The invention relates to vehicles, in particular rail vehicles, having at least two coach bodies coupled together, wherein at least one line bridges a gap between the coach bodies.
Since a relative movement between the coach bodies cannot be avoided during the operation of the vehicle, it is advantageous to design the line between the coach bodies as flexible, or at least as slightly flexible.
The underlying object of the invention is to specify a vehicle in which—in respect of the line between the coach bodies—a reliable and low-wear operation of the vehicle can be achieved.
This object is achieved in accordance with the invention by a vehicle with the features of the independent claim. Advantageous embodiments of the inventive vehicle are specified in the dependent claims.
Accordingly there is provision in accordance with the invention for a line, specifically an outwardly insulated high-voltage electrical line, to be flexible and to be guided in the area of the gap between the coach bodies at least in sections by means of a cable guiding device, which is flexible in a guiding plane and, in a plane perpendicular thereto, is less flexible than it is in the guiding plane. The cable guiding device in this case has a plurality of guiding elements coupled mechanically to one another, which can be pivoted relative to one another in the guiding plane.
An important advantage of the inventive vehicle is to be seen as the inventive cable guiding device preventing a flexible line drooping down in a dangerous manner in the gap area between the coach bodies, by which the line becomes trapped between moving parts and damage can be avoided for example.
Preferably the cable guiding device is arranged in the area of the gap between the two coach bodies such that the guiding plane of the cable guiding device is arranged in parallel to the vehicle support plane on which the vehicle is standing or moves, in particular horizontal or at least in an angular range of ±10 degrees to the horizontal, when the vehicle is standing horizontally.
Neighboring guiding elements are preferably each connected by means of a pivot support, of the which the pivot axis is arranged perpendicular to the guiding plane and/or vertical, or at least in an angular range of between ±10 degrees to the vertical. The cable guiding device is preferably resistant to torsion in the plane perpendicular to the guiding plane. The mechanically coupled guiding elements preferably involve chain links. In this case, for the purposes of safe guidance, the line is routed through the chain links for example or at least held by said links.
The cable guiding device involves a cable carrier, also known as a drag chain, energy chain or cable chain.
The outwardly insulated high-voltage line carried by the cable guiding device is preferably designed so that it is suitable for carrying traction power with a rated voltage of 3 kV or 6 kV in the case of DC voltage and/or traction power with a rated voltage of 15 kV or 25 kV in the case of AC voltage.
In respect of the arrangement of the line and the cable guiding device it is seen as especially advantageous for a bellows device to be arranged between the coach bodies, which provides an external shield for a walk-through connection between the coach bodies, the bellows device having a radially outer bellows and a radially inner bellows and the cable guiding device being arranged between the inner and the outer bellows. This embodiment avoids the line and the cable guiding device increasing the air resistance and being subjected to external influences. For example the cable guiding device is arranged in a space in the roof area of the coach bodies, i.e. between the upper part of the inner and outer bellows in each case.
Preferably the bellows device has a support frame, on which the cable guiding device, in particular a central part section of the cable guiding device, is supported.
The support frame preferably has at least one sliding and/or rolling element, on which the cable guiding device, in particular a central part section of the cable guiding device, slides and/or rolls.
The bellows device preferably comprises a bellows section belonging to the one coach body and a bellows section belonging to the other coach body; the support frame is preferably arranged between the two bellows sections.
The vehicle can for example involve a railroad train with a plurality of individual coaches coupled to one another, or also an articulated train, in which the coach bodies form sections of the articulated train. The line preferably connects all coupled individual coaches or all sections of the articulated train to one another.
The invention will be explained in greater detail below with reference to exemplary embodiments; in the figures, by way of example
In the figures, for the sake of clarity, the same reference characters are used for identical or comparable components.
In order to make it possible for people to pass from coach 11 into coach 12 and vice versa, a gap 13 between the two coaches 11 and 12 is bridged by a traversable connecting device, which is not shown in any greater detail in
In order to make it possible to divide up the rail vehicle 10 or to separate the coach bodies 11 and 12 from one another, the bellows device 20 preferably has a bellows section 20a, which belongs to the coach body 11 and also a bellows section 20b, which belongs to the coach body 12. A support frame 23 can be provided between the two bellows sections 20a and 20b.
The bellows device 20—and thus each of the two bellows sections 20a and 20b—has an inner bellows 21, which is enclosed to its outside by a bellows 22 lying radially outwards. Since the outer bellows 22 is larger than the inner bellows 21, a space is formed between the inner bellows 21 and the outer bellows 22, which is identified in
To connect the two coach bodies 11 and 12 a line 30 is provided, which is connected at one end of the line to a connecting element 41 of the coach body 11 and at another end of the line to a connecting element 42 of the coach body 11. The line 30 can in principle involve an electrical, optical, pneumatic or hydraulic line. It is advantageous for the line 30 to involve an energy transmission line in the form of an electrical, outwardly-insulated high-voltage line, which is suitable for carrying traction power for the rail vehicle 10. The line 30 is preferably designed so that it is suitable for a voltage range of 3 kV and/or 6 kV in the case of DC voltage or of 15 kV and/or 25 kV in the case of AC voltage or strong enough for these voltages.
In the case of an electrical line 30 the connecting elements 41 and 42 preferably involve electrical contact elements, e.g. in the form of electrical connection sockets or electrical connection plugs.
The line 30 is preferably arranged in the space ZP between the outer bellows 22 and the inner bellows 21; such an arrangement has the advantage that the line 30 does not cause any additional air resistance and is also protected from external influences.
Since, when the rail vehicle 10 is operating, certain relative movements between the coach bodies 11 and 12 can occur, the line 30 is preferably designed to be flexible. In order to prevent the line 30 drooping vertically downwards and also to prevent the undesired resting of the line 30 against the inner bellows 21 of the bellows device 20, the line 30 is guided in the exemplary embodiment depicted in
The cable guiding device 50 is flexible in a predetermined guiding plane and is less flexible in a plane perpendicular thereto than it is in the guiding plane, preferably torsionally stiff or at least almost torsionally stiff. The guiding plane of the cable guiding device 50 is identified in
It can be seen in
The cable guiding device 30 makes a relative movement between the two coach bodies 11 and 12 possible within the guiding plane E and, in doing so, simultaneously guarantees that the line 30 does not droop or at least does not droop substantially and preferably can have no contact with the inner bellows 21.
It can be seen that the line 30 with the two connection elements 41 and 42 is connected to the two coach bodies 11 and 12 and is curved in shape. The curvature and also the flexibility of the line 30 make it possible for the coach bodies 11 and 12 to move towards each other and away from each other (see also direction of arrow X in
The cable guiding device 50 preferably involves a cable carrier, also known in technical parlance as a drag chain, energy chain or cable chain. The cable guiding device 50 has a plurality of guiding elements coupled mechanically to one another in the form of chain links 51, which are able to be pivoted relative to one another in the guiding plane E.
In order to make it possible for the chain links 51 to be pivoted in the way described, neighboring chain links 51 are preferably each connected by a pivot support 52, of which the pivot axis S is arranged perpendicular to the guiding plane E. In the case of a horizontal arrangement of the cable guiding device 50, as is the case for example in
Since the cable guiding device 50 as depicted in
To make it possible for the line 30 to be guided safely or reliably through or within the cable guiding device 50, it is seen as advantageous for the line 30 to be routed through the chain links 51. As an alternative there can be provision for the line 30 merely to have external support elements, which serve to hold the line 30 and prevent the line 30 from being able to droop vertically and in the direction of the inner bellows 21 as depicted in
A further exemplary embodiment for a rail vehicle 10 is explained below in conjunction with
In the exemplary embodiment depicted in
In respect of a low-friction contact between the cable guiding device 50 and the support frame 23, the latter is preferably equipped with a sliding and/or rolling element 230, on which the cable guiding device 50, in particular the central part section of the cable guiding device 50, can slide and/or roll with low friction. The sliding and/or rolling element 230 can for example involve a sliding plate, a sliding profile or also a support roller, on which the cable guiding device 50 rests.
As an alternative there can be provision for the cable guiding device 50 to rest directly on the support frame 23, if said frame is not equipped with a sliding and/or rolling element 230. In such a case a degree of friction between the cable guiding device 50 and the support frame 23, depending on the choice of material, cannot be avoided, so that in such a form of embodiment the wear can be slightly greater.
Although the invention has been illustrated and described in greater detail by preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived herefrom by the person skilled in the art, without departing from the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 201 437.4 | Feb 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/051878 | 1/30/2017 | WO | 00 |