The present disclosure relates to the field of vehicles, and particularly to a vehicle, a hydraulic system for a powertrain of a vehicle, and a control method thereof.
With the diversification of energy sources for vehicles, the powertrain of a hybrid vehicle integrates components in many fields, including gears, clutches, drive motors, generators, controllers, etc. These parts need to be cooled to operate at appropriate temperatures. In the related art, cooling oil paths of a plurality of parts are controlled by a pump, and the cooling oil paths of the parts are respectively connected to the pump through throttle valves. Particularly, the cooling and lubrication of the parts are distributed according to the ratio of the sizes of the throttle valves. Therefore, in the related art, to satisfy the flow rate required by a part having the highest cooling demand, the supply of cooling for other parts is likely to exceed corresponding demands, and some parts cannot operate in an efficient temperature range, resulting in low efficiency of the powertrain.
The present disclosure solves, at least to some extent, one of the technical problems in the related art.
The present disclosure provides a vehicle, a hydraulic system for a powertrain of a vehicle, and a method for controlling the hydraulic system, so that the flow for each power terminal can be adjusted as required.
An embodiment of a first aspect of the present disclosure provides a hydraulic system for a powertrain of a vehicle. The powertrain includes one or more of a drive motor, a generator, a clutch, and a transmission system. The hydraulic system includes an oil tank, a main cooling oil path, and a plurality of cooling branches. A first end of the main cooling oil path is communicated with the oil tank. A first oil pump and a cooler are disposed on the main cooling oil path. The plurality of cooling branches are connected to a second end of the main cooling oil path. The first oil pump is configured to pump an oil in the oil tank to the cooling branches. A control element is disposed on each of the cooling branches. The control element is configured to control opening and closing of the corresponding cooling branch. The plurality of cooling branches is configured to cool one or more of the drive motor, the generator, the clutch, and the transmission system.
The cooling branches and the control elements form an integrated cooling valve group structure, and each solenoid valve can independently open or close and adjust the cooling branch, to realize independent flow control, thereby independently adjusting and controlling the cooling flow for each power terminal.
An embodiment of a second aspect of the present disclosure provides a vehicle, including the hydraulic system, a controller, a power distribution module, a pressure calculation module, a terminal flow calculation module, and a hydraulic coordination module. The controller is configured to receive traveling demand information and road condition information. The power distribution module is configured to calculate rotation speed information and torque information corresponding to each power terminal of the powertrain according to the traveling demand information and the road condition information. Each power terminal includes one or more of a drive motor, a generator, a clutch, and a transmission system. The pressure calculation module is configured to calculate a driving pressure requirement according to the rotation speed information and the torque information from the power distribution module. The terminal flow calculation module is configured to calculate a cooling flow requirement of each power terminal according to the rotation speed information and the torque information from the power distribution module and an oil temperature of the main cooling oil path. The hydraulic coordination module is configured to calculate a rotation speed of the first oil pump, a rotation speed of the second oil pump, the opening degree of the control element, and an opening degree of the pressure control solenoid valve according to the driving pressure requirement and the cooling flow requirement of each power terminal.
An embodiment of a third aspect of the present disclosure provides a method for controlling a hydraulic system for a powertrain of a vehicle, including:
calculating rotation speed information and torque information corresponding to each power terminal of the powertrain according to the traveling demand information and the road condition information, each power terminal including one or more of a drive motor, a generator, a clutch, and a transmission system; calculating a driving pressure requirement and a cooling flow requirement of each power terminal according to the rotation speed information and the torque information corresponding to each power terminal; and calculating a rotation speed of the first oil pump, a rotation speed of the second oil pump, flow rates in the cooling branches, and an opening degree of the pressure control solenoid valve according to the driving pressure requirement and the cooling flow requirement of each power terminal.
Additional aspects and advantages of the present disclosure will be partly given in and partly apparent from the description below, or understood through practice of the present disclosure.
Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings in which the same or like reference characters refer to the same or like elements or elements having the same or like functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present disclosure, rather than limiting the present disclosure.
A vehicle 1000, a hydraulic system for a powertrain of a vehicle 1000, and a method for controlling same according to the embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
An embodiment of a first aspect of the present disclosure provides a hydraulic system 100 for a powertrain of a vehicle 1000. The vehicle 1000 includes one or more of a drive motor, a generator, a clutch, and a transmission system. The hydraulic system includes an oil tank 10, a main cooling oil path m, and a plurality of cooling branches.
As shown in
Each of the cooling branches n corresponds to cooling of one power terminal. The power terminal includes but is not limited to the drive motor 50a, the clutch 50b, the transmission system 50c, and the generator 50d.
Therefore, the cooling branches and the control elements form an integrated cooling valve group structure, and each solenoid valve can independently open or close and adjust the cooling branch, to realize independent flow control, thereby independently adjusting and controlling the cooling flow for each power terminal.
In some embodiments, the cooling branches at least include a first cooling branch n1, a second cooling branch n2, a third cooling branch n3, and a fourth cooling branch n4. The first cooling branch n1 is configured to cool the drive motor 50a. The second cooling branch n2 is configured to cool the generator 50d. The third cooling branch n3 is configured to cool the clutch 50b. The fourth cooling branch n4 is configured to cool the transmission system 50c. Accordingly, the control elements on the cooling branches are respectively a first control element a second control element 40b, a third control element 40c, and a fourth control element 40d.
Therefore, there is a form of energy consumption or multiple energy sources participating in driving at the same time in the operation of a hybrid vehicle. For example, the hybrid vehicle is in an electric vehicle mode (where the drive motor 50a participates in driving, but an engine and the generator 50d do not operate) or a parallel mode (where the engine and the drive motor 50a participate in driving at the same time). The drive motor 50a, the generator 50d, the clutch 50b, and the transmission system 50c are respectively cooled by the first cooling branch n1, the second cooling branch n2, the third cooling branch n3, and the fourth cooling branch n4. A cooler 30 is arranged/disposed on the main cooling oil path m to cool the oil in the main cooling oil path m and the cooling branches. This not only can realize the cooling of each power terminal, but also provides a cooling effect.
The control elements are proportional adjustment solenoid valves, and each of the proportional adjustment solenoid valves is configured to receive a signal sent by a vehicle controller and to adjust an opening degree of each of the proportional adjustment solenoid valves according to the signal. Therefore, the proportional adjusting solenoid valves not only can control the opening and closing of the corresponding cooling branches, but also can adjust the flow rate in each cooling branch as required.
In the embodiment shown in
In this way, the driving oil path p is connected between the clutch and the oil tank 10 and outputs pressure to control the closing and opening of the clutch. When pressure of the clutch needs to be increased according to a driving pressure requirement and current pressure of the clutch, the pressure control solenoid valve 80 is communicated with the driving oil path p and the clutch and controls the second oil pump 60 to operate. When pressure of the clutch needs to be relieved, the pressure control solenoid valve 80 blocks the communication between the driving oil path p and the clutch, and communicates the oil tank 10 and the clutch.
In addition, the main cooling oil path m may further be connected to a first safety branch. The first safety branch is located between the cooler 30 and the first oil pump 20. A first safety valve 91 is arranged/disposed on the cooling branches. The first safety valve 91 is connected to the oil tank 10 to relieve pressure when oil pressures in the main cooling oil path m and the cooling branches exceed a preset pressure.
Similarly, the driving oil path p may further be connected to a second safety branch. The second safety branch is arranged/disposed close to the second oil pump 60. The second safety valve 92 is connected to the oil tank 10 to relieve pressure when an oil pressure in the driving oil path p exceeds a preset pressure.
In some embodiments, as shown in
In some other embodiments, as shown in
In an embodiment, as shown in
As shown in
Therefore, when the pressure control solenoid valve 80 is opened, the oil in the oil tank 10 may be pumped out by the second oil pump 60 through the driving oil path p and supplied to the clutch, the replenishing oil path is disconnected, and the driving oil path p and the second oil pump 60 are not used to replenish oil to the main cooling oil path m. When the flow in the cooling oil path is insufficient, the cooling oil path needs to be replenished with oil through the driving oil path, and the pressure control solenoid valve 80 is closed. In this case, the replenishing oil path is switched to communicate the driving oil path p with the main cooling oil path m under the action of pressure, and the oil in the oil tank 10 enters the replenishing oil path through the driving oil path p and the second oil pump 60, to provide an oil replenishing function for the cooling branches.
In the embodiment shown in
In this way, the connection to or disconnection from the replenishing oil path may be realized by controlling the pressure in the driving oil path p. When the pressure in the driving oil path p is within a threshold range, the pressure solenoid valve 73 is controlled to be opened, to switch the regulating oil path q2 to communicate with a throttle hole 731 of the pressure slide valve 71. The pressure solenoid valve 73 can control the flow rate and the pressure of the throttle hole 731, to control the pressure slide valve 71 to enter an open state or a closed state, thereby realizing connection and disconnection of the main replenishing oil path q1. Therefore, the use of the electrically controlled pressure solenoid valve 73, the second oil pump 60, and the pressure slide valve 71 can realize connection and disconnection of the replenishing oil path, and achieve sensitive response.
In the embodiment shown in
As shown in
The controller 200 is configured to receive traveling demand information and road condition information. For example, in a conventional driving mode, accelerator pedal information and road slope information are obtained. In an assisted driving mode, driver demand information and road condition prediction information are obtained. In an autonomous driving mode, acceleration requirement information is obtained.
The power distribution module 300 is configured to calculate rotation speed information and torque information required by each power terminal of the powertrain according to the traveling demand information and the road condition information. The power terminal includes one or more of a drive motor, a generator, a clutch, and a transmission system.
The pressure calculation module 400 is configured to calculate a driving pressure requirement according to the rotation speed information and the torque information from the power distribution module 300. Based on power transmission paths of the power distribution module 300, the pressure calculation module 400 calculates pressure requirements for switching between different power transmission paths, for example, a clutch engagement pressure requirement for switching from an engine serial mode to an engine-driven vehicle mode.
The terminal flow calculation module 500 is configured to calculate a cooling flow requirement of each power terminal according to the rotation speed information and the torque information from the power distribution module 300 and oil temperature information of the main cooling oil path.
The hydraulic coordination module 600 is configured to calculate a rotation speed of the first oil pump, a rotation speed of the second oil pump, the opening degree of the control element, and an opening degree of the pressure control solenoid valve according to the driving pressure requirement and the cooling flow requirement of each power terminal. In other words, rotation speed information of the first oil pump and opening degree information of the pressure control solenoid valve and the control elements are calculated according to the pressure requirement from the pressure calculation module 400 and a summarized flow requirement from the terminal flow calculation module 500. Rotation speed information of the second oil pump is calculated according to the summarized flow requirement of the terminal flow calculation module 500. According to the cooling flow requirement of each power terminal, flow information of the corresponding control element (which may be a solenoid valve) is calculated. Therefore, the terminal flow calculation part calculates, according to performance of each component at different temperatures, a cooling flow requirement corresponding to optimal efficiency of the component.
As shown in
S1: A power requirement of the powertrain is calculated according to driver demand information and predicted road condition information, and rotation speed information and torque information required by each power terminal of the powertrain are calculated.
S2: A flow requirement of each power terminal is calculated according to the rotation speed information and the torque information. A pressure requirement of the hydraulic system 100 is calculated according to a required pressure and the flow requirement of each power terminal.
S3: Rotation speeds of the oil pumps and a pressure and flow control signal required by each solenoid valve are calculated according to the pressure requirement and the flow requirement of each power terminal.
In this way, a cooling requirement of each component and a total cooling flow requirement are calculated according to a status of the vehicle, and oil pump signals are output, so that the system flow supply can be adjusted as required, thereby reducing the flow loss. By controlling the cooling flow to enable each power terminal to operate in an efficient temperature range, the cooling flow for each power terminal can be distributed as required, thereby improving the system efficiency.
Refer to Table 1 below for pressures of the hydraulic system 100 in different modes and the cooling flow for each power terminal.
Therefore, in the electric vehicle mode, there is no need to supply oil to the generator 50d; in the parallel mode, the second oil pump 60 supplies oil to the driving oil path p and the first oil pump 20 supplies coolant to the cooling branch; In the serial mode, the second oil pump 60 replenishes oil to the main cooling oil path m through the replenishing oil path.
Moreover, the terms “first” and “second” are used herein for purposes of description, and are not intended to indicate or imply relative importance or implicitly point out the number of the indicated technical feature. Therefore, the features defined by “first” and “second” may explicitly or implicitly include one or more features. In the description of the present disclosure, “multiple” and “a plurality of” mean two or more, unless otherwise particularly defined.
In the description of the specification, the description with reference to the terms “an embodiment”, “some embodiments”, “example”, “specific example”, or “some example” and so on means that features, structures, materials or characteristics described in connection with the embodiment or example are embraced in at least one embodiment or example of the present disclosure. In the specification, the illustrative expression of the above terms is not necessarily referring to the same embodiment or example. Moreover, the described features, structures, materials or characteristics may be combined in any suitable manners in one or more embodiments. In addition, where there are no contradictions, the various embodiments or examples described in this specification and features of various embodiments or examples can be combined by those skilled in the art.
Although the embodiments of the present disclosure have been illustrated and described above, it is to be understood that the above embodiments are exemplary and not to be construed as limiting the present disclosure, and that changes, modifications, substitutions and alterations can be made by those skilled in the art without departing from the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202110406463.8 | Apr 2021 | CN | national |
This application is a Continuation application of International Patent Application No. PCT/CN2022/085872, filed on Apr. 8, 2022, which is based on and claims priority to and benefits of Chinese Patent Application No. 202110406463.8, filed on Apr. 15, 2021. The entire content of all of the above-referenced applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2022/085872 | Apr 2022 | US |
Child | 18372249 | US |