Vehicle hydraulic component support and cooling system

Information

  • Patent Grant
  • 6308665
  • Patent Number
    6,308,665
  • Date Filed
    Friday, August 27, 1999
    25 years ago
  • Date Issued
    Tuesday, October 30, 2001
    23 years ago
Abstract
A hydraulic cooling system and method for use in a vehicle comprises a hydraulic pump which is coupled to a hydraulic motor for driving a fan blade in operative relationship with a radiator via a hydraulic conduit. The hydraulic conduit is formed and provided to not only hydraulically couple the hydraulic pump to the hydraulic motor, but also to define a support structure for supporting the hydraulic motor in operative relationship with the radiator, without the need for additional support brackets or structure. It is envisioned that the hydraulic conduit could be pre-formed in a general pyramidal or frusto-conical shape to absorb forces exerted by the motor and so that it can easily be assembled and mounted to the fan shroud. The hydraulic conduit is also formed such that it becomes situated in a heat exchange chamber between the fan shroud and the radiator when the conduit is mounted on the shroud and may comprise a plurality of fins to facilitate cooling the hydraulic fluid traveling through the hydraulic conduit. A logic and priority valve may be coupled to the hydraulic conduit and responsive to an electronic control unit to control the flow directed to the fan motor in order to maximize cooling efficiency.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention pertains to a cooling system for internal combustion engines cooled by a radiator, and more particularly, to a system and method for providing a conduit which not only couples a hydraulic pump to a hydraulic component, but also provides a support structure for supporting the hydraulic component at a predetermined position with respect to the radiator, minimizing or eliminating the need for additional support brackets.









2. Brief Description of the Related Art




For years, fans have been used to draw air through a radiator of an internal combustion engine for the purpose of lowering the temperature of the engine coolant. Initially, such fans were directly powered by the engines and, often, belt systems were employed. With the advent of front wheel drive, vehicles used crossmounted engines and radiator coolant fans have often been powered by electric motors. Even in some engines having crank shafts which extend parallel to the length of the vehicle, electric motors have been used to drive the radiator cooling fan in view of the versatility of installation and ease of location with such system components to accommodate themselves to the aerodynamic configuration and other space limitations of the vehicle.




While internal engine cooling fans driven by electric motors are suitable in many light duty installations, electric motors are not suitable for powering fans under heavy duty requirements as the size of the electric motor must be significantly increased as compared to lighter duty installations and the electric drain on the vehicle electric system is enormous. Further, larger electric motors are very expensive and their size defeats the advantages obtained with smaller electric motors. Typical electric drive systems for permitting the engine to transfer a required amount of power to a fan are shown in U.S. Pat. Nos. 2,777,287; 3,220,640; 3,659,567; 3,934,644; 4,062,329; 4,066,047; 4,223,646; 4,461,246; 4,489,680; and 5,216,983.




Another advantage of using a hydraulically powered fan is that they typically are very quiet which can be aesthetically pleasing to the vehicle's operator.




One of the problems with using hydraulic and electronic fan motors is that the shrouds had to be provided with brackets which were affixed or integrally molded to the shroud assembly such that when the motor was mounted directly to the brackets, it would cause the fan blade to be properly positioned and centered in the shroud. U.S. Pat. No. 5,216,983 issued to Nilson illustrates this approach. A number of problems arise with the approach of Nilson. First, the fan shroud must have the brackets molded or mounted thereto. Also, the hydraulic conduit is not integrally coupled to or molded into the fan shroud, which can make accurately mounting the motor somewhat tedious.




Another problem with the cooling system designs of the past is illustrated in

FIG. 6

wherein a radiator A had a structural support B secured or welded thereto for holding the fan motor C such that the fan blade D was held in operative relationship with the radiator A. As illustrated in

FIG. 1

of the Nilson reference, this bracket may be affixed at an outer end to an end of a shroud. As illustrated in

FIG. 6

, one problem with such a design is the working depth (indicated by double arrow E in

FIG. 6

) required. Because of the reduction of engine compartment space, there is a need to reduce the space consumed by the motor and radiator arrangement.




Notice also that as the motor in

FIG. 6

is energized to pull air through the radiator and toward the engine, the motor is forced in an axial direction towards the radiator. Because the hydraulic conduits to and from the Nilson motor are situated substantially parallel to a plane in which the radiator lies, it is believed that an undesirable loading, such as a shear or bending force, may cause the conduits to bend, leak or break at various points, such as where the conduits are coupled to the motor or require the addition of substantial structural elements capable of transmitting the motor load forces.




What is needed, therefore, is a system and method for providing a hydraulic coupling between the hydraulic components in a vehicle which will not only couple the hydraulic components, but which will provide the sole means for supporting the hydraulic component in a predetermined position, without the need for excessive space or support brackets or engine couplings and which is designed and positioned to facilitate providing an effective cooling system and method for cooling the hydraulic fluid.




SUMMARY OF THE INVENTION




It is, therefore, a primary object of the invention to provide a system and method for hydraulically coupling a plurality of hydraulic components using a hydraulic conduit which also serves to support at least one of the plurality of components in a predetermined position on the vehicle.




Another object of the invention is to provide a system and method for providing a hydraulic conduit system which will not only support a hydraulic component in a predetermined position, but which will facilitate cooling the hydraulic fluid traveling through the hydraulic conduit.




Still another object of the invention is to provide a hydraulic conduit which can be preformed and coupled to a hydraulic motor such that it can quickly be mounted on, for example, a fan shroud, thereby reducing the amount of time required to assemble the hydraulic cooling system.




Still another object of the invention is to provide a system and method for hydraulically coupling a plurality of hydraulic components together using a hydraulic conduit which is formed with a plurality of channels and a valve for facilitating controlling the speed of the motor.




A further object of the invention is to provide a cooling system design which distributes forces generated by the motor and which can be utilized in limited-space environments.




In one aspect, this invention comprises a hydraulic component support for supporting a hydraulic component at a predetermined position on a vehicle comprising at least one hydraulic conduit for providing a passageway for transferring hydraulic fluid to and from the hydraulic component, at least one hydraulic conduit being formed to also provide the sole support for supporting the hydraulic component at the predetermined position.




In another aspect, this invention comprises a hydraulic cooling system for use in a vehicle comprising a hydraulic pump, a radiator, a hydraulic motor for driving a fan blade and a hydraulic conduit for hydraulically coupling the hydraulic pump and the hydraulic motor together, the hydraulic conduit also defining a support structure for supporting the hydraulic motor in operative relationship with the radiator, without the need for additional support brackets.




In another aspect, this invention comprises a method for supporting a component on a motor vehicle, the method comprising the steps of forming a hydraulic conduit to define a support for supporting the component at a predetermined position on the motor vehicle, thereby eliminating the need for additional support brackets.




In still another aspect, this invention comprises a method for delivering hydraulic fluid between a hydraulic pump and a hydraulic component in a vehicle comprising the steps of hydraulically coupling the hydraulic pump to the hydraulic component using a hydraulic conduit and forming the hydraulic conduit to define a self-contained support structure capable of supporting either the hydraulic pump or the hydraulic component in a first predetermined position or a second predetermined position, respectively.




In still another aspect, this invention comprises a hydraulic conduit for supporting a hydraulic component at a predetermined position on a vehicle comprising at least one conduit member for transporting hydraulic fluid to and from the hydraulic component, at least one conduit member also defining a support structure for supporting the hydraulic component at the predetermined position, without using additional support brackets.




In yet another aspect, this invention comprises a hydraulic cooling network for use on a motor vehicle comprising a hydraulic pump for supplying hydraulic pressure, a hydraulic fan motor for performing work in response to the hydraulic pressure and conduit means for conducting hydraulic fluid between the hydraulic pump and the hydraulic fan motor, the conduit means defining a self-sufficient support structure for supporting the hydraulic component in a predetermined position in the vehicle.




Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings, and the appended claims.











BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS





FIG. 1

is an exploded view of a hydraulic cooling system in accordance with one embodiment of the invention;





FIG. 2

is a view taken along the line


2





2


in

FIG. 1

showing a hydraulic conduit mounted to a fan shroud of the hydraulic cooling system shown in

FIG. 1

;





FIG. 3

is a fragmentary sectional view taken along the line


3





3


in

FIG. 2

, showing a tab which may be used to couple the hydraulic conduit to the fan shroud;





FIG. 4

is a partial sectional view illustrating the position of the hydraulic conduit in a heat exchange chamber;





FIG. 5

is a fragmentary sectional view showing at least a portion of the hydraulic conduit insert-molded into the fan shroud;





FIG. 6

is a view of a prior art cooling system showing the working depth E required by the prior art cooling system;





FIG. 7

is a plan view of another embodiment of the invention showing the hydraulic conduit mounted directly to the radiator;





FIG. 8

is a plan view of still another embodiment of the invention showing the hydraulic conduit mounted directly to the radiator, with a shroud mounted directly to the hydraulic conduit;





FIG. 9

is a plan view of yet another embodiment of the invention showing the hydraulic conduit mounted directly to a front end of a vehicle;





FIG. 10

is a fragmentary view showing an end of a shroud mounted directly to the hydraulic conduit;





FIG. 11

is a perspective view of the hydraulic conduit of

FIGS. 1-5

, showing the legs


18




b


,


18




c


,


18




g


and


18




g


lying in a frusto-conical, or pyramidal plane;





FIG. 12

is a perspective schematic view of the hydraulic conduit supporting a hydraulic component, such as a hydraulic fan motor, a hydraulic steering pump, a hydraulic alternator or a hydraulic reservoir.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to

FIG. 1

a hydraulic cooling system


10


for use in a vehicle (not shown) is shown. The hydraulic cooling system


10


comprises a radiator


12


, a hydraulic motor


14


for driving a fan blade


16


and a hydraulic conduit


18


for hydraulically coupling the hydraulic motor


14


to a hydraulic pump


20


(FIG.


4


). In the embodiment being described, the hydraulic pump


20


is driven by an engine


22


of the vehicle (not shown) which, in turn, hydraulically powers a plurality of hydraulic components, such as hydraulic motor


14


and a hydraulic steering system


24


(FIG.


4


), or other components, such as a hydraulic alternator or a hydraulic reservoir (not shown).




Notice that the hydraulic conduit


18


is formed to define a support structure for supporting the hydraulic motor


14


in operative relationship with the radiator


12


in an air-flow path in a heat exchange chamber


27


(

FIG. 4

) to facilitate cooling of the hydraulic fluid in the hydraulic conduit


18


. In this embodiment, the hydraulic conduit could be formed of any suitable materials, such as aluminum or metal.




The cooling system


10


further comprises valve means or a valve system


26


which, in the embodiment being described, is a three-way valve


26


comprising a solenoid


28


coupled to an electronic control unit (“ECU”)


30


resident in a computer system (not shown) on the vehicle. As best illustrated in

FIG. 2

, the ECU


30


may energize solenoid


28


to actuate the three-way valve system


26


to control the flow from the three-way valve system


26


through either a high pressure hydraulic path (defined by conduit legs, legs


18




a


and


18




b


into motor inlet


14




a


through motor outlet


14




b


and into legs


18




c


,


18




d


and


18




e


) or a low pressure hydraulic path (defined by leg


18




f


to inlet


14




c,


from outlet


14




d


through legs


18




g


and


18




h


).




It should be appreciated that the three-way valve


26


could comprise any suitable number and arrangement of valves that permit selective control and direction of fluid flow in and out of conduit


18


. This feature may be necessary in order to control, for example, the speed of fan blade


16


or to bypass the fan altogether to divert or prioritize hydraulic fluid to another part of the automotive system, such as a hydraulic steering system (not shown).




Thus, it should be appreciated that the conduit legs


18




a


-


18




h


in combination with the three-way valve system


26


and ECU


30


provide a multi-speed hydraulic control system for hydraulically energizing hydraulic motor


14


and also for controlling its speed of operations. Although not shown, the hydraulic conduit


18


could be formed or provided with fewer or more conduit legs


18




a


-


18




h


in order to achieve a desired design shape and flow as may be required to hydraulically support the hydraulic components.




In the embodiment being illustrated in

FIGS. 1-5

, hydraulic conduit


18


is formed to provide a support structure for supporting the hydraulic motor


14


and its associated fan blade


16


on the fan shroud


32


, without the need for additional brackets to support, for example, the hydraulic motor


14


. In this regard and as illustrated in

FIG. 3

, fan shroud


32


may be provided with a plurality of mounting tabs


34


which are secured to the fan shroud


32


via a suitable fastener, such as screw


36


, thereby securing the hydraulic conduit


18


onto fan shroud


32


. Alternatively, it is envisioned that the hydraulic conduit


18


may be insert-molded directly into the fan shroud


32


as illustrated in FIG.


5


. Still another approach envisioned is to provide cooperating, spaced apart and opposed molded tabs (not shown) at periodic intervals on the fan shroud


32


which receives the hydraulic conduit


18


so that the hydraulic conduit


18


can simply be “snapped” into place.




As best illustrated in

FIG. 11

, notice that the hydraulic conduit


18


is configured to define a shape which may be viewed as being generally pyramidal or frusto-conical. In this regard, notice that legs


18




a


and


18




d


lie in a first plane which for ease of illustration is identified by line X in FIG.


11


. Notice also that leg


18




c


, for example, lies in a plane which is parallel to line Y in FIG.


11


. These lines X and Y define an angle θ which defines the slope or steepness of the pyramidal or frusto-conical shape. Advantageously, when the motor


14


is energized the conduit legs


18




b,




18




c


,


18




g


and


18




f


are capable of receiving a substantially compressive or tensile force or load applied by motor


14


as the fan blade


16


pulls or pushes, respectively, air through the radiator


12


and forces motor


14


toward radiator


12


. This facilitates distributing the load generated by the fan blade


16


to the radiator


12


, for example, of the vehicle. This also facilitates avoiding movement and bending of the type shown in FIG.


6


.




It should be appreciated that while the hydraulic conduit


18


is illustrated as supporting the hydraulic motor


14


and fan blade


16


in operative relationship with the radiator


12


, it could be formed to provide a support for a second hydraulic load, such as an alternator (not shown), heat exchanger or cooler (not shown) and the like without the need for additional support brackets.




Moreover, a pressure sensor (not shown) could be placed in-line, for example, in leg


18




a


and coupled to ECU


30


in order to sense a pressure or a change in pressure therein. This, in turn, facilitates detecting a leak or blockage in the leg


18




a,


thereby enabling a leak or blockage to be quickly isolated, without interrupting the operation of, for example, the hydraulic motor


14


. This feature also facilitates making repairs to the hydraulic conduit


18


quicker and easier.




In the embodiment being described, the cooling system


10


further comprises a logic and priority valve


38


(

FIG. 4

) coupled to the ECU


30


(

FIG. 1

) for controlling and prioritizing flow between hydraulic steering system


24


and hydraulic motor


14


as desired. In this regard, the teachings of U.S. patent application Ser. No. 08/779,769, filed Jan. 7, 1997, by inventors Jeffrey J. Buschur and Robert V. Eyink, entitled Fluid Control System for Powering Vehicle Accessories and U.S. Pat. No. 5,535,845, which are both assigned to the same Assignee of the present invention and which are incorporated herein by reference and made a part hereof, may be utilized to facilitate directing fluid flow and prioritization of the hydraulic steering system


24


over the hydraulic motor


14


.




The hydraulic conduit


18


may be manufactured from a conventional aluminum tubing and may comprise a plurality of fins integrally formed or secured thereto (for example, by welding) in order to facilitate heat exchange and cooling. A method for delivering hydraulic fluid between the hydraulic pump


20


and the hydraulic motor


14


and for supporting the hydraulic motor


14


in operative relationship with the radiator


12


will now be described.




The method begins by securing the aforementioned hydraulic conduit


18


to the radiator


12


. The hydraulic conduit


18


may be provided in a pre-formed arrangement to define a support structure for facilitating supporting the hydraulic pump


20


in a predetermined position, such as position A in

FIG. 1

, so that the hydraulic motor


14


and fan blade


16


become operatively aligned with radiator


12


, and the radiator


12


may then be placed in the vehicle. The hydraulic conduit


18


may then be coupled to the hydraulic pump


20


so that the hydraulic motor


14


and hydraulic pump


20


are in fluid communication via flexible hoses


42




a


and


42




b.


It should be appreciated that various supplemental brackets or supporting members may be used with the various features of this invention




In the manner described earlier herein, the method for supporting may also comprise the steps of fastening the hydraulic conduit


18


onto the fan shroud


32


using a plurality of the mounting tabs


34


and screws


36


. Alternatively, the method may comprise the step of insert-molding the hydraulic conduit


18


directly into the fan shroud


32


(FIG.


5


). Although not shown, it should be appreciated that some combination of the aforementioned methods for securing the hydraulic conduit


18


to the fan shroud


32


may also be utilized.




After the hydraulic conduit


18


is secured to fan shroud


32


, the fan shroud


32


is secured to the radiator


12


.




Advantageously, this system and method provide means for forming and defining a support structure for supporting a hydraulic component at a predetermined position in a vehicle without the need for additional support brackets. Although not shown, it is also envisioned that the hydraulic conduit


18


could be formed to provide a support for supporting a plurality of components as mentioned earlier herein. For example, a hydraulic reservoir or cooler (not shown) could be supported by one or more of the legs


18




a


-


18




h


(

FIG. 2

) so that the cooler is situated in the heat exchange chamber


27


(

FIG. 4

) to facilitate cooling the hydraulic fluid and improving the efficiency of the hydraulic cooler.




Alternatively, the hydraulic cooler could be integral with either the fan shroud


32


or the radiator


12


in which case the hydraulic conduit


18


may be formed to not only support the hydraulic motor


14


at the predetermined position A (FIG.


1


), but also to provide a hydraulic conduit


18


to hydraulically couple the hydraulic motor


14


, hydraulic pump


20


, and cooler (not shown) together.




Thus, a significant feature of the present invention is that it provides a method, means and apparatus for forming a support for simultaneously supporting at least one hydraulic component at a predetermined position, as well as providing a hydraulic conduit system for hydraulically coupling the hydraulic components as desired, without the need to couple additional brackets or support structure to the hydraulic components.




Advantageously, this system and method provides means for providing a pre-formed conduit which can be coupled to hydraulic motor


14


so that it can be readily and easily assembled to the fan shroud


32


. This, in turn, facilitates reducing the amount of time required to assemble the cooling system


10


.





FIGS. 7-10

illustrate other embodiments hydraulic cooling system


10


. In these embodiments, similar parts are identified with identical part numbers with the exception of a “′”, “″”, or “′″” being added to the identical part number. Thus, notice with respect to the embodiment shown in

FIG. 7

that the hydraulic conduit


18


′ is coupled directly to the radiator


12


′ using the mounting tabs


34


′ which are identical to the mounting tabs


34


illustrated in FIG.


3


. Notice that a working distance, identified by double arrow WD, is substantially reduced when compared to the distance E of the prior art cooling system illustrated in FIG.


6


. Advantageously, this arrangement of components is particularly suitable for use in engine compartments where space is tight.





FIG. 8

illustrates yet another embodiment of the invention where the shroud


32


″ is mounted directly to and supported by the hydraulic conduit


18


″, rather than by the radiator


12


″ as in the embodiment illustrated in

FIGS. 1-5

. As illustrated in

FIG. 10

, the shroud


32


″ comprises ends


32




a


″ (

FIG. 8 and 10

) having “snap-on” clips


33


″ which are resilient to permit the end


32




a


″ to be snapped directly onto the hydraulic conduit


18


″.





FIG. 9

illustrates another embodiment similar to the embodiment shown and described in

FIGS. 8 and 10

, except that the hydraulic conduit


18


′″ is mounted directly to a front end


40


′″ of a vehicle (not shown). This arrangement facilitates separating the hydraulic conduit


18


′″ and associated shroud


32


′″ from the radiator


12


′″. This further enables, for example, the radiator


12


′″ to be situated separately from the shroud


32


′″ as may be desired. Thus, it should be appreciated, that the fan motor


14


′″ could be mounted in operative relationship with engine


22


by mounting the conduit


18


′″ directly to the vehicle. The radiator


12


′″ could be situated at a location other than in the front of the engine compartment or remotely at some location other than the engine compartment (such as toward the rear of the vehicle).





FIG. 12

is similar to the embodiment shown in

FIG. 11

, with the same parts bearing the same part numbers. Notice in

FIG. 12

that the hydraulic conduit


18


is configured to define a shape which may be viewed as being generally pyramidal or frusto-conical. In this regard, notice that legs


18




a


and


18




d


lie in a first plane which for ease of illustration is identified by line X in FIG.


11


. Notice also that leg


18




c,


for example, lies in a plane which is parallel to line Y in FIG.


12


. These lines X and Y define an angle theta which defines the slope or steepness of the pyramidal or frusto-conical shape. Notice that the conduit


18


is formed to another hydraulic component which is shown schematically as part


27


and may comprise any one of the following: a hydraulic fan motor, a hydraulic steering pump, a hydraulic alternator or a hydraulic reservoir.




As described earlier herein relative to the illustration in

FIG. 11

, when the hydraulic component comprises the motor


14


which drives the fan blade


16


, the load generated by the fan blade


16


is distributed to the radiator


12


, for example, of the vehicle. Notice also a plurality of fins


29


may be situated on one or more of the legs


18




a


-


18




g


of the hydraulic conduit


18


to facilitate cooling the hydraulic fluid therein.




While the system and methods herein described, and the forms of apparatus for carrying these methods into effect, constitute preferred embodiments of this invention, it is to be understood that the invention is not limited to these precise methods and forms of apparatus, and that changes may be made in either without departing from the scope of the invention, which is defined in the appended claims.



Claims
  • 1. A hydraulic component support for supporting a hydraulic component at a predetermined position on a vehicle comprising:at least one hydraulic conduit for providing a passageway for transferring any hydraulic fluid required by said hydraulic component; a valve coupled to said at least one hydraulic conduit and responsive to a signal for increasing or decreasing flow through said at least one hydraulic conduit to control operation of said at least one hydraulic conduit; at least a portion of said at least one hydraulic conduit lying in a conical plane and formed to support the hydraulic component at said predetermined position.
  • 2. The hydraulic component support as recited in claim 1 wherein said hydraulic component comprises one of the following: a hydraulic fan motor, a hydraulic steering pump, a hydraulic alternator or a hydraulic reservoir.
  • 3. The hydraulic component support as recited in claim 1 wherein said predetermined position is adjacent to a radiator.
  • 4. The hydraulic component support as recited in claim 1 wherein said at least one hydraulic conduit is coupled to a radiator.
  • 5. The hydraulic component support as recited in claim 1 wherein said at least one hydraulic conduit comprises at least a portion which is insert-molded into a shroud associated with a radiator on the vehicle.
  • 6. The hydraulic component as recited in claim 1 wherein said at least one conduit comprises a plurality of fins secured thereto to facilitate heat exchange.
  • 7. The hydraulic component support as recited in claim 1 wherein said at least one hydraulic conduit is formed to support a plurality of hydraulic components.
  • 8. The hydraulic component support as recited in claim 1 wherein said motor one hydraulic component is a hydraulic fan motor;said at least one conduit being coupled directly to said hydraulic fan motor to transfer hydraulic fluid towards and away from said hydraulic fan motor and being formed to support the hydraulic fan motor in operative relationship with a radiator in the vehicle.
  • 9. The hydraulic component support as recited in claim 8 wherein said at least one conduit is secured directly to said radiator.
  • 10. The hydraulic component support as recited in claim 8 wherein said at least one conduit is insertmolded into said radiator.
  • 11. The hydraulic component support as recited in claim 8 wherein said at least one conduit comprises a plurality of fins secured thereto.
  • 12. A hydraulic cooling system for use in a vehicle comprising:a hydraulic pump; a radiator; a hydraulic motor for driving a fan blade; and a hydraulic conduit for hydraulically coupling said hydraulic pump and said hydraulic motor together; a valve coupled to said at least one hydraulic conduit and responsive to a signal for increasing or decreasing flow through said at least one hydraulic conduit to control operation of said at least one hydraulic conduit; at least a portion of said hydraulic conduit lying in a conical plane to facilitate distributing the load generated by said fan blade to a structure on which the hydraulic conduit is mounted.
  • 13. The hydraulic cooling fan system as recited in claim 12 wherein said hydraulic conduit comprises a plurality of legs coupled to said hydraulic motor for providing a plurality of inlets and a plurality of outlets to and from said hydraulic motor.
  • 14. The hydraulic cooling fan system as recited in claim 12 wherein a portion of said hydraulic conduit is insert-molded into said radiator.
  • 15. The hydraulic cooling fan system as recited in claim 12, wherein said system comprises a second hydraulic component;said hydraulic conduit being formed to support both said hydraulic motor and said second hydraulic component while hydraulically coupling said hydraulic motor and said second hydraulic component to said hydraulic pump.
  • 16. The hydraulic cooling fan system as recited in claim 12 wherein said hydraulic conduit defines a plurality of hydraulic legs for supporting said hydraulic motor on said radiator.
  • 17. The hydraulic cooling system as recited in claim 12 wherein said hydraulic conduit defines a motor support comprising at least four conduit legs, said at least four conduit legs being capable of transporting hydraulic fluid either towards or away from said hydraulic motor.
  • 18. The hydraulic cooling fan system as recited in claim 12 wherein said hydraulic conduit defines a network defining a plurality of fluid paths, said system further comprising a hydraulic switch for selecting one or more of said plurality of fluid paths.
  • 19. The hydraulic cooling system as recited in claim 12 wherein said system further comprises a second hydraulic load;said hydraulic conduit further defining a second hydraulic support for supporting said second hydraulic load in a predetermined position.
  • 20. The hydraulic cooling system as recited in claim 12 wherein said second hydraulic load comprises at least one of the following: a fan motor, an alternator, or a hydraulic reservoir.
  • 21. The hydraulic cooling system as recited in claim 12 wherein said system further comprises a plurality of brackets for mounting said hydraulic conduit to said radiator.
  • 22. The hydraulic cooling system as recited in claim 12 wherein said hydraulic conduit comprises a plurality of heat-exchange fins.
  • 23. A method for delivering hydraulic fluid between a hydraulic pump and a hydraulic component in a vehicle comprising the steps of:hydraulically coupling said hydraulic pump to said hydraulic component using a hydraulic conduit having a control valve coupled thereto; forming said hydraulic conduit to define a self-contained support structure, at least a portion of said hydraulic conduit lying in a conical plane; and energizing said control valve to control delivery of said hydraulic fluid through said hydraulic conduit and to said hydraulic component.
  • 24. The method as recited in claim 23 wherein said hydraulic component comprises a hydraulic fan motor, said method further comprising the step of:forming said hydraulic conduit to define a support structure capable of supporting said hydraulic fan motor in operative relationship with a radiator situated on the vehicle.
  • 25. The method as recited in claim 23 wherein said vehicle comprises a radiator comprising an air flow path, said method further comprising the step of:forming said hydraulic conduit to define a support structure having at least a portion of which is situated in said air flow path.
  • 26. The method as recited in claim 23 wherein said hydraulic component comprises a hydraulic fan motor, said method further comprising the step of:fastening said support structure to a fan shroud such that said hydraulic fan motor becomes positioned in a predetermined location relative to a radiator on the vehicle.
  • 27. The method as recited in claim 23 wherein said hydraulic component comprises a hydraulic fan motor, said method further comprising the step of:insert molding at least a portion of said support structure to a fan shroud such that said hydraulic fan motor becomes positioned in a predetermined location relative to a radiator on the vehicle.
  • 28. The method as recited in claim 23 wherein said method further comprises the step of:forming said support structure to support at least one other hydraulic component in addition to said hydraulic fan motor; said at least one other hydraulic component comprising at least one of the following: a hydraulic alternator, a hydraulic cooler, or a hydraulic steering pump.
  • 29. The method as recited in claim 28 wherein said method further comprises the step of:situating a plurality of fins on said hydraulic conduit to facilitate cooling hydraulic fluid passing therethrough.
  • 30. The method as recited in claim 23 wherein said method further comprising the step of:cooling said hydraulic fluid by passing said hydraulic fluid through a hydraulic pump reservoir integrally formed as part of said radiator.
  • 31. The method as recited in claim 23 wherein said method further comprises the step of:situating a hydraulic reservoir remotely from said hydraulic pump.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Ser. No. 08/850,559 filed May 2, 1997, now U.S. Pat. No. 5,960,748.

US Referenced Citations (26)
Number Name Date Kind
1277735 LaPorte Sep 1918
1491554 Seidle Apr 1924
2777287 Tweedale Jan 1957
3220640 Kambs Nov 1965
3659567 Murray May 1972
3934644 Johnston Jan 1976
4062329 Rio Dec 1977
4066047 Vidakovic et al. Jan 1978
4181172 Longhouse Jan 1980
4189919 Goscenski, Jr. Feb 1980
4223646 Kinder Sep 1980
4329946 Longhouse May 1982
4366783 Clemente Jan 1983
4371318 Kime Feb 1983
4461246 Clemente Jul 1984
4489680 Spokas et al. Dec 1984
4685513 Longhouse et al. Aug 1987
4691668 West Sep 1987
4738330 Suzuki et al. Apr 1988
4836148 Savage et al. Jun 1989
4969421 Haner et al. Nov 1990
5002010 Klaucke et al. Mar 1991
5216983 Nilson Jun 1993
5441232 Tanaka Aug 1995
5522457 Lenz Jun 1996
5566954 Hahn Oct 1996
Foreign Referenced Citations (2)
Number Date Country
1118880 Jun 1956 FR
57-198311 Dec 1982 JP
Continuations (1)
Number Date Country
Parent 08/850559 May 1997 US
Child 09/384498 US