The present application is related to co-pending U.S. patent application Ser. No. 11/025,369, filed on Dec. 29, 2004, and entitled “Method, Apparatus, and System for Accessing Multiple Vehicle-Information Databases Using a Handheld Vehicle Diagnostic Tool”, which is assigned to the assignee of the present application and incorporated herein by reference, and which names Sunil Reddy, Dale Trsar and James Cancilla (an inventor of the present application) as inventors.
This disclosure relates generally to test and diagnostic systems for machines or other operating apparatus and, more specifically, to a motor vehicle diagnostic system including or having access to, multiple computer applications, and including a vehicle identification key for seamless connection between the multiple applications.
Modern vehicles include various electronic control units, such as microprocessors and controllers, that are programmed to control vehicle operations. Such control units include, for example, an Electronic Control Module (ECM) or on-board computer. The control units are designed to monitor the operation of various electronic components and electronics in order to optimize vehicle performance. For example, control units such as an ECM can monitor the amount of carbon monoxide in the engine exhaust and adjust the fuel/air ratio entering the cylinders in order to optimize combustion efficiency.
The control units also store historical data of the performance of the vehicle systems. The data can be accessed by a user through an information port. Diagnostic systems are commonly used to obtain (and sometimes transmit) data through the information port, and the diagnostic systems can be used to monitor and adjust the operation of various systems of the vehicle, detect malfunctions, and record error codes produced by the control units.
Traditional diagnostic systems include a computer that couples to the information port by means of a data cable, a monitor, and a keyboard. An example of such a traditional diagnostic system is a computerized diagnostic station including a personal computer having a monitor and keyboard. Smaller, portable diagnostic systems are also now available. For example, U.S. Pat. No. 6,693,367, which is assigned to the assignee of the present application, shows a portable, hand-held vehicle diagnostic display unit that is configured such that a user can simultaneously lift and operate the diagnostic display unit with a single hand.
Some diagnostic systems include libraries, or databases. U.S. Pat. No. 6,141,608, which is assigned to the assignee of the present application, for example, discloses such a system. The system stores libraries of information regarding vehicle identifications, drivability symptoms exhibited by vehicles, vehicle system and component tests and service codes which can be registered by the vehicle on-board computer. System software permits the user to input an identification of the vehicle under test and, in one mode of operation, displays a library of faults, such as symptoms or service codes, from which the user can select those exhibited by the vehicle, whereupon the system selects from the test library those tests pertinent to diagnosis of the causes of the selected faults and displays them in a hierarchically ranked order based on likelihood of successful diagnosis of the faults. The user can then select and initiate any displayed test. In other modes, the system initially displays one of the libraries of system or component tests, from which the user selects those deemed appropriate, whereupon the system highlights icons which can be selected for initiating pertinent test procedures. Selected test procedures may include links to the engine analyzer or scanner hardware or other appropriate test modules.
U.S. Pat. No. 6,714,846, which is also assigned to the assignee of the present application, discloses a diagnostic director. The diagnostic director includes a host system, which can comprise for example, the portable, hand-held vehicle diagnostic display unit disclosed in U.S. Pat. No. 6,693,367. The host system includes a processor, storage media, and a plurality of support data sources, which may be resident at or remote from the host system. The storage media stores service or maintenance test designations and descriptions. System software responds to user selection of displayed vehicle systems or symptoms to be diagnosed by displaying test applications. Upon user selection of a test application, the system displays the first page of the test application and simultaneously links to appropriate support data sources and displays pertinent support data on a portion of the display screen. Vehicle information, such as the make, model, year, and engine size of the vehicle.
What is still desired is a new and improved motor vehicle diagnostic system including or having access to multiple computer applications for conducting various tests of the vehicle. The diagnostic system will preferably include features which allow multiple test applications to be opened and run in a more convenient and seamless manner while testing and diagnosing a vehicle.
The present disclosure provides a vehicle diagnostic system including a processor, a user interface including a display device and an input device both coupled to the processor for interactive control thereof and thereby, and a local storage library connected to the processor for storing at least one application to be performed on the vehicle. The processor is programmed to request vehicle identification information from a user through the display device, create a particular configuration identifier (which also may be referred to as a vehicle identification key) containing the vehicle identification information entered by the user through the input device, store the particular configuration identifier in the local storage library, retrieve at least one application from the library as the application is selected by the user through the input device, and provide the particular configuration identifier to the application.
Among other features and benefits, the present disclosure provides a motor vehicle diagnostic system including, or having access to, multiple computer applications, wherein each application may provide a different test or diagnostic function for a vehicle. The diagnostic system includes features which conveniently allow each of the local, or remote, applications to be opened and run from a host unit while testing and diagnosing a vehicle. In addition, the system allows each of the applications to be opened and run from the host unit without requiring vehicle information to be re-entered whenever one of the applications is opened and run.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only an exemplary embodiment of the present disclosure is shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
Reference is made to the attached drawings, wherein elements having the same reference character designations represent like elements throughout, and wherein:
The present disclosure provides a motor vehicle diagnostic system including, or having access to, multiple computer applications, wherein each application may provide a different test or diagnostic function. The diagnostic system includes features which conveniently allow each of the local, or remote, applications to be opened and run from a host unit while testing and diagnosing a vehicle. In addition, the system allows each of the applications to be opened and run from the host unit without requiring vehicle information to be re-entered.
In
Referring first to
Referring to
Still referring to
The processor 22 and/or the server 30 may be adapted to be connected to the Internet, through suitable modems (not shown) or dedicated communication links, in a known manner. As is indicated, these links could be wired or wireless. Similarly, it will be appreciated that other communication links in the system 20, such as the various communication links between the processor 22 and the server 30, the instrumentation data sources 31-33 and the like could, if desired, also be wireless rather than direct-connection, wired links. The processor 21 and/or the server 30 are connectable via the Internet to various remote support data sources, which may be resident at Internet Web sites. These may include a one or more sites 37 proprietary to the user, pre-selected sites or specific pages of sites 38 which have been predetermined to be pertinent to a specific diagnostic test routine, or sites 39 which may be accessed through a browser on an ad hoc basis. It will also be appreciated that other support data sources could, if desired, be resident at the server 30 in suitable storage media.
The non-instrumentation support data sources may include a variety of different text and/or graphics data sources including, for example, but not limited to, manufacturer's diagnostic procedures, such as service manuals, service bulletins or the like, third-party independent diagnostic procedures and manuals, expert diagnostic tips and procedures compiled by a user entity, libraries of component locations, libraries of connectors and connection points, libraries of circuit diagrams and mechanical system diagrams, video libraries, waveform libraries, etc.
As was indicated above, some of the support data sources may include case-based, expert databases or libraries, compiled by technicians and service personnel from actual field diagnostic and service experience. Collection of some of this information may be done automatically, as described, for example, in the aforementioned U.S. Pat. No. 6,141,608. The library of diagnostic tests, described above as included in the local storage utility 28, may also be generated from actual field experience, as well as other sources.
All of the aforementioned applications, diagnostic tests, and libraries may also be provided on portable forms of computer-readable medium, such as a floppy disk or a CD-ROM. The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to the processor 21 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. The local storage utility 28 is a computer-readable media, for example. Methods in accordance with the present disclosure of operating the system 20 of
Referring now to
For purposes of implementing the vehicle identification procedure, the icon 51 is selected, bringing up the screen display shown in
As the vehicle identification procedure is carried out, the processor 22 of the host unit 21 is programmed to save the vehicle information as a particular configuration identifier (which also may be referred to as a vehicle identification key), such that the particular configuration identifier can automatically be provided to any of the local or remote applications that are opened and run from the host unit 21 while testing and diagnosing a vehicle. Accordingly, each application can be opened and run from the host unit 21 without requiring vehicle information to be re-entered by the user. According to one exemplary embodiment, the particular configuration identifier comprises a common text attribute string. The particular configuration identifier may also include at least a part of a Vehicle Identification Number (VIN).
The processor 22 of the host unit 21 is then programmed to start the application, as shown at 308. The application can be retrieved from the local storage library 28 or from one of the web sites 37, 38, 39 or the remote server PC 30. In the figure, the application is described as a primary application. This term is used simple to indicate that more than one application can be used by the processor 22. The applications may be opened and closed successively, or a secondary application may be opened while the primary application is opened. In any event, the processor is programmed to provide the particular configuration identifier to each application so that the vehicle information does not have to be re-entered by the user for each application.
At 310 in
If, at 312, a secondary application is selected by the user during the operation of the primary application, then the secondary application is run, as shown at 318, and any information obtained from the secondary application is then applied to the primary application, as shown at 320, if that information is applicable to the primary application. Running the second application is shown in
The present disclosure, therefore, provides a new and improved motor vehicle diagnostic system that allows applications to be opened and run from a host unit without requiring vehicle information to be re-entered whenever one of the applications is used.
The specific methods and apparatus described in this specification have been presented by way of illustration rather than limitation, and various modifications, combinations and substitutions may be effected by those skilled in the art without departure either in spirit or scope from this disclosure in its broader aspects and as set forth in the appended claims. All methods and apparatus disclosed herein, and all elements thereof, are contained within the scope of at least one of the following claims. No elements of the presently disclosed methods and apparatus are meant to be disclaimed.
Number | Name | Date | Kind |
---|---|---|---|
5491631 | Shirane et al. | Feb 1996 | A |
5991673 | Koopman, Jr. et al. | Nov 1999 | A |
6141608 | Rother | Oct 2000 | A |
6330499 | Chou et al. | Dec 2001 | B1 |
6339736 | Moskowitz et al. | Jan 2002 | B1 |
6615120 | Rother | Sep 2003 | B1 |
6693367 | Schmeisser et al. | Feb 2004 | B1 |
6714846 | Trsar et al. | Mar 2004 | B2 |
6754564 | Newport | Jun 2004 | B2 |
6778888 | Cataldo et al. | Aug 2004 | B2 |
6845307 | Rother | Jan 2005 | B2 |
7085680 | Huang | Aug 2006 | B2 |
7142962 | Pflieger et al. | Nov 2006 | B1 |
7209860 | Trsar et al. | Apr 2007 | B2 |
20020007237 | Phung et al. | Jan 2002 | A1 |
20030195681 | Rother | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
9-210868 | Aug 1997 | JP |