik et al. Sep 2009 A1
20090240427 Siereveld et al. Sep 2009 A1
20090243339 Orr et al. Oct 2009 A1
20090254249 Ghoneim et al. Oct 2009 A1
20090254259 The Oct 2009 A1
20090261542 McIntyre Oct 2009 A1
20090287392 Thomas Nov 2009 A1
20090301830 Kinsman et al. Dec 2009 A1
20090308682 Ripley et al. Dec 2009 A1
20090312147 Oshima et al. Dec 2009 A1
20090321167 Simmons Dec 2009 A1
20100012399 Hansen Jan 2010 A1
20100016120 Dickinson et al. Jan 2010 A1
20100017059 Lu et al. Jan 2010 A1
20100017070 Doering et al. Jan 2010 A1
20100023236 Morgan et al. Jan 2010 A1
20100057297 Itagaki et al. Mar 2010 A1
20100059964 Morris Mar 2010 A1
20100109277 Furrer May 2010 A1
20100113214 Krueger et al. May 2010 A1
20100121529 Savaresi et al. May 2010 A1
20100131131 Kamio et al. May 2010 A1
20100138142 Pease Jun 2010 A1
20100140009 Kamen et al. Jun 2010 A1
20100145579 O'Brien Jun 2010 A1
20100145581 Hou Jun 2010 A1
20100145595 Bellistri et al. Jun 2010 A1
20100152969 Li et al. Jun 2010 A1
20100181416 Sakamoto et al. Jul 2010 A1
20100203933 Eyzaguirre et al. Aug 2010 A1
20100211261 Sasaki et al. Aug 2010 A1
20100219004 Mackenzie Sep 2010 A1
20100230876 Inoue et al. Sep 2010 A1
20100238129 Nakanishi et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100253018 Peterson Oct 2010 A1
20100259018 Honig et al. Oct 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100282210 Itagaki Nov 2010 A1
20100301571 Van et al. Dec 2010 A1
20110022266 Ippolito et al. Jan 2011 A1
20110035089 Hirao et al. Feb 2011 A1
20110035105 Jolly Feb 2011 A1
20110036656 Nicoson Feb 2011 A1
20110074123 Fought et al. Mar 2011 A1
20110109060 Earle et al. May 2011 A1
20110153158 Acocella Jun 2011 A1
20110166744 Lu Jul 2011 A1
20110186360 Brehob et al. Aug 2011 A1
20110190972 Timmons et al. Aug 2011 A1
20110270509 Whitney et al. Nov 2011 A1
20110297462 Grajkowski et al. Dec 2011 A1
20110297463 Grajkowski et al. Dec 2011 A1
20110301824 Nelson et al. Dec 2011 A1
20110301825 Grajkowski et al. Dec 2011 A1
20110307155 Simard Dec 2011 A1
20120017871 Matsuda Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120029770 Hirao et al. Feb 2012 A1
20120053790 Yoshitaka Mar 2012 A1
20120053791 Harada Mar 2012 A1
20120055745 Buettner et al. Mar 2012 A1
20120065860 Isaji et al. Mar 2012 A1
20120078470 Hirao et al. Mar 2012 A1
20120119454 Di Maria May 2012 A1
20120136506 Takeuchi et al. May 2012 A1
20120139328 Brown et al. Jun 2012 A1
20120168268 Bruno et al. Jul 2012 A1
20120191301 Benyo et al. Jul 2012 A1
20120191302 Sternecker et al. Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120247888 Chikuma et al. Oct 2012 A1
20120253601 Ichida et al. Oct 2012 A1
20120265402 Post et al. Oct 2012 A1
20120277953 Savaresi et al. Nov 2012 A1
20130009350 Wolf-Monheim Jan 2013 A1
20130018559 Epple et al. Jan 2013 A1
20130030650 Norris et al. Jan 2013 A1
20130041545 Baer et al. Feb 2013 A1
20130060423 Jolly Mar 2013 A1
20130060444 Matsunaga et al. Mar 2013 A1
20130074487 Herold et al. Mar 2013 A1
20130079988 Hirao et al. Mar 2013 A1
20130092468 Nelson et al. Apr 2013 A1
20130096784 Kohler et al. Apr 2013 A1
20130096785 Kohler et al. Apr 2013 A1
20130096793 Krosschell Apr 2013 A1
20130103259 Eng et al. Apr 2013 A1
20130124045 Suzuki et al. May 2013 A1
20130158799 Kamimura Jun 2013 A1
20130161921 Cheng et al. Jun 2013 A1
20130173119 Izawa Jul 2013 A1
20130190980 Ramirez Ruiz Jul 2013 A1
20130197732 Pearlman et al. Aug 2013 A1
20130197756 Ramirez Ruiz Aug 2013 A1
20130218414 Meitinger et al. Aug 2013 A1
20130226405 Koumura et al. Aug 2013 A1
20130253770 Nishikawa et al. Sep 2013 A1
20130261893 Yang Oct 2013 A1
20130304319 Daniels Nov 2013 A1
20130328277 Ryan et al. Dec 2013 A1
20130334394 Parison et al. Dec 2013 A1
20130338869 Tsumano Dec 2013 A1
20130341143 Brown Dec 2013 A1
20130345933 Norton et al. Dec 2013 A1
20140001717 Giovanardi et al. Jan 2014 A1
20140005888 Bose et al. Jan 2014 A1
20140012467 Knox et al. Jan 2014 A1
20140038755 Ijichi et al. Feb 2014 A1
20140046539 Wijffels et al. Feb 2014 A1
20140058606 Hilton Feb 2014 A1
20140095022 Cashman et al. Apr 2014 A1
20140125018 Brady May 2014 A1
20140129083 O'Connor et al. May 2014 A1
20140131971 Hou May 2014 A1
20140136048 Ummethala et al. May 2014 A1
20140156143 Evangelou et al. Jun 2014 A1
20140167372 Kim et al. Jun 2014 A1
20140239602 Blankenship et al. Aug 2014 A1
20140316653 Kikuchi Oct 2014 A1
20140353933 Hawksworth et al. Dec 2014 A1
20140358373 Kikuchi Dec 2014 A1
20150039199 Kikuchi Feb 2015 A1
20150046034 Kikuchi Feb 2015 A1
20150057885 Brady Feb 2015 A1
20150081170 Kikuchi Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150084290 Norton et al. Mar 2015 A1
20150217778 Fairgrieve et al. Aug 2015 A1
20150329141 Preijert Nov 2015 A1
20160059660 Brady et al. Mar 2016 A1
20160107498 Yamazaki Apr 2016 A1
20160121689 Park et al. May 2016 A1
20160121905 Gillingham et al. May 2016 A1
20160121924 Norstad May 2016 A1
20160153516 Marking Jun 2016 A1
20160214455 Reul et al. Jul 2016 A1
20160347142 Seong et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170043778 Kelly Feb 2017 A1
20170087950 Brady et al. Mar 2017 A1
20170129298 Lu et al. May 2017 A1
20170129301 Harvey May 2017 A1
20170313152 Kang Nov 2017 A1
20170321729 Melcher Nov 2017 A1
20180001729 Goffer et al. Jan 2018 A1
20180009443 Norstad Jan 2018 A1
20180126817 Russell et al. May 2018 A1
20180141543 Krosschell et al. May 2018 A1
20180297435 Brady et al. Oct 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180361853 Grajkowski et al. Dec 2018 A1
20190100071 Tsiaras et al. Apr 2019 A1
20190118604 Suplin et al. Apr 2019 A1
20190118898 Ericksen et al. Apr 2019 A1
20190389478 Norstad Dec 2019 A1
20200016953 Oakden-Graus et al. Jan 2020 A1
20200156430 Oakden-Graus et al. May 2020 A1
20210070124 Brady et al. Mar 2021 A1
20210070125 Brady et al. Mar 2021 A1
20210070126 Brady et al. Mar 2021 A1
20210086578 Brady et al. Mar 2021 A1
20210162830 Graus et al. Jun 2021 A1
20210162833 Graus et al. Jun 2021 A1
20210206263 Grajkowski et al. Jul 2021 A1
20210362806 Hedlund et al. Nov 2021 A1
20220016949 Graus et al. Jan 2022 A1
20220266844 Norstad et al. Aug 2022 A1
20220388362 Graus et al. Dec 2022 A1
20220397194 Kohler Dec 2022 A1
20230079941 Graus et al. Mar 2023 A1
Foreign Referenced Citations (134)
Number Date Country
2012323853 May 2014 AU
2015328248 May 2017 AU
2260292 Jul 2000 CA
2851626 Apr 2013 CA
2963790 Apr 2016 CA
2965309 May 2016 CA
3018906 Apr 2019 CA
1129646 Aug 1996 CN
2255379 Jun 1997 CN
2544987 Apr 2003 CN
1660615 Aug 2005 CN
1664337 Sep 2005 CN
1746803 Mar 2006 CN
1749048 Mar 2006 CN
1810530 Aug 2006 CN
101417596 Apr 2009 CN
101549626 Oct 2009 CN
201723635 Jan 2011 CN
102069813 May 2011 CN
102168732 Aug 2011 CN
201914049 Aug 2011 CN
202040257 Nov 2011 CN
102616104 Aug 2012 CN
102627063 Aug 2012 CN
102678808 Sep 2012 CN
202449059 Sep 2012 CN
102729760 Oct 2012 CN
202468817 Oct 2012 CN
102840265 Dec 2012 CN
103079934 May 2013 CN
103303088 Sep 2013 CN
103318184 Sep 2013 CN
103507588 Jan 2014 CN
104755348 Jul 2015 CN
105564437 May 2016 CN
106183688 Dec 2016 CN
106794736 May 2017 CN
103857576 Aug 2017 CN
107406094 Nov 2017 CN
107521449 Dec 2017 CN
107521499 Dec 2017 CN
3811541 Oct 1988 DE
4017255 Dec 1990 DE
4323589 Jan 1994 DE
4328551 Mar 1994 DE
19508302 Sep 1996 DE
19922745 Dec 2000 DE
60029553 Jul 2007 DE
102010020544 Jan 2011 DE
102012101278 Aug 2013 DE
0361726 Apr 1990 EP
0398804 Nov 1990 EP
0403803 Dec 1990 EP
0544108 Jun 1993 EP
0546295 Jun 1993 EP
0405123 Oct 1993 EP
0473766 Feb 1994 EP
0691226 Jan 1996 EP
0745965 Dec 1996 EP
0829383 Mar 1998 EP
0953470 Nov 1999 EP
1022169 Dec 1999 EP
1005006 May 2000 EP
1172239 Jan 2002 EP
1219475 Jul 2002 EP
1238833 Sep 2002 EP
1258706 Nov 2002 EP
1355209 Oct 2003 EP
1449688 Aug 2004 EP
1481876 Dec 2004 EP
1164897 Feb 2005 EP
2123933 Nov 2009 EP
2216191 Aug 2010 EP
2268496 Jan 2011 EP
2397349 Dec 2011 EP
2517904 Oct 2012 EP
3150454 Apr 2017 EP
3204248 Aug 2017 EP
2935642 Mar 2010 FR
2233939 Jan 1991 GB
2234211 Jan 1991 GB
2259063 Mar 1993 GB
2262491 Jun 1993 GB
2329728 Mar 1999 GB
2377415 Jan 2003 GB
2412448 Sep 2005 GB
2441348 Mar 2008 GB
2445291 Jul 2008 GB
20130233813 Aug 2014 IN
01-208212 Aug 1989 JP
02-155815 Jun 1990 JP
03-137209 Jun 1991 JP
04-368211 Dec 1992 JP
05-178055 Jul 1993 JP
06-156036 Jun 1994 JP
07-117433 May 1995 JP
07-186668 Jul 1995 JP
08-332940 Dec 1996 JP
09-203640 Aug 1997 JP
2898949 Jun 1999 JP
2956221 Oct 1999 JP
11-321754 Nov 1999 JP
3087539 Sep 2000 JP
2001-018623 Jan 2001 JP
3137209 Feb 2001 JP
2001-121939 May 2001 JP
2001-233228 Aug 2001 JP
2002-219921 Aug 2002 JP
2003-328806 Nov 2003 JP
2008-273246 Nov 2008 JP
2009-035220 Feb 2009 JP
2009-160964 Jul 2009 JP
4584510 Nov 2010 JP
2011-126405 Jun 2011 JP
5149443 Feb 2013 JP
2013-173490 Sep 2013 JP
2013-189109 Sep 2013 JP
10-2008-0090833 Oct 2008 KR
M299089 Oct 2006 TW
9210693 Jun 1992 WO
9605975 Feb 1996 WO
9727388 Jul 1997 WO
9959860 Nov 1999 WO
0053057 Sep 2000 WO
0220318 Mar 2002 WO
2004009433 Jan 2004 WO
2004098941 Nov 2004 WO
2009008816 Jan 2009 WO
2009133000 Nov 2009 WO
2012028923 Mar 2012 WO
2015004676 Jan 2015 WO
2016057555 Apr 2016 WO
2016069405 May 2016 WO
2020089837 May 2020 WO
Non-Patent Literature Citations (51)
Entry
3Drive Compact Throttle Controller, Blitz Power USA, <http://pivotjp.com/product/thf_c/the.html>; earliest known archive via Internet Archive Wayback Machine Aug. 27, 2009; <http://web.archive.org/web/20090827154111/http://pivotjp.com/product/thf_c/the.html>; see appended screenshot retrieved from the Internet Nov. 30, 2015; 2 pages.
Ackermann et al., “Robust steering control for active rollover avoidance of vehicles with elevated center of gravity”, Jul. 1998, pp. 1-6.
Article 34 Amendment, issued by the European Patent Office, dated Aug. 29, 2016, for related International patent application No. PCT/US2015/057132; 34 pages.
Bhattacharyya et al., “An Approach to Rollover Stability In Vehicles Using Suspension Relative Position Sensors And Lateral Acceleration Sensors”, Dec. 2005, 100 pages.
Compare: Three Selectable Terrain Management Systems, Independent Land Rover News Blog, retrieved from https://web.archive.org/web/20120611082023/ . . . ; archive date Jun. 11, 2012; 4 pages.
EDFC Active Adjust Damping Force Instantly according to G-Force & Speed, TEIN, retrieved from https://web.archive.org/web/20140528221849/ . . . ; archive date May 28, 2014; 18 pages.
EDFC Active Adjust Damping Force Instantly according to G-Force & Speed, TEIN, retrieved from https://web.archive.org/web/20160515190809/ . . . ; archive date May 15, 2016; 22 pages.
English translation of Examination Report issued by the State Intellectual Property Office of People's Republic of China, dated Jun. 1, 2015, for Chinese Patent Application No. 201180037804.3; 13 pages.
European Search Report issued by the European Patent Office, dated Feb. 10, 2017, for corresponding European patent application No. 16193006; 7 pages.
Examination Report issued by the European Patent Office, dated Aug. 1, 2016, for European Patent Application No. 11724931.8; 5 pages.
Examination Report issued by the State Intellectual Property Office of People's Republic of China, dated Feb. 3, 2016, for Chinese Patent Application No. 201180037804.3; 14 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Apr. 15, 2014, for Australian Patent Application No. 2011261248; 5 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Aug. 10, 2018, for Australian Patent Application No. 2015328248; 2 pages.
Examination Report No. 1 issued by the Australian Government IP Australia, dated Jan. 12, 2017, for corresponding Australian patent application No. 2015271880; 6 pages.
Examination Report No. 2 issued by the Australian Government IP Australia, dated Jun. 29, 2017, for Australian Patent Application No. 2015271880; 8 pages.
Examination Report No. 2 issued by the Australian Government IP Australia, dated May 29, 2015, for Australian Patent Application No. 2011261248; 8 pages.
Examination Report No. 3 issued by the Australian Government IP Australia, dated Dec. 1, 2017, for Australian Patent Application No. 2015271880; 7 pages.
Extended European Search Report issued by the European Patent Office, dated Sep. 7, 2018, for European Patent Application No. 18183050.6; 7 pages.
First drive: Ferrari's easy-drive supercar, GoAuto.com.au, Feb. 16, 2010; 4 pages.
Gangadurai et al.; Development of control strategy for optimal control of a continuously variable transmission operating in combination with a throttle controlled engine; SAE International; Oct. 12, 2005.
Hac et al., “Improvements in vehicle handling through integrated control of chassis systems”, Int. J. of Vehicle Autonomous Systems(IJVAS), vol. 1, No. 1, 2002, pp. 83-110.
Huang et al., “Nonlinear Active Suspension Control Design Applied to a Half-Car Model”, Procccdings of the 2004 IEEE International Conference on Networking, Mar. 21-23, 2004, pp. 719-724.
Ingalls, Jake; Facebook post https://www.facebook.com/groups/877984048905836/permalink/110447996625624- 2; Sep. 11, 2016; 1 page.
International Preliminary Report on Patentability in PCT Application Serial No. PCT/US15/57132, dated Jan. 30, 2017 (6 pages).
International Preliminary Report on Patentability issued by the European Patent Office, dated Apr. 11, 2017, for International Patent Application No. PCT/US2015/054296; 7 pages.
International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated Dec. 10, 2019, for International Patent Application No. PCT/US2018/036383; 8 pages.
International Preliminary Report on Patentability issued by The International Bureau of WIPO, dated Dec. 4, 2012, for International Application No. PCT/US2011/039165; 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/IB2019/060089, dated Jun. 3, 2021, 22 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/068937, dated May 21, 2015, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/062303, dated May 31, 2019, 23 pages.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/39165, dated Jan. 3, 2012; 15 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Aug. 31, 2018, for International Patent Application No. PCT/US2018/036383; 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2019/060089, dated May 29, 2020, 24 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/068937, dated Feb. 26, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/054296, dated Dec. 18, 2015, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/057132, dated May 13, 2016, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/033199, dated Aug. 23, 2021, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/042230, dated Dec. 17, 2021, 4 pages.
International Search Report issued by the International Searching Authority, dated Jun. 7, 2018, for related International Patent Application No. PCT/US2017/062303; 7 pages.
Mckay et al., Delphi Electronic Throttle Control Systems for Model Year 2000; Driver Features, System Security, and OEM Benefits. ETC for the Mass Market, Electronic Engine Controls 2000: Controls (SP-1500), SAE 2000 World Congress, Detroit, MI, Mar. 6-9, 2000, 13 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Apr. 21, 2017, for corresponding Canadian patent application No. 2,801,334; 3 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Jul. 26, 2019, for Canadian Patent Application No. 2,963,790; 3 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Jun. 22, 2021, for Canadian Patent Application No. 3,043,481; 3 pages.
Office Action issued by the Canadian Intellectual Property Office, dated May 10, 2021, for Canadian Patent Application No. 2,890,996; 3 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Oct. 1, 2019, for Canadian Patent Application No. 2,965,309; 8 pages.
Office Action issued by the Mexican Patent Office, dated Jun. 25, 2014, for corresponding Mexican patent application No. MX/a/2012/014069; 2 pages.
Scott Tsuneishi, “2005 Subaru WRX Sti—Blitz Throttle Controller,” Oct. 1, 2008, Super Street Online, <http://www.superstreetonline.com/how-to/engine/turp-0810-2005-subam-wrx-sti-blitz-throttle-controller>; see appended screenshot retrived from the Internet Nov. 30, 2015; 11 pages.
Throttle Controller, Blitz Power USA, <http://www.blitzpowerusa.com/products/throcon/throcon.html>.; earliest known archive via Internet Archive Wayback Machine Sep. 14, 2009: <http://web.archive.org/web/20090914102957/http://www.blitzpowerusa.com/products/throcon/throcon.html>.; see appended screenshot.
Trebi-Ollennu et al., Adaptive Fuzzy Throttle Control of an All Terrain Vehicle, 2001, Abstract.
Unno et al.; Development of Electronically Controlled DVT Focusing on Rider's Intention of Acceleration and Deceleration; SAE International; Oct. 30, 2007.
Written Opinion issued by the International Searching Authority, dated Jun. 7, 2018, for related International Patent Application No. PCT/US2017/062303; 22 pages.
Related Publications (1)
Number Date Country
20220324282 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
61723623 Nov 2012 US
Continuations (5)
Number Date Country
Parent 17100451 Nov 2020 US
Child 17850401 US
Parent 16013210 Jun 2018 US
Child 17100451 US
Parent 15377640 Dec 2016 US
Child 16013210 US
Parent 14935184 Nov 2015 US
Child 15377640 US
Parent 14507355 Oct 2014 US
Child 14935184 US
Continuation in Parts (1)
Number Date Country
Parent 14074340 Nov 2013 US
Child 14507355 US