The present invention relates to a vehicle provided with an in-wheel motor in a front wheel.
For example, in a vehicle having wheels, each of the wheels (Wheel Center; hereinafter referred to as WC) is generally displaced (stroked) upwards when riding over unevenness of a road surface. At that time, a suspension allows the wheel (wheel center) to be displaced rearwards by buffer action of a compliance bush, thereby absorbing shock applied to the wheel when riding over unevenness of the road surface.
A rear suspension is set to allow the entire wheel to be displaced (stroked) upwards and to be displaced rearwards by its mechanical operation, thereby absorbing shock applied to the wheel when riding over unevenness of the road surface, in addition to working of the compliance bush.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2014-184758
Incidentally, a front suspension can be set to allow the wheel center (WC) to be displaced upwards and to be displaced rearwards as in the rear suspension described above. However, when the front suspension is set in this manner in an on-board engine, front-wheel drive vehicle having a drive source disposed above a spring and adapted to transmit torque through a drive shaft at least to a front wheel, fluctuation in a pitching angle of a vehicle body above the spring becomes large during acceleration due to the fact that an operating point of a driving force is generated at the wheel center (WC). As a result, there is a risk that ride comfort is deteriorated.
Moreover, for example, as disclosed in Patent Literature 1, a vehicle having the drive source disposed below the spring allows both an operating point of a driving force and an operating point of a braking force to be generated at a ground contact point of the wheel relative to a ground contact surface, unlike a vehicle having the drive source disposed above the spring. Consequently, a vehicle such as disclosed in Patent Literature 1 allows a pitching center point of the vehicle body above the spring to be generated at a point different from that in a vehicle having the drive source disposed above the spring. Therefore, when the same suspension setting as in a general vehicle is carried out, there is a risk that ride comfort is deteriorated.
It is therefore a general object of the present invention to provide a vehicle capable of enhancing ride comfort.
In order to achieve the above object, the present invention provides a vehicle including an in-wheel motor disposed below a spring of a front wheel, wherein an anti-dive angle (θ1) of a front suspension is set to form an angle which is inclined towards an upper side of the vehicle with respect to a horizontal line drawn from a ground contact point of the front wheel to a rear side of the vehicle, and a trajectory of a wheel center (WC) resulting from displacement of the front suspension is set to be movable towards the upper side of the vehicle and towards the rear side of the vehicle.
The vehicle according to the present invention allows the trajectory of the wheel center (WC) resulting from displacement of the front suspension to be set to be movable towards the upper side of the vehicle and towards the rear side of the vehicle, thereby making it possible, when an input load (F) is applied to the front wheel by a projection on a road surface, to allow a horizontal component force (Fh) of the input load (F) to become small, and to absorb shock applied to the wheel when riding over unevenness of the road surface, to enhance ride comfort. Note that the “anti-dive angle” means the angle (θ1) which is formed between a straight line that connects a ground contact point with a virtual rotation center (RC) for the ground contact point associated with displacement of the front suspension, and the horizontal line including the ground contact point.
Moreover, the vehicle according to the present invention is preferably configured so that a height of the virtual rotation center (RC) in a vertical direction is set to be higher than the ground contact point and to be equal to or less than a height of the wheel center (WC).
The vehicle according to the present invention allows the height of the virtual rotation center (RC) in the vertical direction to be set to be higher than the ground contact point and to be equal to or less than the height of the wheel center (WC), thereby making it possible to move the trajectory of the wheel center (WC) resulting from displacement of the front suspension towards the upper side of the vehicle and towards the rear side of the vehicle.
Furthermore, the vehicle according to the present invention is preferably configured so that a load applied to the front wheel by a projection on a road surface has a horizontal component force, and the horizontal component force is smaller than a horizontal component force which is generated in a front wheel in an (on-board engine, front-wheel drive) vehicle by the projection on the road surface, the vehicle having a drive source disposed above a spring and adapted to transmit torque through a drive shaft at least to the front wheel.
The vehicle according to the present invention makes it possible to reduce the horizontal component force (Fh) which is generated in the front wheel by the projection on the road surface, as compared to the on-board engine, front-wheel drive vehicle. This causes the vehicle according to the present invention to make it possible, when the input load (F) is applied to the front wheel by the projection on the road surface, to allow a force by which the vehicle body is tugged towards the rear side of the vehicle, to become small, and to absorb shock applied to the wheel when riding over unevenness of the road surface, to enhance ride comfort.
The present invention makes it possible to obtain a vehicle capable of enhancing ride comfort.
Embodiments of the present invention will be hereinafter described in detail with reference to the drawings as appropriate.
As shown in
The in-wheel motor 14 is composed of an electric motor 20 having a motor shaft 18 and adapted to drive the wheel 12, and a transmission mechanism 22 adapted to transmit a driving force of the electric motor 20 to the wheel 12. The in-wheel motor 14 is disposed below a spring 15 of the wheel 12. The transmission mechanism 22 is adapted to transmit the driving force of the electric motor 20 through a transmission shaft 24 to an output shaft 26 of the wheel 12. The output shaft 26 has a wheel center (WC) of the wheel 12.
The front suspension 16 includes a knuckle 28 that rotatably and pivotably supports the wheel 12, and suspension arms (not shown) such as an upper arm and a lower arm. Moreover, a compliance bush 31 is disposed on the lower side than the wheel center (WC) of the wheel 12 and on the vehicle body side in the front of the vehicle. The knuckle 28 includes a lower arm joint 30 that is disposed nearly below the wheel center (WC) of the wheel 12, a tie rod joint 32 that is disposed on the lower side of the wheel center (WC) of the wheel 12 and on the rearer side of the vehicle than the lower arm joint 30, and an upper arm joint 34 that is disposed nearly above the wheel center (WC) of the wheel 12.
The compliance bush 31 consists of, e.g., a vibration-proof bush, and is composed of an inner cylinder and an outer cylinder, and a cylindrical rubber elastic body that is sandwiched between the inner cylinder and the outer cylinder. The compliance bush 31 is adapted to absorb force applied thereto in the front-rear direction of the vehicle to enhance front-rear compliance (elastic force).
The vehicle 10 according to the present embodiment allows the in-wheel motor 14 to be disposed below the spring 15, thus allowing an operating point of a driving force (F1) transmitted from the in-wheel motor 14 to be generated at a ground contact point 38 of the wheel 12 relative to a road surface 36 (see
Therefore, the vehicle 10 according to the present embodiment allows the operating point of the driving force (F1) and the operating point of the braking force (F2) to be identical to each other at the ground contact point 38, and thus description will be given below, using an anti-dive angle (θ1) and an anti-lift angle (θ2) in the anti-dive geometry.
Moreover, the vehicle 10 to which the present embodiment is applied is applied to a front-wheel drive vehicle or a four-wheel drive vehicle that is provided with the in-wheel motor 14 at the right and left front wheels 12, respectively. The vehicle 10 is not necessarily limited to a four-wheel vehicle and may be, for example, a six-wheel vehicle (which is provided with an in-wheel motor in the most forward front wheel of the vehicle).
While on the other hand, as shown in
In
Moreover, in the front wheel 12, the anti-dive angle (θ1) of the front suspension 16 is set to form an angle which is inclined towards the upper side of the vehicle with respect to a horizontal line (identical to a straight line along the road surface 36) drawn from the ground contact point 38 of the front wheel 12 to the rear side of the vehicle. Note that the “anti-dive angle” means the angle (θ1) which is formed between the straight line that connects the ground contact point 38 with the virtual rotation center (RC) for the ground contact point 38 associated with displacement of the front suspension 16, and the horizontal line including the ground contact point 38. In the rear wheel 12, the anti-lift angle (θ2) of the rear suspension 16 is set to form an angle which is inclined towards the upper side of the vehicle with respect to the horizontal line drawn from the ground contact point 38 of the rear wheel 12 to the front side of the vehicle.
Furthermore, the arc-shaped trajectory 40 of the wheel center (WC) of the front wheel 12 due to displacement (stroke) of the front suspension 16 is set to extend towards the upper side of the vehicle and towards the rear side of the vehicle as it moves from the lower side to the upper side, as shown in
On the other hand, the wheel center (WC) of the rear wheel 12 and the rear ground contact point 38 are provided to freely revolve by a predetermined angle around a rear virtual rotation center (RC) that is disposed at the rear side of the vehicle body. Displacement (stroke) of the rear suspension causes an arc-shaped trajectory 44 of the wheel center (WC) of the rear wheel 12 to be formed, and an arc-shaped trajectory 46 of the rear ground contact point 38 to be formed. The pitching center point (Pc) of the vehicle body above the spring is provided on an extended line that connects the wheel center (WC) of the rear wheel 12 with the rear virtual rotation center (RC).
The vehicle 10 according to the present embodiment is basically configured as described above, and operation and effects caused by the vehicle 10 according to the present embodiment will be described below while comparing the vehicle 10 with the vehicle 100 according to the comparative example.
The vehicle 100 according to the comparative example is an on-board engine, front-wheel drive vehicle in which a drive source is disposed above a spring.
The vehicle 100 according to the comparative example allows the drive source (engine) to be disposed above the spring, thus allowing the operating point of the driving force (F1) to be generated at the wheel center (WC) of the front wheel 12, and in this respect, differs from the vehicle 10 according to the present embodiment which allows the operating point of the driving force (F1) to be generated at the ground contact point 38. The vehicle 100 according to the comparative example also allows the front virtual rotation center (RC) to be disposed at a position above the lowermost end of the vehicle body and near the center of the vehicle body. Moreover, the vehicle 100 according to the comparative example allows the pitching center point (Pc) of the vehicle body above the spring to be located at the rear side of the vehicle body. Furthermore, the vehicle 100 according to the comparative example allows the arc-shaped trajectory 40 of the wheel center (WC) of the front wheel 12 to be formed to extend from the lower side in the direction nearly right above, as shown in
As shown in
In this case, as understood from comparison of the horizontal component force Fh generated in the vehicle 10 according to the present embodiment shown in
While on the other hand, the vehicle 100 according to the comparative example allows the horizontal component force Fh to be great as compared to the present embodiment, thus allowing shock received by a force which tugs the vehicle body towards the rear side of the vehicle, to become great, and allowing ride comfort obtained when riding over the projection 48, to be deteriorated. Note that spring rates of the front suspensions 16 in the present embodiment and the comparative example are set to be the same as each other.
Next, description will be given of a concrete example of the front suspension 16 that enables the arc-shaped trajectory 40 of the wheel center (WC) to move towards the upper side of the vehicle and towards the rear side of the vehicle.
In
As shown in
In the vertical direction, the height (H1) of the virtual rotation center (RC) for the wheel center (WC) and the ground contact point 38 is set to be equal to or less than the height (H) of the wheel center (WC), thereby making it possible, when the input load (F) is applied to the front wheel 12 by the projection 48 on the road surface 36, to allow the force (horizontal component force Fh) which tugs the vehicle body towards the rear side of the vehicle, to become small, and to absorb shock applied to the wheel when riding over unevenness of the road surface, to enhance ride comfort.
Note that, although description has been given of the example in which the double wishbone suspension 62 is used as the front suspension 16 which is applicable, the present invention is not limited to this example, and for example, may be applied to a multilink suspension.
The vehicle 10 according to the present embodiment allows the arc-shaped trajectory 40 of the wheel center (WC) resulting from displacement of the front suspension 16 to be set to be movable towards the upper side of the vehicle and towards the rear side of the vehicle, thereby making it possible, when the input load (F) is applied to the front wheel 12 by the projection 48 on the road surface 36, to allow the horizontal component force (Fh) of the input load (F) to become small, and to absorb shock applied to the wheel when riding over unevenness of the road surface, to enhance ride comfort.
Moreover, the vehicle 10 according to the present embodiment allows the height (H1) of the virtual rotation center (RC) in the vertical direction to be set to be higher than the ground contact point 38 and to be equal to or less than the height (H) of the wheel center (WC), thereby making it possible to move the arc-shaped trajectory 40 of the wheel center (WC) resulting from displacement of the front suspension 16 towards the upper side of the vehicle and towards the rear side of the vehicle.
Furthermore, the vehicle 10 according to the present embodiment makes it possible to reduce the horizontal component force (Fh) which is generated in the front wheel 12 by the projection 48 on the road surface 36, as compared to the vehicle 100 according to the comparative example having the drive source above the spring of the front suspension 16 (see
Number | Date | Country | Kind |
---|---|---|---|
2015-150199 | Jul 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/070372 | 7/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/018180 | 2/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5498018 | Wahl | Mar 1996 | A |
7287611 | Nagaya | Oct 2007 | B2 |
7537071 | Kamiya | May 2009 | B2 |
7672766 | Poilbout | Mar 2010 | B2 |
7712561 | Niwa | May 2010 | B2 |
7734384 | Konopa | Jun 2010 | B2 |
7789178 | Mizutani | Sep 2010 | B2 |
7849945 | Ross, VII | Dec 2010 | B2 |
7926822 | Ohletz | Apr 2011 | B2 |
8046130 | Takahara et al. | Oct 2011 | B2 |
8083243 | Hamada | Dec 2011 | B2 |
8132636 | Suzuki | Mar 2012 | B2 |
8296009 | Kajino | Oct 2012 | B2 |
8948951 | Kimura et al. | Feb 2015 | B2 |
9434229 | Hilton | Sep 2016 | B2 |
9834214 | Fukudome | Dec 2017 | B2 |
9914348 | Koval | Mar 2018 | B2 |
10286954 | Klinger | May 2019 | B2 |
10300758 | Guest | May 2019 | B2 |
10300759 | Andreasson | May 2019 | B2 |
10363790 | Hoffmann | Jul 2019 | B2 |
10369854 | Klinger | Aug 2019 | B2 |
20070272458 | Taniguchi | Nov 2007 | A1 |
20090101424 | Suzuki | Apr 2009 | A1 |
20140284122 | Hirata | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
11 2007 000 565 | Jan 2009 | DE |
11-042918 | Feb 1999 | JP |
2000-006626 | Jan 2000 | JP |
2008-201291 | Sep 2008 | JP |
2011-031739 | Feb 2011 | JP |
2014-184758 | Oct 2014 | JP |
Entry |
---|
Office Action dated Apr. 27, 2018, issued in the corresponding German Patent Application No. 11 2016 003 440.7, with the English translation thereof. |
Number | Date | Country | |
---|---|---|---|
20180222272 A1 | Aug 2018 | US |