The invention relates to a headlight for vehicles, to a reflector for a headlight and to a method of forming an illumination beam for a vehicle.
Headlights for motor vehicles create an illumination beam projected forward of the vehicle to illuminate the road. In order to avoid glare for oncoming traffic, the intensity distribution of the illumination beam for low beam light comprises a bright/dark boundary. Regulations pertain to the specific required shape of the bright/dark boundary, which generally includes a horizontal portion and an inclined portion.
Different lamps of the incandescent type exist for motor vehicle headlights. While some lamps only comprise a single filament as light-emitting element, other lamps, such as e. g. H4, comprise two filaments and a baffle arranged proximate to a first filament to partially shield light emitted therefrom. With such two-filament types of lamps, both high beam and low beam function may be achieved by the same lamp and reflector.
Examples of known two-filament lamps are H4, HS1, and the newly proposed H19.
WO2014207112A1 discloses such a two-filament lamp for a vehicle headlight, with the filaments in a transparent lamp vessel with a partial color filter for coloring a peripheral and/or a scattered portion of light of the lamp while leaving the lamp's illumination beam uncolored.
It may be considered an object to propose a headlight and a reflector as well as a method of forming an illumination beam in a way to avoid or minimize glare for oncoming traffic.
According to an aspect of the invention, a headlight according to claim 1 is proposed. According to a further aspect, a reflector according to claim 12 is proposed. The method of claim 13 relates to a still further aspect of the invention. Dependent claims refer to preferred embodiments.
The present inventors have considered use of lamps with symmetrical arrangement of the baffle relative to a first filament, wherein the first filament is arranged above a plane including side edges of the baffle. While a lamp of this design provides more light than lamp types with a first filament closer to the baffle, the inventor has determined that a symmetrical, horizontal arrangement of the lamp in a reflector may lead to glare by stray light. Stray light may occur due to scattering at the inner wall of the baffle and reflection at the side edges. Surprisingly, the inventors have found that glare can be reduced by arranging the lamp rotated within the reflector by a certain rotation angle.
According to an aspect of the invention, a headlight for a vehicle comprises a concave reflector and a lamp arranged within the reflector. Light emitted from the lamp is reflected at the reflector surface to create an illumination beam of desired properties.
The lamp is an incandescent, preferably halogen lamp including a sealed transparent vessel with a longitudinal axis and at least a first and second filament arranged within the vessel. Preferably, at least the portion of the vessel surrounding the filaments is cylindrical, such that the longitudinal axis may be the central longitudinal axis of the cylindrical portion.
Proximate to the first filament, a baffle is arranged to partially shield light emitted from the first filament. The baffle is preferably of concave shape and extends along the longitudinal axis for at least the length of the first filament. At least a front portion of the baffle may be arranged in between the first and second filaments.
The baffle may serve to partially shield light emitted from the first filament, such that the light emitted from the first filament which is not shielded may be reflected to form an illumination beam including a bright/dark boundary, in particular a low beam. The second filament is preferably unshielded and may serve to create a high beam, which does not comprise a bright/dark boundary.
The baffle comprises first and second upper side edges extending longitudinally, at least in a side view. Preferably, the upper side edges have at least a straight portion (in side view) extending in parallel to the longitudinal axis over the length of the first filament. The first filament is arranged above the upper side edges of the baffle, i. e. above a plane including the upper side edges (or at least the above defined straight portions thereof). In particular, the lower side of the first filament may be arranged at a distance to the plane of the edges, such as e. g. a distance of 0.1 mm or more, preferably 0.3 mm or more. In the lamp according to this aspect of the invention, the first filament is thus arranged relatively high above the baffle as compared to lamps such as the H4 and HS1, thus providing more light which is emitted unshielded.
According to an aspect of the invention, the arrangement of the upper side edges of the baffle is symmetrical. In a central transversal plane, i.e. a plane arranged perpendicular to the longitudinal axis running through the center of the first filament, a baffle symmetry axis may be defined from the center of the first filament centrally between the upper side edges.
According to an aspect of the invention, the lamp is arranged within the reflector rotated around its longitudinal axis by a rotation angle of 2-20° with respect to a horizontally symmetrical arrangement. Further preferably, the rotation angle may be at least 4°. Particularly preferable is a rotation angle of 6-18°. Preferably, the lamp may be arranged within the reflector such that the baffle symmetry axis is arranged rotated relative to a vertical axis by the rotation angle.
Arrangement of the lamp in the thus specified rotation position has surprisingly proven to allow concepts with greatly reduced glare, in particular in the most significant portions of the illumination beam. As will become apparent in connection with preferred embodiments, rotation of the lamp leads to different optical effects for the beam portions emitted horizontally: Viewed from the side of the lamp in the horizontal direction towards which the lamp is rotated, the closer upper side edge of the baffle appears lower relative to the filament, whereas viewed from the opposite horizontal side the other upper side edge appears higher, such that it may shield the filament partially or even fully. These different effects allow to use a corresponding reflector avoiding stray light being emitted into critical portions of the illumination beam.
According to an aspect of the invention, the lamp may comprise a base with radially extending positioning protrusions. The positioning protrusions may be arranged symmetrically relative to a protrusion symmetry axis, which is arranged parallel to the baffle symmetry axis. Thus, the lamp may be fully symmetrical both with regard to the positioning protrusions and to the relative arrangement of the baffle and first filament. Particularly preferred are lamps with three radially extending positioning protrusions, one in parallel to the protrusion symmetry axis.
The reflector provided according to a separate aspect on the invention comprises a concave reflector surface forming an inner reflector space. An opening is provided for arrangement of a lamp including positioning protrusions, for example as explained above. The reflector comprises receiving portions for the positioning protrusions which are located at the reflector such that the lamp, if the positioning protrusions are received in the respective receiving portions, is positioned in the above described rotating position under the desired rotation angle.
According to a preferred aspect, the reflector may be a complex shape reflector comprising a plurality of reflecting segments, each arranged to project images of at least one of the filaments. A complex shape reflector may use the separate reflecting segments of the reflector surface to form a desired illumination beam from a superposition of individual filament images.
According to a preferred aspect, the lamp may be arranged within the reflector such that viewed in horizontal direction from a first side the first filament is at least partially shielded by the first upper side edge of the baffle, and viewed in opposite horizontal direction from a second, opposite side the second upper side edge of the baffle is arranged not to shield the first filament. Thus, while a horizontally symmetrical orientation of the first filament and the baffle (0° rotation) would lead to the same filament image and same amount of light at both horizontal directions, the rotated and thus asymmetrical arrangement allows the opposite horizontal portions of the reflector surface to receive light from the first filament differently.
As already mentioned, regulations for the illumination beam of vehicle headlights in different countries provide a shape of a bright/dark boundary for low beam light including a horizontal portion and an inclined portion. Particularly, the inclined portion may be arranged under an angle of e.g. 15° relative to the horizontal. According to a preferred aspect, the reflector may comprise one or more first reflecting segments on a first side arranged at least substantially in horizontal direction from the first filament. The first reflecting segment may be arranged to reflect light from the first filament to a horizontal portion of a bright/dark boundary of the illumination beam. One or more second reflecting segments of the reflector may be arranged on a second side, opposite to the first side, in at least substantially horizontal direction from the first filament. The second reflecting segment may be arranged to reflect from the first filament to an inclined portion of the bright/dark boundary of the illumination beam. Thus, reflecting segments of the reflector arranged at opposite sides may be provided to direct light into different portions of the illumination beam.
Generally, the inclined portion of the bright/dark boundary will be more critical with respect to glare as compared to the horizontal portion. For this reason, it is preferred to arrange the lamp in such a rotated position that one or more second reflecting segments are illuminated by an at least partially shielded first filament rather than by the first filament fully visible and arranged at a distance to the corresponding upper side edge of the baffle, because this may lead to scattered light being reflected by the first reflecting segments.
According to a further preferred aspect, the second reflecting segment, arranged to reflect light from the first filament to an inclined portion of the bright/dark boundary, may be shaped to have a focus located on the upper edge, rather than on the first filament. This may serve to obtain a sharp projection of the upper edge of the baffle located closest to it, onto the inclined portion of the bright/dark boundary.
According to another preferred aspect of the invention, the first reflecting segment, arranged to reflect light from the first filament to a horizontal portion of the bright/dark boundary, may be shaped to have a focus located on the first filament, rather than on the corresponding upper side edge of the baffle.
The preferred type of lamp to be used in the headlight and method according to the invention may have an electrical power of more than 60 W for both the first and second filament (measured at a supply voltage of 13.2 V). Preferably, the first filament is disposed to operate at an electrical power of 62-68 W and the second filament at 64-72 W at the specified supply voltage. In operation of the first filament, the lamp may preferably emit light with a luminous flux of 1080-1320 lm, most preferably 1150-1250 lm. In operation of the second filament, the lamp may emit light with a luminous flux of 1630-1870 lm, preferably 1700-1800 lm.
These and other aspects of the invention will become apparent from and elucidated with reference to the embodiments described hereinafter.
In the drawings,
a, 7b show schematical representations of arrangements of a lamp within a reflector;
The burner 14 is fixed to the base 12 and comprises a transparent vessel 22. A first filament 24 and a second filament 26 are arranged within a cylindrical portion 28 of the transparent vessel 22. A longitudinal axis L is defined as the center of the cylindrical portion of the vessel 22.
The filaments 24, 26 are arranged within the vessel 22 mounted on mounting rods. A baffle 30 is mounted on one of the mounting rods in a position proximate to the first filament 24.
The relative arrangement of the first and second filaments 24, 26 and the baffle 30 within the cylindrical portion 28 of the vessel 22 are shown in
In the example, the first filament 24 has an axial length L1 of about 5 mm and the second filament 26 has an axial length L2 of about 4 mm. The outer diameter of the winding structure of the first filament 24 in the example may be 1.4 mm and the outer diameter of the winding structure of the second filament 26 in the example may be 1.6 mm.
The baffle 30 arranged proximate to the first filament 24 comprises a front portion 32 arranged between the first and second filament 24, 26 which are thus optically shielded from one another.
The baffle 30 is of concave shape and comprises left and right upper side edges 34a, 34b. In the side view shown in
The baffle 30 serves to partially shield light emitted from the first filament 24, in particular light emitted into radial directions below the upper side edges 34a, 34b. If the lamp 10 is mounted in a reflector 40 of a vehicle headlight 50 as shown in
In the lamp shown, the first filament 24 is arranged relatively high above the baffle 30. A plane E (
The lamp 10 is fully symmetrical, both with respect to the base 12 and to the burner 14. As shown in the back view of
The lamp 10 may be inserted into a reflector 40 of a vehicle headlight 50 as schematically shown in the sectional view of
Light from the first filament 24 is reflected by the inner reflective surface of the reflector 40 to form an illumination beam 42 including a bright/dark boundary suitable for low beam lighting.
The reflector 40 is a complex shape reflector comprising individually shaped reflector segments, some of which are shown in
a, 7b schematically show arrangements of the lamp 10 within the reflector 40. The lower half of the representations in
In
As schematically shown in
As schematically indicated in
As schematically shown in
As the inventors have observed, stray light, shown symbolically as dotted lines in
Due to the rotated and thus non-symmetrical arrangement of the lamp 10 within the reflector 40, the appearance of a first filament 24 differs as viewed from the horizontal left and right reflector segments 46b, 46a.
As illustrated in
Next to the horizontal portion 44a of the bright/dark cut-off 44, stray light (shown as dotted lines) may still create a stray image 49a. However, this portion of the bright/dark cut-off 44 of the illumination beam 42 is less critical with regard to glare for oncoming traffic.
While in the schematic representation in
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments.
For example, the specific shape of the baffle 30 and the relative arrangement to the first filament 24 may differ in different embodiments. The lamp 10 may be arranged within the reflector 40 under different rotation angles α.
These and other variations of the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure and the appended claims.
In the claims, any reference signs place between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of elements or steps other than those listed in the claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2016/084632 | Jun 2016 | CN | national |
16176805.6 | Jun 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/062421 | 5/23/2017 | WO | 00 |