The following documents are incorporated herein by reference as if fully set forth: German Patent Application No.: 102012017959.6, filed Sep. 12, 2012.
The invention relates to a hoist for vehicles comprising two lifting columns, which are arranged at both sides of a vehicle and each comprise two support arms, with these support arms being supported in a horizontally pivotal and longitudinally adjustable fashion at their lifting column and each comprising at their free end a support plate, and these support plates shall be positioned at the support position underneath the vehicle as stipulated by the vehicle manufacturer by an appropriate movement of the support arm.
Hoists of the generic type described at the outset are known in various embodiments and have proven in practice, because they are suitable for small as well as large vehicles due to their variable support arms. The pivoting inwardly and the longitudinal adjustment of the support arms to position the support plates at the support position as stipulated by the vehicle manufacturer underneath the vehicle occurs by the operator, after the vehicle has been driven into the hoist.
The present invention is based on the acknowledgement that the visual judgment and diligence required for the precise adjustment of the support arms cannot always be assumed for every operator. Accordingly the present invention is based on the objective of improving a hoist of the generic type described at the outset such that the adjustment of the support arms into the specified support position can be realized more reliably than in the past.
This objective is attained according to the invention such that the coordinates of the support position stipulated by the manufacturer in connection with the respectively corresponding vehicle model is saved as the target position in a data memory of the hoist, that the coordinates of the actual positions of the support plates are determined by measurement and perhaps calculation, that via a computer a comparison occurs of the target coordinates and the actual coordinates, and a lifting process of the support arms is only enabled when the differences between the target coordinates and the actual coordinates are within a predetermined tolerance.
According to the invention here a monitoring occurs of the settings of the support arms. The safety during the lifting process is therefore no longer dependent merely on the visual judgment and diligence of the operator; rather a lifting process is only possible when it is ensured that all four support arms with their support plates are located in the correct position. The hoist according to the invention is therefore characterized in a considerably increased operating safety; it can no longer occur that due to a false positioning the support plates the vehicle underbody is indented or the vehicle locally slips due to the support plates being located too far outside.
An advantageous further development of the invention comprises that the target and the actual positions are additionally shown in a display. This way the operator recognizes which of the four support arms needs to be readjusted and to what extent that has to occur. In particular the operator here no longer needs to kneel on the shop floor in order to control the area underneath the vehicle, which is hard to see. Rather this control can occur comfortably via the display.
In this context, another beneficial embodiment of the invention comprises that the target positions shown in their entirety and/or the actual positions shown in their entirety can be shifted on the display. This ability for displacement includes not only a movement in the linear x-direction and y-direction but also a rotation and has the following purpose: In practice it cannot always be ensured that the vehicle has been driven into the hoist to the ideal position; for example the vehicle may be driven into the hoist diagonally, laterally off-set, or a bit too short or too far. In order to prevent any adjustment errors beneficially the indicated target positions are here displaced in their entirety such that they match the vehicle position. This can occur such that the support arm allocated to one or two easily discernible support positions of the vehicle approaches (these positions) and that subsequently the corresponding target position is made to overlap the actual position of said support arm on the display. In this process of overlapping positions of course the other predetermined target positions are entrained to the same extent so that all four target positions are now matching the vehicle position. The adjustment of the remaining support arms can then easily be controlled via the display.
Sometimes it may be sufficient when the displacement of the indicated target positions or the actual positions shown on the display is possible only in the x-direction and the y-direction. However, if a hoist designed for large vehicles with an appropriately wide distance of the lifting columns shall also be used for vehicles of a compact design it is beneficial to perform the displacement of the target positions or actual positions on the display not only in a translational fashion but also a rotational one in order to allow a better consideration of a diagonal position of the vehicle in the hoist.
The determination of the actual coordinates of the support plates occurs beneficially by measuring the pivotal angle of the support arms and by measuring the length of the support arms. Appropriate sensors for angles and distances are known in prior art.
In order to increase the operating safety of the hoist it is recommended to arrange sensors at the support arm which check if the common locking lever is engaged for blocking any undesired pivotal motion of the support arm and prevents the operation of the hoist when this is not the case.
A further addition of the present invention includes that the pivoting and/or the adjustment in length of the support arms occurs in a motorized and automated fashion by the computer comparing the target data and the actual data. This way the complete adjustment of the support arms can be automated both prior to the lifting process as well as after the lifting process. At the most the first support arm still needs to be brought into the target position by the operator in order to allow adjusting the indicated target positions to the vehicle position.
However if the position of the vehicle located in the hoist is detected optically and this position is fed to the computer performing the comparison of the target coordinates with the actual coordinates then the guidance of the target position to (match) the vehicle position can be automated and the first support arm no longer needs to be moved into the target position by the operator.
In some vehicles the support positions of said vehicle at the front and the rear are not located on the same level. In this case the target and actual coordinates can be detected not only in the x-direction and y-direction but also in the z-direction so that the computer also performs compensation in the z-direction. In this case it is recommended for an automated operation of the hoist that the support plates are each combined with a lifting motor, which is controlled by the computer.
Another beneficial further development of the invention, which is helpful independent from the measurement and the comparison of the target and the actual values of the support positions comprises that the support arms respectively include a sensor for determining the weight of the vehicle impacting the support arm. This sensor is preferably embodied by strain gauges; however other suitable sensors may also be used, here.
It is essential that the weight determined by every sensor is fed to a computer for controlling the overall load and for checking the load distribution.
Here each individual support arm is checked with regards to the load permissible as well as the load distribution between the front and the rear support arms, in order to ensure the structural stability of the lifting columns. If the determined weight is excessive per support arm or overall or the load distribution is too uneven here the computer can prevent a lifting process.
In this context a plausibility check can occur of the weight measured at the support arms, on the one hand, and the weight resulting at the two support columns, on the other hand. If the support columns are operated hydraulically, for example, from the hydraulic pressure and the known piston area here the compensated weight is calculated and this weight can be compared by the above-mentioned computer with the total weight determined for the front and rear support arm of said support column. This results in an additional increase of the operational safety.
Another further development with regards to technical safety comprises that the hoist documents every lifting process with regards to target and actual positions of the support plates, if applicable also with regards to the weights and perhaps with regards to the locking of the support arms. This way, in case of a potential malfunction, accident, or the like the causes therefore can be reliably analyzed.
Finally, the scope of the invention also includes that the data memory and the computer are not only responsible for one hoist but for several ones. This reduces the expense for the installation. In order to avoid laying long lines here it is possible to wirelessly transmit the data to the central computer.
Additional features and advantages of the invention are discernible from the following description of an exemplary embodiment and from the drawings. In the drawings:
In order to control a synchronous operation of both lifting columns 1 and 2 they are connected to each other by a bridge 4, which comprises control lines known per se.
Here, it is essential that the entry area of the hoist is monitored optically, for example by a camera 5. Its objective is to detect the contour of the vehicle in reference to the hoist after the vehicle has been driven into the hoist.
Additionally the display shows the target support positions specified by the manufacturer already obtained from the data memory 16 (cf.
In
Based on
The display in
It is now essential that the pivotal bearing 110 is combined with an angle meter. There are various options available for one trained in the art to be used as angle measuring devices. In the exemplary embodiment it comprises a magnetic ring 111, entrained during the pivotal motion of the support arm 11, and a Hall-sensor 1b fastened at the lifting sled. This Hall-sensor detects the pivotal angle and transmits respective signals to the computer 15.
Furthermore, each support arm is equipped with a length measuring device connected to the computer 15. The length measuring device is indicated generally at 20 and is not shown in greater detail in the drawing, because here many systems of prior art are suitable.
Additionally
Finally
The computer 15 is provided via sensors, allocated to each support arm, with their angular position and their longitudinal extension and thus obtains the actual position of the support plates. It compares these actual positions with the predetermined target positions and then issues the appropriate control signals to the actuators 17 for the angle of the support arm and the actuators 18 for the length of the support arms.
Furthermore, the computer 15 receives signals from the clip gauge 12 of each support arm and determines therefrom the weight in the individual support arms, checks their reliability and the distribution of weight, as well as their plausibility by comparing them with the weight impacting the lifting columns.
Additionally the computer 15 obtains data from the sensors 13, which check the locking of the support arm and ultimately also data from the camera 5, which records the vehicle position in reference to the hoist. Using the latter data practically the adjustment occurs of the target position to the actual vehicle position.
The data transmitted to the computer can be shown on the display 6 of the hoist, if necessary, and independent therefrom permanently saved in the data memory 16 for control purposes.
Summarizing, the present invention therefore provides a considerable increase in safety because faulty operation of the hoist is practically excluded. Simultaneously the operation of the hoist is considerably more comfortable, because the operator can monitor the adjustment of the support arms at the display and by a motorized drive of the pivotal levers the entire process can be automated.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 017 959 | Sep 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3822766 | Suter | Jul 1974 | A |
4763761 | McKinsey | Aug 1988 | A |
5679934 | Juntunen | Oct 1997 | A |
5954160 | Wells, Sr. et al. | Sep 1999 | A |
6279685 | Kogan | Aug 2001 | B1 |
6286629 | Saunders | Sep 2001 | B1 |
6315079 | Berends | Nov 2001 | B1 |
6634461 | Baker | Oct 2003 | B1 |
7191038 | Green | Mar 2007 | B2 |
7219769 | Yamanouchi | May 2007 | B2 |
7500816 | Berends | Mar 2009 | B2 |
7644807 | Finkbeiner | Jan 2010 | B2 |
8083034 | Bordwell | Dec 2011 | B2 |
8256577 | Kritzer | Sep 2012 | B2 |
20020175319 | Green | Nov 2002 | A1 |
20050045429 | Baker | Mar 2005 | A1 |
20070034420 | Stanford | Feb 2007 | A1 |
20080277204 | Moller | Nov 2008 | A1 |
20080296071 | Herrmann | Dec 2008 | A1 |
20090271041 | Knestel et al. | Oct 2009 | A1 |
20110037041 | DeJong | Feb 2011 | A1 |
20110097187 | Kelley | Apr 2011 | A1 |
20130240300 | Fagan | Sep 2013 | A1 |
20140196960 | Rothkegel | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
102005000883 | Jul 2006 | DE |
102008021149 | Oct 2009 | DE |
1876136 | Jan 2008 | EP |
2316778 | May 2011 | EP |
2008254825 | Oct 2008 | JP |
0234665 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20140076665 A1 | Mar 2014 | US |