The present invention relates to a vehicle headlamp which is provided with a semiconductor light source, a reflector, and a lens.
Conventionally, vehicle headlamps of such a type are known (for example, Patent Literature 1 and Patent Literature 2). Hereinafter, conventional vehicle headlamps will be described. A conventional vehicle headlamp of Patent Literature 1 is provided with: a concave lens; a plurality of light emitting elements; and a reflector having an elliptical reflection surface, and radiates a predetermined light distribution pattern to a front side of a vehicle. A conventional vehicle headlamp of Patent Literature 2 is provided with: a convex lens and a concave lens; a plurality of light emitting elements; and an elliptical reflection surface and a hyperbolic reflection surface, and radiates a predetermined light distribution pattern to a front side of a vehicle.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2008-153123
Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2008-153124
In the vehicle headlamp, it is important to accurately control light distribution of a predetermined light distribution pattern
A problem to be solved by the present invention is that it is important to accurately control the light distribution of the predetermined light distribution pattern.
A vehicle headlamp according to the present invention (first aspect) comprising: a semiconductor light source; reflector; and a lens wherein the semiconductor light source has a light-emitting surface, the reflector has a reflection surface to reflect light from the light-emitting surface to the lens's side, the reflection surface is composed of a free-form surface; the light-emitting surface inclines so as to face the reflection surface with respect to an optical axis of the reflection surface, and the lens is made of a convex lens or a concave lens or a convex lens and a concave lens, and radiates to a front side of a vehicle, the light from the light-emitting surface, the light having been reflected by means of the reflection surface, as predetermined light distribution patterns.
The vehicle headlamp according to the present invention (second aspect), wherein the semiconductor light source comprises at least a spot semiconductor light source and a diffusion semiconductor light source, the reflection surface comprises: at least a spot reflection surface which corresponds to the spot semiconductor light source; and a diffusion reflection surface which corresponds to the diffusion semiconductor light source, the lens comprises: at least a spot lens which corresponds to the spot semiconductor light source and the spot diffusion reflection surface; and a diffusion lens which corresponds to the diffusion semiconductor light source and the diffusion reflection surface, the spot semiconductor light source, the spot reflection surface, and the spot lens form a spot light distribution pattern of the predetermined light distribution patterns, and the diffusion semiconductor light source, the diffusion reflection surface, and the diffusion lens form a diffusion light distribution pattern of the predetermined light distribution patterns.
The vehicle headlamp according to the present invention (third aspect), wherein the spot semiconductor light source, the spot reflection surface, and the spot lens are disposed inside the vehicle, and the diffusion semiconductor light source, the diffusion reflection surface, and the diffusion lens are disposed outside the vehicle.
The vehicle headlamp according to the present invention (fourth aspect), wherein the optical axis of the diffusion reflection surface faces the outside of the vehicle with respect to the optical axis of the spot reflection surface.
The vehicle headlamp according to the present invention (fifth aspect), wherein the spot lens is a convex lens, and the diffusion lens is a concave lens.
In so far as the vehicle headlamp of the present invention is concerned, a reflection surface is designed in advance so that reflection light is reflected in an opening direction, and the reflection light that has been reflected in the opening direction is corrected to travel along a normal optical path by means of a convex lens. In addition, a reflection surface is designed in advance so that reflection light is reflected in a crossing direction, and the reflection light that has been reflected in the opening direction is corrected to travel along the normal optical path by means of a concave lens. Therefore, it is possible to accurately control the light distribution of a predetermined light distribution pattern.
Hereinafter, four examples of embodiments (exemplary embodiments) of a vehicle headlamp according to the present invention will be described in detail with reference to the drawings. It is to be noted that the present invention is not limited by the embodiments. In the specification and the claims appended herewith, the terms “forward”, “backward”, “upper”, “lower”, “leftward”, and “rightward” directions respectively designate the forward, backward, upper, lower, leftward, and rightward directions in a case where the vehicle headlamp according to the present invention has been mounted on a vehicle.
In
(Description of Configuration of First Embodiment)
(Description of Vehicle Headlamp 1)
The vehicle headlamp 1, as shown in
The semiconductor light sources 2S, 2W, the reflector 3S, 3W, the lenses 4S, 4W, the heat sink member, and the mounting member constitute a lamp unit. The lamp housing and the lamp lens partition a lamp room (not shown). The lamp unit formed of constituent elements 2S, 2W, 3S, 3W, 4S, 4W is disposed in the lamp room and is mounted to the lamp housing via an optical axis adjustment mechanism for vertical direction (not shown) and an optical axis adjustment mechanism for transverse direction (not shown).
(Description of Semiconductor Light Sources 2S, 2W)
The semiconductor light sources 2S, 2W, as shown in
The light emitting chip 20 forms a planar square shape (a planar rectangular shape). That is, four square chips are arranged in an X-axis direction (a horizontal direction). It is to be noted that two, three, or five or more square chips or one rectangular chip or one square chip may be used. A rectangular upper face (a top face) of the light emitting chip 20 forms a light-emitting surface 22. As a result, the semiconductor light sources 2S, 2W respectively have the light-emitting surfaces 22. The light-emitting surfaces 22 face upward, and in this example, incline at about 20 degrees so as to face the reflection surfaces 30S, 30W with respect to optical axes (reference optical axes, reference axes) ZS, ZW of the reflection surfaces 30S, 30W of the reflectors 3S, 3W, respectively. Centers OS, OW of the light-emitting surfaces 22 of the light emitting chips 20 are respectively positioned at or near focal points (reference focal points) FS, FW of the reflection surfaces 30S, 30W, and are respectively positioned on or near the optical axes ZS, ZW.
In
(Description of Reflectors 3S, 3W)
The reflectors 3S, 3W, as shown in
The reflectors 3S, 3W respectively have the reflection surfaces 30S, 30W to reflect the light beams as reflection light beams DS, L1W from the light-emitting surfaces 22 of the semiconductor light sources 2S, 2W to the lenses 4S, 4W sides. The reflection surfaces 30S, 30W are respectively composed of free-form surfaces, in this example, free-form surfaces on the basis of parabolas. That is, the reflection surfaces 30S, 30W are respectively reflection surfaces made of parabolic free-form surfaces. As a result, the reflection surfaces 30S, 30W respectively have the focal points FS, FW and the optical axes ZS, ZW. A focal length of each of the reflection surfaces 30S, 30W is about 20 mm (about 20 mm at maximum, less than 20 mm) and is a small focal length.
The reflection surfaces 30W, 30W are respectively provided with: at least a spot reflection surface 30S which corresponds to the spot semiconductor light source 2S; and a diffusion reflection surface 30W which corresponds to the diffusion semiconductor light source 2W. The spot reflection surface 30S, as shown in
(Description of Lenses 4S, 4W)
The lenses 4S, 4W respectively radiate to the front side of the vehicle, the light beams from the light-emitting surfaces 22 of the semiconductor light source 2S, 2W, as predetermined light distribution patterns, the reflection light beams L1S, L1W having been reflected by means of the reflection surfaces 30S, 30W. The lenses 4S, 4W each are composed of one lens, as shown in
The lenses 4S, 4W, as shown in
The spot lens 4S, as shown in
(Description of Spot Lamp Unit Formed of Constituent Elements 2S, 3S, 4S)
The spot semiconductor light source 2S, the spot reflection surface 30S of the spot reflector 3S, and the spot lens 4S constitute a spot lamp unit. The spot lamp unit formed of the constituent elements 2S, 3S, 4S forms a spot light distribution pattern SP1 (refer to
(Description of Diffusion Lamp Unit Formed of Constituent Elements 2W, 3W, 4W)
The diffusion semiconductor light source 2W, the diffusion reflection surface 30W of the diffusion reflector 3W, and the diffusion lens 4W constitute a diffusion lamp unit. The diffusion lamp unit formed of the constituent elements 2W, 3W, 4W forms a diffusion light distribution pattern WP1 (refer to
(Description of Functions of First Embodiment)
The vehicle headlamp 1 in the first embodiment is made of the constituent elements as described above, and hereinafter, functions thereof will be described.
The light emitting chips 20 of the semiconductor light sources 2S, 2W are lit. Then, the light that is radiated from the light-emitting surface 22 of the spot semiconductor light source 2S, as the reflection light L1S, is reflected in advance to the spot lens 4S side in the opening direction by means of the spot reflection surface L1S. The reflection light L1S is transmitted through the spot lens 4S and then the thus transmitted light is radiated to the front side of the vehicle as the emission light L2S that has been corrected to travel along the normal optical path. The emission light L2S forms a spot light distribution pattern SP1 (refer to
In addition, the light that is radiated from the light-emitting surface 22 of the diffusion semiconductor light source 2W, as reflection light L1W, is reflected in advance to the diffusion lens 4W side in the crossing direction by means of the diffusion reflection surface 30W. The reflection light L1W is transmitted through the diffusion lens 4W and then the thus transmitted light is radiated to the front side of the vehicle as the emission light L2W that has been corrected to travel along the normal optical path. The emission light L2W forms a diffusion light distribution pattern WP1 (refer to
Afterwards, the spot light distribution pattern SP1 shown in
(Description of Advantageous Effects of First Embodiment)
The vehicle headlamp 1 in the first embodiment is made of the constituent elements and functions as described above, and hereinafter, advantageous effects thereof will be described.
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the spot reflection surface 30S is designed in advance so that the reflection light L1S is reflected in the opening direction, and the reflection light L1S that is reflected in the opening direction is corrected to travel along the normal optical path by means of the convex lens of the spot lens 4S. In addition, the diffusion reflection surface 30W is designed in advance so that the reflection light L1W is reflected in the crossing direction, and the reflection light L1W that is reflected in the opening direction is corrected to travel along the normal optical path by means of the concave lens of the diffusion lens 4W. Therefore, it is possible to accurately control the light distribution of a predetermined light distribution pattern, the low beam light distribution pattern LP1 shown in
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the lamp unit formed of constituent elements 2S, 3S, 4S, that is composed of the spot semiconductor light source 2S, the spot reflection surface 30S of the spot reflector 3S, and the spot lens 4S, as described previously, is capable of accurately controlling the light distribution of the spot light distribution pattern SP1 (refer to
Here, the spot lens 4S is composed of a convex lens. Thus, the emission light L2S that is emitted from the spot lens 4S as the convex lens is focused. As a result, the spot lens 4S as the convex lens is optimal to form the spot light distribution pattern SP1 shown in
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the lamp unit formed of the constituent elements 2W, 3W, 4W, that is composed of the diffusion semiconductor light source 2W, the diffusion reflection surface 30W of the diffusion reflector 3W, and the diffusion lens 4W, as described previously, is capable of accurately controlling the light distribution of the spot light distribution pattern WP1 (refer to
Here, the diffusion lens 4A is composed of a concave lens. Thus, the emission light L2W that is emitted from the diffusion lens 4A as the concave lens is diffused. As a result, the diffusion lens 4W as the concave lens is optimal to form the diffusion light distribution pattern WP1 shown in
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the spot lamp unit formed of the constituent elements 2S, 3S, 4S is disposed inside of the vehicle, and the diffusion lamp unit formed of the constituent elements 2W, 3W, 4W is disposed outside of the vehicle. Thus, the distant visibility is further improved by the spot lamp unit formed of the constituent elements 2S, 3S, 4S, that is formed inside of the vehicle. In addition, the diffusion lamp unit formed of the constituent elements 2W, 3W, 4W, that is disposed outside of the vehicle, the visibility of the left and right outsides of the vehicle, that is, the left and right shoulders, is improved.
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the optical axis ZW of the diffusion reflection surface 30W faces the outside of the vehicle with respect to the optical axis ZS of the spot reflection surface 30S. Thus, the visibility of the left and right outsides of the vehicle, that is, the left and right shoulders, is further improved. Moreover, this circumstance is optimal in a case where the shape of each of the left and right end parts at the front part of the vehicle is a wrapping shape and the shape of the lamp lens is the wrapping shape.
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the focal length of each of the reflection surfaces 30S, 30W is about 20 mm or less and is a small focal length. Thus, the reflection surfaces 30S, 30W, that is, the reflector 3S, 3W can be downsized. If the reflectors 3S, 3W, that is, the reflection surfaces 30S, 30W are thus downsized, the areas of reflection projection images of the light-emitting surfaces 22 of the reflection surfaces 30S, 30W increase. Therefore, in so far as the vehicle headlamp 1 in the first embodiment is concerned, the light-emitting surfaces 22 are inclined so as to face the reflection surfaces 30S, 30W with respect to the optical axes ZS, ZW of the reflection surfaces 30S, 30W. In this manner, even if the reflection surfaces 30S, 30W are downsized, the areas of the reflection projection images of the light-emitting surfaces 22 from the reflection surfaces 30S, 30W can be reduced to a certain extent. Moreover, in so far as the vehicle headlamp 1 in the first embodiment is concerned, the lenses 4S, 4W are respectively disposed at the reflection direction sides of the reflection surfaces 30S, 30W; and therefore, it is possible to further reduce the areas of the reflection projection images of the light-emitting surfaces 22 of the reflection surfaces 30S, 30W. In this manner, it is possible to form the predetermined light distribution patterns SP1, WP1, LP1.
In so far as the vehicle headlamp 1 in the first embodiment is concerned, the thickness of each of the lenses 4S, 4W is about 6 mm at maximum and is small. That is, the vehicle headlamp 1 in the first embodiment is capable of downsizing the reflection surfaces 30S, 30W to thereby reduce the thickness of each of the lenses 4S, 4W. In this manner, the spot lens 4S as the convex lens and the diffusion lens 4W as the concave lens each can be composed of one lens. The lenses 4S, 4W each are composed of one lens to be thereby able to reduce the number of parts and the manufacturing costs.
(Description of Configuration of Second Embodiment)
The diffusion reflection surface 30W of the vehicle headlamp 1 in the first embodiment described previously, as shown in
The diffusion lens 4W of the vehicle headlamp 1 in the first embodiment described previously, as shown in
(Description of Functions of Second Embodiment)
The vehicle headlamp 12 in the second embodiment described previously is made of the constituent elements as described above and thus from a lamp unit formed of the constituent elements 2S, 3S, 4S, a spot light distribution pattern SP1 (refer to
From a diffusion lamp unit formed of the constituent elements 2W, 3W (32W), 42W, a diffusion light distribution pattern WP2 (refer to
Afterwards, the spot light distribution pattern SP1 shown in
(Description of Advantageous Effects of Second Embodiment)
The vehicle headlamp 12 in the second embodiment described previously is made of the constituent elements and functions as described above; and therefore, it is possible to achieve advantageous effects which are similar to those of the vehicle headlamp 1 in the first embodiment.
In particular, in so far as the vehicle headlamp 12 in the second embodiment is concerned, the diffusion reflection surface 32W is designed in advance so that the reflection light L12W is reflected in the opening direction and the diffusion lens 42W is composed of a convex lens so as to radiate the reflection light L12W to the front side of the vehicle as the emission light L22W that has been corrected to travel along the normal optical path. Thus, the emission light L22W that is emitted from the diffusion lens 42W as the convex lens is focused. As a result, the diffusion light distribution pattern WP2 formed of the emission light L22W that is emitted from the diffusion lens 42W as the convex lens is focused and a vertical width thereof decreases (becomes small). In this manner, in the diffusion light distribution pattern WP2, a high intensity zone is disposed at an upper side. As a result, by way of combination with the spot light distribution pattern SP1 shown in
(Description of Configuration of Third Embodiment)
The spot reflection surface 30S of the vehicle headlamp 1 in the first embodiment described previously, as shown in
The spot lens 4S of the vehicle headlamp 1 in the first embodiment described previously, as shown in
(Description of Functions of Third Embodiment)
The vehicle headlamp 13 in the third embodiment is made of the constituent elements as described above and thus from a lamp unit formed of the constituent elements 2S, 3S (33S), 4S, a spot light distribution pattern SP3 (refer to
From the lamp unit formed of the constituent elements 2W, 3W, 4W, a diffusion light distribution pattern WP1 (refer to
Afterwards, the spot light distribution pattern SP3 shown in
(Description of Advantageous Effects of Third Embodiment)
The vehicle headlamp 13 in the third embodiment described previously is made of the constituent elements and functions as described above and thus it is possible to achieve advantageous effects which are similar to those of the vehicle headlamp 1 in the first embodiment described previously and the vehicle headlamp 12 in the second embodiment described previously.
In particular, in so far as the vehicle headlamp 13 in the third embodiment is concerned, the spot reflection surface 33S is designed in advance so that the reflection light L13S is reflected in the crossing direction and the spot lens 43S is composed of a concave lens so as to radiate the reflection light L13S to the front side of the vehicle, as the emission light L23S that has been corrected to travel along the normal optical path. Thus, the emission light L23S that is emitted from the spot lens 43S as the concave lens is diffused. As a result, the spot light distribution pattern SP3 formed of the emission light L23S that is emitted from the spot lens 43S as the concave lens is diffused and a vertical width thereof increases (becomes large). In this manner, in the spot light distribution pattern SP3, a low intensity zone increases to the lower side, that is, the front side of the vehicle. As a result, by way of combination with the diffusion light distribution pattern WP1 shown in
(Description of Configuration of Fourth Embodiment)
A vehicle headlamp 14 in the fourth embodiment is a modification example of the vehicle headlamp 1 in the first embodiment described previously. That is, the vehicle headlamp 14 in the fourth embodiment forms a structure and a shape along a design shape at each of the left and right end parts at the front part of a vehicle.
A shape in a planar view of each of the lenses 4S, 4, 4W, as shown in
The optical axis ZW of the diffusion reflection surface 30W of the diffusion reflector 3W, as shown in
The left and right of the focal point FW of the diffusion reflection surface 30A of the diffusion reflector 3W (a center OW of the light-emitting surface of the diffusion semiconductor light source) and the focal point FW of the spot reflection surface 30S of the spot reflector 3S (a center OS of the light-emitting surface of the spot semiconductor light source), as shown in
(Description of Functions and Advantageous Effects of Fourth Embodiment)
The vehicle headlamp 14 in the fourth embodiment is made of the constituent elements as described above and thus it is possible to achieve functions and advantageous effects which are substantially similar to those of the vehicle headlamp 1 in the first embodiment described previously.
It is to be noted that, in the vehicle headlamp 2 in the second embodiment described previously and the vehicle headlamp 3 in the third embodiment described previously as well, there may be a structure and a shape along a design shape at each of the left and right end parts at the front part of the vehicle as in a modification example of the vehicle headlamp 1 in the first embodiment described previously, that is, the vehicle headlamp 14 in the fourth embodiment.
(Description of Examples Other Than First to Forth Embodiments)
In the first to third embodiments, the vehicle headlamps 1, 12, 13 in a case where a vehicle is for left side cruising were described. However, in the present invention, it is possible to apply to a vehicle headlamp in a case where a vehicle is for right side cruising as well.
In addition, in the first to fourth embodiments, the light-emitting surfaces 22 of the light emitting chips 20 of the semiconductor light sources 2S, 2W face upward. However, in the present invention, it may be that the light-emitting surfaces 22 of the light emitting chips 20 of the semiconductor light sources 2S, 2W face downward. That is, in
Further, in the first to fourth embodiments, the light-emitting surfaces 22 are respectively inclined so as to face the reflection surfaces 30S, 30W, 32W, 33S with respect to the optical axes ZS, ZW of the reflection surfaces 30S, 30W, 32W, 33S. However, in the present invention, the light-emitting surfaces 22 may not be inclined.
Furthermore, in the first to fourth embodiments, in each of the lenses 4S, 4W, 42W, 43S, an incidence surface forms a plane, and an emission surface forms a convex surface or a concave surface. However, in the present invention, it may be that the incidence surface forms a convex surface or a concave surface, the emission surface forms a plane, or alternatively, it may be that the incidence surface and the emission surface respectively form a convex surface and a concave surface.
Still furthermore, in the first to fourth embodiments, the optical axis ZW of the diffusion reflection surface 30W faces the outside of the vehicle with respect to the optical axis ZS of the spot reflection surface 30S. However, in the present invention, it may be that the optical axis ZW of the diffusion reflection surface 30W and the optical axis ZS of the spot reflection surface 30S are parallel or substantially parallel to each other.
Yet furthermore, in the first to fourth embodiments, the focal length of each of the reflection surfaces 30S, 33S, 30W, 32W is about 20 mm or less, and the thickness of each of the lenses 4S, 43S, 4W, 42W is about 6 mm or less. However, in the present invention, the focal length of each of the reflection surfaces 30S, 33S, 30W, 32W and the thickness of each of the lenses 4S, 43S, 4W, 42W are not limitative in particular.
Number | Date | Country | Kind |
---|---|---|---|
2014-098962 | May 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/061249 | 4/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/174179 | 11/19/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7311430 | Tsukamoto | Dec 2007 | B2 |
20080144328 | Yagi et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
10 2007 061 304 | Jun 2008 | DE |
2 020 336 | Feb 2009 | EP |
2 103 867 | Sep 2009 | EP |
2000-040411 | Feb 2000 | JP |
2008-153123 | Jul 2008 | JP |
2008-153124 | Jul 2008 | JP |
2012-238451 | Dec 2012 | JP |
Entry |
---|
Japanese Office Action issued in corresponding application No. 2014-098962 dated Dec. 5, 2017 with English translation. |
Number | Date | Country | |
---|---|---|---|
20170146209 A1 | May 2017 | US |