Information
-
Patent Grant
-
6527075
-
Patent Number
6,527,075
-
Date Filed
Wednesday, November 8, 200024 years ago
-
Date Issued
Tuesday, March 4, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Dickson; Paul N.
- Ilan; Ruth
Agents
- Rothwell, Figg, Ernst & Manbeck
-
CPC
-
US Classifications
Field of Search
US
- 180 694
- 180 695
- 280 782
- 280 783
- 280 831
- 280 834
- 220 414
- 220 415
- 220 501
- 220 581
- 220 584
- 220 585
- 220 586
- 220 562
- 220 564
- 220 56015
- 220 56011
- 128 20418
- 128 20213
- 128 20024
- 222 3
- 296 19
- 296 241
- 296 377
- 296 378
- 296 212
-
International Classifications
- B60K1503
- B60K15063
- A61G300
-
Abstract
A vehicle includes a storage pack for storing gas under pressure for providing an onboard supply of the pressurized gas. The pressurized gas may be used as a medicinal gas, e.g. oxygen, on emergency medical vehicles, or the gas may be used as a fuel source for a motorized vehicle having a motor that runs on combustible gas. The gas storage pack includes a pressure vessel formed from a plurality of hollow chambers, which have either an ellipsoidal or spherical shape, interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The gas storage pack further includes a gas transfer control system attached to the pressure vessel for controlling gas flow into and out of the pressure vessel.
Description
FIELD OF THE INVENTION
The present invention is directed to a vehicle incorporating a container system for pressurized fluids that is lightweight and flexible. The container system may be employed to store medicinal gas, e.g., oxygen, in an emergency medical vehicle, and/or the container can be employed to hold fuel sources stored under pressure.
BACKGROUND OF THE INVENTION
Vehicles carrying containers for storing gases under pressure have widespread applications. For example, emergency medical vehicles (e.g. ambulances and emergency medical service vehicles) typically carry containers of medicinal gas (e.g. oxygen) under pressure. The gas carried on board the vehicle is used for administering the gas to a patient and/or for transfilling smaller, portable ambulatory containers to be used out of the immediate proximity of the vehicle.
Still other vehicles having internal combustion engines carry containers of pressurized, combustible gas (e.g. hydrogen, propane, natural gas) as a fuel source for the engine. Such gas burning engines can be found in, for example, inner city buses and indoor utility vehicles, for example, fork lifts, in which the combustion exhausts of a conventional gasoline engine are undesirable, unhealthy, or unsafe.
Onboard supplies of pressurized gas for vehicles have conventionally been provided by pressure vessels in the form of metal canisters. Such canisters are heavy and bulky, thus adding significant weight to the vehicle and taking up a substantial amount of space. Furthermore, such metal canisters, especially when filled with a gas under pressure, can be inherently unsafe. For example, the canisters can become dislodged during a collision in which case the canister itself, which may weigh 300-500 lbs., can become a flying projectile, or the canister can rupture or become punctured which can cause an explosion resulting in fragmentation of the canister.
Container systems made from lightweight synthetic materials have been proposed. Scholley, in U.S. Pat. Nos. 4,932,403; 5,036,845; and 5,127,399, describes a flexible and portable container for compressed gases which comprises a series of elongated, substantially cylindrical chambers arranged in a parallel configuration and interconnected by narrow, bent conduits and attached to the back of a vest that can be worn by a person. The container includes a liner, which may be formed of a synthetic material such as nylon, polyethylene, polypropylene, polyurethane, tetrafluoroethylene, or polyester. The liner is covered with a high-strength reinforcing fiber, such as a high-strength braid or winding of a reinforcing material such as KEVLAR® aramid fiber, and a protective coating of a material, such as polyurethane, covers the reinforcing fiber.
The design described in the Scholley patents suffers a number of shortcomings which makes it impractical for use as a container for fluids stored at the pressure levels typically seen in portable fluid delivery systems such as SCUBA gear, firefighter's oxygen systems, emergency oxygen systems, and medicinal oxygen systems. The elongated, generally cylindrical shape of the separate storage chambers does not provide an effective structure for containing highly-pressurized fluids. Also, the relatively large volume of the storage sections creates an unsafe system subject to possible violent rupture due to the kinetic energy of the relatively large volume of pressurized fluid stored in each chamber.
Accordingly, there is a need for improved container systems made of light weight polymeric material and which are robust and less susceptible to violent rupture and can be easily incorporated onto a vehicle without adding significant weight or bulk.
SUMMARY OF THE INVENTION
In accordance with aspects of the present invention, a transport vehicle comprises a vehicle body supported on wheels and defining a vehicle interior compartment and a gas storage pack carried on the vehicle body for providing a portable supply of a gas stored in the gas storage pack. The gas storage pack includes a pressure vessel which comprises a plurality of hollow chambers, each having a substantially spherical or ellipsoidal shape, a plurality of relatively narrow conduit sections, each positioned between adjacent hollow chambers to interconnect the hollow chambers, and a reinforcing filament wrapped around the hollow chambers and conduit sections. The gas storage pack further includes a gas transfer control system attached to the pressure vessel and constructed and arranged to control flow of gas into and out of the pressure vessel.
In accordance with other aspects of the present invention, a motorized vehicle comprises a vehicle frame, a motor carried on the frame for driving the vehicle, and a gas storage pack carried on the frame for providing a portable supply of gas under pressure as a fuel source for the motor. The gas storage pack includes a pressure vessel which comprises a plurality of hollow chambers, each having a substantially spherical or ellipsoidal shape, a plurality of relatively narrow conduit sections, each positioned between adjacent hollow chambers to interconnect the hollow chambers, and a reinforcing filament wrapped around the hollow chambers and conduit sections. The gas storage pack further includes a gas transfer control system attached to the pressure vessel and constructed and arranged to control flow of gas into and out of the pressure vessel.
Other objects, features, and characteristics of the present invention will become apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of the specification, and wherein like reference numerals designate corresponding parts in the various figures.
DESCRIPTION OF THE DRAWINGS
FIG. 1
is a broken side elevational view of a plurality of aligned, rigid, generally ellipsoidal chambers interconnected by a tubular core.
FIG. 2
is an enlarged horizontal sectional view taken along the line
2
—
2
in FIG.
1
.
FIG. 2A
is an enlarged horizontal sectional view taken along the line
2
—
2
in
FIG. 1
showing an alternate embodiment.
FIG. 3
is a side elevational view of a portion of a container system of the present invention.
FIG. 4
is a partial longitudinal sectional view along line
4
—
4
in FIG.
3
.
FIG. 5
is a side elevational view of an alternative embodiment of the container system of the present invention.
FIG. 5A
is a partial view of the container system of
FIG. 5
arranged in a sinuous configuration.
FIG. 6
is a portable pressurized fluid pack employing a container system according to the present invention.
FIG. 7
is an alternate embodiment of a pressurized fluid pack employing the container system of the present invention.
FIG. 8
is still another alternate embodiment of a pressurized fluid pack employing a container system according to the present invention.
FIG. 9
is a plan view of a container system according to the present invention secured within a conforming shell of a housing for a portable pressurized fluid pack.
FIG. 9A
is a transverse section along the line
9
—
9
in FIG.
9
.
FIG. 10
is a partial, exploded view in longitudinal section of a system for securing a polymeric tube to a mechanical fitting.
FIG. 11
is perspective view of a transport vehicle having a container system comprised of discreet interconnected chambers incorporated thereon in accordance with the present invention.
FIG. 12
is partial perspective top view of a gas storage pack carried on a roof panel of a vehicle.
FIG. 13
is a perspective view of a columnar gas storage pack constructed in accordance with the present invention.
FIG. 14
is a solid rectangular gas storage pack constructed in accordance with the present invention.
FIG. 15
is side elevation of a motorized utility vehicle having mounted thereon a gas storage pack including a pressure vessel comprising interconnected hollow chambers in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
With reference to the figures, exemplary embodiments of the invention will now be described. These embodiments illustrate principles of the invention and should not be construed as limiting the scope of the invention.
As shown in
FIGS. 1 and 2
, U.S. Pat. No. 6,047,860 (the disclosure of which is hereby incorporated by reference) to Sanders, an inventor of the present invention, discloses a container system
10
for pressurized fluids including a plurality of form-retaining, generally ellipsoidal chambers C interconnected by a tubular core T. The tubular core extends through each of the plurality of chambers and is sealingly secured to each chamber. A plurality of longitudinally-spaced apertures A are formed along the length of the tubular core, one such aperture being disposed in the interior space
20
of each of the interconnected chambers so as to permit infusion of fluid to the interior space
20
during filling and effusion of the fluid from the interior space
20
during fluid delivery or transfer to another container. The apertures are sized so as to control the rate of evacuation of pressurized fluid from the chambers. Accordingly, a low fluid evacuation rate can be achieved so as to avoid a large and potentially dangerous burst of kinetic energy should one or more of the chambers be punctured (i.e., penetrated by an outside force) or rupture.
The size of the apertures A will depend upon various parameters, such as the volume and viscosity of fluid being contained, the anticipated pressure range, and the desired flow rate. In general, smaller diameters will be selected for gasses as opposed to liquids. Thus, the aperture size may generally vary from about 0.010 to 0.125 inches. Although only a single aperture A is shown in
FIG. 2
, more than one aperture A can be formed in the tube T within the interior space
20
of the shell
24
. In addition, each aperture A can be formed in only one side of the tube T, or the aperture A may extend through the tube T.
Referring to
FIG. 2
, each chamber C includes a generally ellipsoidal shell
24
molded of a suitable synthetic plastic material and having open front and rear ends
26
and
28
. The diameters of the holes
26
and
28
are dimensioned so as to snugly receive the outside diameter of the tubular core T. The tubular core T is attached to the shells
24
so as to form a fluid tight seal therebetween. The tubular core T is preferably bonded to the shells
24
by means of light, thermal, or ultrasonic energy, including techniques such as, ultrasonic welding, radio frequency energy, vulcanization, or other thermal processes capable of achieving seam less circumferential welding. The shells
24
may be bonded to the tubular core T by suitable ultraviolet light-curable adhesives, such as
3311
and
3341
Light Cure Acrylic Adhesives available from Loctite Corporation, having authorized distributors throughout the world. The exterior of the shells
24
and the increments of tubular core T between such shells are wrapped with suitable reinforcing filaments
30
to increase the hoop strength of the chambers C and tubular core T and thereby resist bursting of the shells and tubular core. A protective synthetic plastic coating
32
is applied to the exterior of the filament wrapped shells and tubular core T.
More particularly, the shells
24
may be either roto molded, blow molded, or injection molded of a synthetic plastic material such as TEFLON® or fluorinated ethylene propylene. Preferably, the tubular core T will be formed of the same material. The reinforcing filaments
30
may be made of a carbon fiber, KEVLAR® or nylon. The protective coating
32
may be made of urethane to protect the chambers and tubular core against abrasions, UV rays, moisture, or thermal elements. The assembly of a plurality of generally ellipsoidal chambers C and their supporting tubular core T can be made in continuous strands of desired length. In the context of the present disclosure, unless stated otherwise, the term “strand” will refer to a discrete length of interconnected chambers.
As shown in
FIG. 2A
, the tube T can be co-formed, such as by co-extrusion, along with shells
24
′ and tubular portions T′ integrally formed with the shells
24
′ and which directly overlie the tube T between adjacent shells
24
′. Furthermore, as also shown in
FIG. 2A
, more than one aperture A may be formed in the tube T within the interior
20
of the shell
24
′. The co-formed assembly comprised of the shells
24
′, tubular portions T′, and tube T can be wrapped with a layer of reinforcing filaments
30
and covered with a protective coating
32
as described above.
The inlet or front end of the tubular core T may be provided with a suitable threaded male fitting
34
. The discharge or rear end of a tubular core T may be provided with a threaded female fitting
36
. Such male and female fittings provide a pressure-type connection between contiguous strands of assemblies of chambers C interconnected by tubular cores T and provide a mechanism by which other components, such as gauges and valves, can be attached to the interconnected chambers. A preferred structure for attaching such fittings is described below.
A portion of a pressure vessel constructed in accordance with principles of the present invention is designated generally by reference number
40
in FIG.
3
. The pressure vessel
40
includes a plurality of fluid storage chambers
50
having a preferred ellipsoidal shape and having hollow interiors
54
. The individual chambers
50
are pneumatically interconnected with each other by connecting conduit sections
52
and
56
disposed between adjacent ones of the chambers
50
. Conduit sections
56
are generally longer than the conduit sections
52
. The purpose of the differing lengths of the conduit sections
52
and
56
will be described in more detail below.
FIG. 4
shows an enlarged longitudinal section of a single hollow chamber
50
and portions of adjacent conduit sections
52
of the pressure vessel
40
. The pressure vessel
40
preferably has a layered construction including polymeric hollow shells
42
with polymeric connecting conduits
44
extended from opposed open ends of the shells
42
. The pressure vessel
40
includes no tubular core, such as tubular core T shown in
FIGS. 2 and 2A
, extending through the hollow shells
42
.
The polymeric shells
42
and the polymeric connecting conduits
44
are pre ferably formed from a synthetic plastic material such as TEFLON® or fluorinated ethylene propylene and may be formed by any of a number of known plastic-forming techniques such as extrusion, roto molding, chain blow molding, or injection molding.
Materials used for forming the shells
42
and connecting conduits
44
are preferably moldable and exhibit high tensile strength and tear resistance. Most preferably, the polymeric hollow shells
42
and the polymeric connecting conduits
44
are formed from a thermoplastic polyurethane elastomer manufactured by Dow Plastics under the name PELLETHANE® 2363-90AE, a thermoplastic polyurethane elastomer manufactured by the Bayer Corporation, Plastics Division under the name TEXIN® 5286, a flexible polyester manufactured by Dupont under the name HYTREL®, or polyvinyl chloride from Teknor Apex.
In a preferred configuration, the volume of the hollow interior
54
of each chamber
50
is within a range of capacities configurable for different applications, with a most preferred volume of about thirty (30) milliliters. It is not necessary that each chamber have the same dimensions or have the same capacity. It has been determined that a pressure vessel
40
having a construction as will be described below will undergo a volume expansion of 7-10% when subjected to an internal pressure of 2000 psi. In a preferred configuration, the polymeric shells
42
each have a longitudinal length of about 3.0-3.5 inches, with a most preferred length of 3.250-3.330 inches, and a maximum outside diameter of about 0.800 to 1.200 inches, with a most preferred diameter of 0.095-1.050 inches. The conduits
44
have an inside diameter D
2
preferably ranging from 0.125-0.300 inches with a most preferred range of about 0.175-0.250 inches. The hollow shells
42
have a typical wall thickness ranging from 0.03 to 0.05 inches with a most preferred typical thickness of about 0.04 inches. The connecting conduits
44
have a wall thickness ranging from 0.03 to 0.10 inches and preferably have a typical wall thickness of about 0.040 inches, but, due to the differing amounts of expansion experienced in the hollow shells
42
and the conduits
44
during a blow molding forming process, the conduits
44
may actually have a typical wall thickness of about 0.088 inches.
The exterior surface of the polymeric hollow shells
42
and the polymeric connecting conduits
44
is preferably wrapped with a suitable reinforcing filament fiber
46
. Filament layer
46
may be either a winding or a braid (preferably a triaxial braid pattern having a nominal braid angle of 75 degrees) and is preferably a high-strength aramid fiber material such as KEVLAR® (preferably 1420 denier fibers), carbon fibers, or nylon, with KEVLAR® being most preferred. Other potentially suitable filament fiber material may include thin metal wire, glass, polyester, or graphite. The KEVLAR® winding layer has a preferred thickness of about 0.035 to 0.055 inches, with a thickness of about 0.045 inches being most preferred.
A protective coating
48
may be applied over the layer of filament fiber
46
. The protective coating
48
protects the shells
42
, conduits
44
, and the filament fiber
46
from abrasions, UV rays, thermal elements, or moisture. Protective coating
32
is preferably a sprayed-on synthetic plastic coating. Suitable materials include polyvinyl chloride and polyurethane. The protective coating
32
may be applied to the entire pressure vessel
40
, or only to more vulnerable portions thereof. Alternatively, the protective coating
32
could be dispensed with altogether if the pressure vessel
40
is encased in a protective, moisture-impervious housing.
The inside diameter D
1
of the hollow shell
42
is preferably much greater than the inside diameter D
2
of the conduit section
44
, thereby defining a relatively discrete storage chamber within the hollow interior
54
of each polymeric shell
42
. This serves as a mechanism for reducing the kinetic energy released upon the rupturing of one of the chambers
50
of the pressure vessel
40
. That is, if one of the chambers
50
should rupture, the volume of pressurized fluid within that particular chamber would escape immediately. Pressurized fluid in the remaining chambers would also move toward the rupture, but the kinetic energy of the escape of the fluid in the remaining chambers would be regulated by the relatively narrow conduit sections
44
through which the fluid must flow on its way to the ruptured chamber. Accordingly, immediate release of the entire content of the pressure vessel is avoided.
An alternate pressure vessel
40
′ is shown in
FIGS. 5 and 5A
. Pressure vessel
40
′ includes a plurality of hollow chambers
50
′ having a generally spherical shape connected by conduit sections
52
′ and
56
′. As shown in
FIG. 5A
, one particular configuration of the pressure vessel
40
′ is to bend it back-and-forth upon itself in a sinuous fashion. The pressure vessel
40
′ is bent at the elongated conduit sections
56
′, which are elongated relative to the conduit sections
52
′ so that they can be bent without kinking or without adjacent hollow chambers
50
′ interfering with each other. Accordingly, the length of the conduit sections
56
′ can be defined so as to permit the pressure vessel to be bent thereat without kinking and without adjacent hollow chambers
50
′ interfering with each other. In general, a connecting conduit section
56
′ of sufficient length can be provided by omitting a chamber
50
′ in the interconnected series of chambers
50
′. The length of a long conduit section
56
′, however, need not necessarily be as long as the length of a single chamber
50
′.
Both ellipsoidal and the spherical chambers are preferred, because such shapes are better suited than other shapes, such as cylinders, to withstand high internal pressures. Spherical chambers
50
′ are not, however, as preferable as the generally ellipsoidal chambers
50
of
FIGS. 3 and 4
, because, the more rounded a surface is, the more difficult it is to apply a consistent winding of reinforcing filament fiber. Filament fibers, being applied with axial tension, are more prone to slipping on highly rounded, convex surfaces.
A portable gas storage pack
60
employing a pressure vessel
40
as described above is shown in FIG.
6
. Note that the gas storage pack
60
includes a pressure vessel
40
having generally ellipsoidal hollow chambers
50
. It should be understood, however, that a pressure vessel
40
of a type having generally spherical hollow chambers as shown in
FIGS. 5 and 5A
could be employed in the gas storage pack
60
as well. The pressure vessel
40
is arranged as a continuous, serial strand
58
of interconnected chambers
50
bent back-and-forth upon itself in a sinuous fashion with all of the chambers lying generally in a common plane. In general, the axial arrangement of any strand of interconnected chambers can be an orientation in any angle in X-Y-Z Cartesian space. Note again, in
FIG. 6
, that elongated conduit sections
56
are provided. Sections
56
are substantially longer than conduit sections
52
and are provided to permit the pressure vessel
40
to be bent back upon itself without kinking the conduit section
56
or without adjacent chambers
50
interfering with one another. Again, an interconnecting conduit
56
of sufficient length for bending can be provided by omitting a chamber
50
from the strand
58
of interconnected chambers.
The pressure vessel
40
is encased in a protective housing
62
. Housing
62
may have a handle, such as an opening
64
, provided therein.
A fluid transfer control system
76
is pneumatically connected to the pressure vessel
40
and is operable to control transfer of fluid under pressure into or out of the pressure vessel
40
. In the embodiment illustrated in
FIG. 6
, the fluid transfer control system includes a one-way inlet valve
70
(also known as a fill valve) pneumatically connected (e.g., by a crimp or swage) to a first end
72
of the strand
58
and a one-way outlet valve/regulator
66
pneumatically connected (e.g., by a crimp or swage) to a second end
74
of the pressure vessel
40
. In general, the inlet valve
70
includes a mechanism permitting fluid to be transferred from a pressurized fluid fill source into the pressure vessel
40
through inlet valve
70
and to prevent fluid within the pressure vessel
40
from escaping through the inlet valve
70
. Any suitable one-way inlet valve, well known to those of ordinary skill in the art, may be used.
The outlet valve/regulator
66
generally includes a well known mechanism permitting the outlet valve/regulator to be selectively configured to either prevent fluid within the pressure vessel
40
from escaping the vessel through the valve
66
or to permit fluid within the pressure vessel
40
to escape the vessel in a controlled manner through the valve
66
. Preferably, the outlet valve/regulator
66
is operable to “step down” the pressure of fluid exiting the pressure vessel
40
. For example, in typical medicinal applications of ambulatory oxygen, oxygen may be stored within the tank at up to 3,000 psi, and a regulator is provided to step down the outlet pressure to 20 to 50 psi. The outlet valve/regulator
66
may include a manually-operable control knob
68
for permitting manual control of a flow rate therefrom. Any suitable regulator valve, well known to those of ordinary skill in the art, may be used.
A pressure relief valve (not shown) is preferably provided to accommodate internal pressure fluctuations due to thermal cycling or other causes.
In
FIG. 6
, the pressure vessel
40
, inlet valve
70
, and the outlet valve/regulator
66
are shown exposed on top of the housing
62
. Preferably, the housing comprises dual halves of, for example, preformed foam shells as will be described in more detail below. For the purposes of illustrating the structure of the embodiment of
FIG. 6
, however, a top half of the housing
62
is not shown. It should be understood, however, that a housing would substantially encase the pressure vessel
40
and at least portions of the outlet valve/regulator
66
and the inlet valve
70
.
FIG. 7
shows an alternate embodiment of a portable gas storage pack generally designated by reference number
80
. The gas storage pack
80
includes a pressure vessel formed by a number of strands
92
of individual chambers
94
serially interconnected by interconnecting conduit sections
96
and arrange generally in parallel to each other. In the embodiment illustrated in
FIG. 7
, the pressure vessel includes six individual strands
92
, but the gas storage pack may include fewer than or more than six strands.
Each of the strands
92
has a first closed end
98
at the endmost of the chambers
94
of the strand
92
and an open terminal end
100
attached to a coupling structure defining an inner plenum, which, in the illustrated embodiment, comprises a distributor
102
. The distributor
102
includes an elongated, generally hollow body
101
defining the inner plenum therein. Each of the strands
92
of interconnected chambers is pneumatically connected at its respective terminal end
100
by a connecting nipple
104
extending from the elongated body
101
, so that each strand
92
of interconnected chambers
94
is in pneumatic communication with the inner plenum inside the distributor
102
. Each strand
92
may be connected to the distributor
102
by a threaded interconnection, a crimp, or a swage, or any other suitable means for connecting a high pressure polymeric tube to a rigid fitting. A fluid transfer control system
86
is pneumatically connected to the distributor
102
. In the illustrated embodiment, the fluid transfer control system
86
includes a one-way inlet valve
88
and a one-way outlet/regulator
90
pneumatically connected at generally opposite ends of the body
101
of the distributor
102
.
The strands
92
of interconnected chambers
94
, the distributor
102
, and at least portions of the inlet valve
88
and the outlet valve/regulator
90
are encased within a housing
82
, which may include a handle
84
, as illustrated in
FIG. 7
, to facilitate carrying of the gas storage pack
80
.
In
FIG. 8
is shown still another alternative embodiment of a gas storage pack generally designated by reference number
110
. The gas storage pack
110
includes a pressure vessel comprised of a number of generally parallel strands
120
of hollow chambers
122
serially interconnected by interconnecting conduit sections
124
. Each of the strands
120
has a closed end
126
at the endmost of its chambers
122
and an open terminal end
128
attached to a coupling structure defining an inner plenum. In the illustrated embodiment, the coupling structure comprises a manifold
118
to which is pneumatically attached each of the respective terminal ends
128
of the strands
120
. Each strand
120
may be connected to the manifold
118
by a threaded interconnection, a crimp, or a swage, or any other suitable means for connecting a high pressure polymeric tube to a rigid fitting. A fluid transfer control system
116
is attached to the manifold
118
, and, in the illustrated embodiment, comprises a outlet valve/regulator
90
and an inlet valve (not shown).
The hollow chambers of the pressure vessels described above and shown in
FIGS. 5A
,
6
,
7
, and
8
can be of the type shown in
FIGS. 2 and 2A
having an internal perforated tubular core, or they can be of the type shown in
FIG. 4
having no internal tubular core.
FIGS. 9 and 9A
show one-half of a foam shell, generally indicated at
164
, for encasing a pressure vessel
144
to form a housing for a portable gas storage pack. The pressure vessel
144
shown in
FIG. 9
includes a sinuous arrangement of generally spherical chambers
146
serially interconnected by short interconnecting conduit sections
148
and longer, bendable interconnecting conduit sections
150
. The foam shell
164
is preferably a molded synthetic foam “egg crate” design. That is, the shell
164
includes a plurality of chamber recesses
154
serially interconnected by short, straight interconnecting channels
156
and long, curved interconnecting channels
158
. The chamber recesses
154
and the interconnecting channels
156
and
158
are arranged in the preferred arrangement of the chambers
146
and interconnecting conduits
148
and
150
of the pressure vessel
144
. Alternatively, the chamber recesses
154
and interconnecting channels
156
,
158
could be configured in other preferred arrangements such as, for example, those arrangements shown in
FIGS. 6
,
7
, and
8
.
The foam shell
164
may be formed from neoprene padding or a polyurethane-based foam. Most preferably, the foam shell is formed from a closed cell, skinned foam having a liquid impervious protective skin layer. Suitable materials include polyethylene, polyvinyl chloride, and polyurethane. The use of a self-skinning, liquid impervious foam may eliminate the need for the protective synthetic plastic coating
48
(see
FIG. 4
) applied directly onto the reinforcing filament layer. A fire retardant additive, such as, for example, fire retardant additives available from Dow Chemical, can be added to the foam material of the foam shells.
A second foam shell (not shown) has chamber recesses and interconnecting channels arranged in a configuration that registers with the chamber recesses
154
and the interconnecting channels
156
and
158
of the foam shell
164
. The two foam shells are arranged in mutually-facing relation and closed upon one another to encase the pressure vessel
144
. The mating foam shells are thereafter adhesively-attached to one another at marginal edge portions thereof.
Suitable adhesives for attaching the mating foam shell halves include pressure sensitive adhesives.
FIG. 10
shows a preferred arrangement for attaching a mechanical fitting
260
to a polymeric tube
262
in a manner that can withstand high pressures within the tube
262
. Such fittings
260
can be attached to the ends of a continuous strand of serially connected hollow chambers for connecting inlet and outlet valves at the opposite ends. For example, fittings
34
and
36
shown in
FIG. 1
could be attached in the manner to be described. The mechanical fitting
260
has a body portion, which, in the illustrated embodiment includes a threaded end
264
to which can be attached another component, such as a valve or a gauge, and a faceted portion
266
that can be engaged by a tool such as a wrench. The body portion is preferably made of brass. End
264
is shown as an exteriorly threaded male connector portion, but could be an interiorly threaded female connector portion. An exteriorly threaded collar
268
extends to the right of the faceted portion
266
. An inserting projection
270
extends from the threaded collar
268
and has formed thereon a series of barbs
272
of the “Christmas tree” or corrugated type that, due to the angle of each of the barbs
272
, permits the projection
270
to be inserted into the polymeric tube
262
, as shown, but resists removal of the projection
270
from the polymeric tube
262
. A channel
274
extends through the entire mechanical fitting
260
to permit fluid transfer communication through the fitting
260
into a pressure vessel.
A connecting ferrule
280
has a generally hollow, cylindrical shape and has an interiorly threaded opening
282
formed at one end thereof. The remainder of the ferrule extending to the right of the threaded opening
282
is a crimping portion
286
. The ferrule
280
is preferably made of 6061 T6 aluminum. The crimping portion
286
has internally-formed ridges
288
and grooves
284
. The inside diameter of the ridges
288
in an uncrimped ferrule
280
is preferably greater than the outside diameter of the polymeric tube
262
to permit the uncrimped ferrule to be installed over the tube.
Attachment of the fitting
260
to the tube
262
is affected by first screwing the threaded collar
268
into the threaded opening
282
of the ferrule
280
. Alternatively, the ferrule
280
can be connected to the fitting
260
by other means. For example, the ferrule
280
may be secured to the fitting
260
by a twist and lock arrangement or by welding (or soldering or brazing) the ferrule
280
to the fitting
260
. The polymeric tube
262
is then inserted over the inserting projection
270
and into a space between the crimping portion
286
and the inserting projection
270
. The crimping portion
286
is then crimped, or swaged, radially inwardly in a known manner to thereby urge the barbs
272
and the ridges
288
and grooves
284
into locking deforming engagement with the tube
262
. Accordingly, the tube
262
is securely held to the fitting
260
by both the frictional engagement of the tube
262
with the barbs
272
of the inserting projection
270
as well as the frictional engagement of the tube
262
with the grooves
284
and ridges
288
of the ferrule
280
, which itself is secured to the fitting
260
, e.g., by threaded engagement of threaded collar
268
with threaded opening
282
.
A connecting arrangement of the type shown in
FIG. 10
could also be used, for example, for attaching the strands
92
of interconnected chambers to the connecting nipples
104
of the distributor
102
in
FIG. 7
or to attach the strands of interconnected chambers
120
to the connecting nipples
138
and
140
of the manifold
118
of FIG.
8
.
A transport vehicle having incorporated thereon a gas storage pack including a pressure vessel constructed in accordance with the present invention is generally indicated at reference number
300
in
FIGS. 11 and 12
. The transport vehicle
300
, which, in the illustrated embodiment, is an ambulance van, includes a vehicle body
302
comprised of a floor panel
304
, a roof panel
306
and wall panels
308
extending between the floor panel
304
and the roof panel
306
. The vehicle
300
is supported on conventional tires, although the present invention is not limited to wheeled vehicles. A gas storage pack
310
is carried on the roof panel
306
. The gas storage pack
310
includes a pressure vessel
312
comprising a plurality of hollow chambers
314
which are preferably ellipsoidal, but may be spherical in shape, interconnected by a plurality of narrow conduits
316
as described above. As also described above, the chambers
314
and conduits
316
, which are preferably made of a polymer, are covered with a reinforcing filament layer and may be further coated with a liquid impervious protective coating. The chambers
314
may be of the type shown in
FIGS. 2 and 2A
and described above as having an inner tubular core with a series of longitudinally spaced apertures formed therein, or they may be of the type shown in
FIG. 4
, in which the tubular core is omitted.
The pressure vessel
312
, which may comprise a continuous strand of interconnected chambers sinuously arranged throughout the pressure pack
310
or it may comprise a plurality of individual lengths of interconnected chambers, each length being connected to a common plenum or manifold, is preferably encased in a protective housing and would not be exposed as shown in the figures. Furthermore, the pressure pack
310
may also include a foam core
324
, of the type described above, substantially surrounding the chambers
314
and the conduit sections
316
.
The pressure pack
310
also includes a gas transfer control system
318
generally comprising a one-way inlet valve
320
which functions as described above, and an outlet valve/regulator
322
which also functions as described above. Either or both of the inlet valve
320
and the outlet valve/regulator
322
may be located interiorly of the vehicle, and it is preferred that the outlet valve
322
be located interiorly of the vehicle if interior access to the gas supply is desirable.
Gas storage pack configurations are shown in
FIGS. 13 and 14
. The gas storage pack of
FIG. 13
is a columnar pack
328
in which the chambers
14
interconnected by conduits
316
are wound spirally around an axial line of symmetry
330
extending through the column. The columnar pack
328
can be circular or oval in cross-sectional shape and is so designed so that it can fit into conventional holding racks for metal canister pressure vessels. In
FIG. 14
the pressure pack
326
is rectangular, such a shape being suitable for attaching the pack
326
to a vehicular panel and, in particular for attaching the pack beneath the vehicle.
Referring to
FIG. 15
, a motorized vehicle is generally indicated by reference number
340
. In the illustration, vehicle
340
is a forklift. The vehicle includes a vehicle frame
342
, and in the illustrated embodiment, the forklift includes wheels
344
, an operator's seat
346
, a steering wheel
348
, and a fork
350
. The vehicle
340
includes a motor schematically represented by the dashed rectangle indicated by reference number
352
. Motor
352
is preferably an internal combustion engine. The various controls and power transmitting elements that would normally be associated with a vehicle having a motor are not shown, but would be readily appreciated and known by those of ordinary skill in the art. The motor
352
runs on a fuel comprising a combustible gas, for example, hydrogen, propane, or natural gas. A gas storage pack
354
constructed in accordance with the present invention is carried on the vehicle frame
342
. The gas storage pack
354
includes a pressure vessel
356
constructed of hollow chambers
358
interconnected by conduit sections
360
. As described above, the chambers may be ellipsoidal or spherical and are preferably made of a polymer, as are the conduits
360
. Furthermore, the chambers
358
and conduits
360
are covered with a reinforcing fiber layer. Moreover, the chambers
358
may be of the type shown in
FIGS. 2 and 2A
having an internal tubular core, or they may be of the type shown in
FIG. 4
in which the tubular core is omitted. The gas storage pack
354
also includes a gas transfer control system
362
having a one-way inlet valve
364
and an outlet valve/regulator
366
, which function as described above. The storage pack
354
may also include a foam core
368
substantially surrounding the chambers
358
and conduits
360
.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but, on the contrary, it is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Thus, it is to be understood that variations in the particular parameters used in defining the present invention can be made without departing from the novel aspects of this invention as defined in the following claims.
Claims
- 1. A transport vehicle comprising:a vehicle body defining a vehicle interior compartment; and a gas storage pack carried on said vehicle body for providing a portable supply of a medicinal gas stored in said gas storage pack, said gas storage pack including a pressure vessel comprising: a plurality of hollow chambers, each having a substantially spherical or ellipsoidal shape; a plurality of conduit sections, each being positioned between adjacent ones of said plurality of hollow chambers to interconnect said plurality of hollow chambers, each of said conduit sections having a maximum interior transverse dimension that is smaller than a maximum interior transverse dimension of each of said hollow chambers; and a reinforcing filament wrapped around said hollow chambers and said conduit sections, said gas storage pack further including a gas transfer control system attached to said pressure vessel and constructed and arranged to control flow of gas into and out of said pressure vessel; said gas storage pack having a generally columnar shape defining an axial line of symmetry, said interconnected chambers being arranged in a generally spiral manner around said axial line of symmetry.
- 2. The transport vehicle of claim 1, wherein said gas transfer control system comprises:a one-way inlet valve attached to said pressure vessel and constructed and arranged to permit gas under pressure to be transferred through said inlet valve and into said pressure vessel and to prevent gas within said pressure vessel from escaping therefrom through said inlet valve; and a regulator outlet valve attached to said pressure vessel and being constructed and arranged to be selectively configured to either prevent gas within said pressure vessel from escaping therefrom through said regulator outlet valve or to permit gas within said pressure vessel to escape therefrom through said regulator outlet valve at an outlet pressure that deviates from a pressure of the gas within said pressure vessel.
- 3. The transport vehicle of claim 1, said chambers and said conduit sections being formed from a polymer.
- 4. The transport vehicle of claim 1, said reinforcing filament comprising an aramid fiber.
- 5. The transport vehicle of claim 1, said gas storage pack further comprising a foam core substantially surrounding said chambers and said conduit sections of said pressure vessel.
- 6. The transport vehicle of claim 1, said vehicle body comprising a floor panel, a roof panel and wall panels extending from said floor panel to said roof panel, said gas storage pack being carried on said roof panel.
- 7. The transport vehicle of claim 1, said columnar gas storage pack having a generally circular transverse shape.
- 8. A motorized vehicle comprising:a vehicle frame; a motor carried on said frame for driving said vehicle; and a gas storage pack carried on said frame for providing a portable supply of gas under pressure as a fuel source for said motor, said gas storage pack including a pressure vessel comprising: a plurality of hollow chambers, each having a substantially spherical or ellipsoidal shape; a plurality of conduit sections, each being positioned between adjacent ones of said plurality of hollow chambers to interconnect said plurality of hollow chambers, each of said conduit sections having a maximum interior transverse dimension that is smaller than a maximum interior transverse dimension of each of said hollow chambers; and a reinforcing filament wrapped around said hollow chambers and said conduit sections, said gas storage pack further including a gas transfer control system attached to said pressure vessel and constructed and arranged to control flow of gas into and out of said pressure vessel; said gas storage pack having a generally columnar shape defining an axial line of symmetry, said interconnected chambers being arranged in a generally spiral manner around said axial line of symmetry.
- 9. The motorized vehicle of claim 8, wherein said gas transfer control system comprises:a one-way inlet valve attached to said pressure vessel and constructed and arranged to permit gas under pressure to be transferred through said inlet valve and into said pressure vessel and to prevent gas within said pressure vessel from escaping therefrom through said inlet valve; and a regulator outlet valve attached to said pressure vessel and being constructed and arranged to be selectively configured to either prevent gas within said pressure vessel from escaping therefrom through said regulator outlet valve or to permit gas within said pressure vessel to escape therefrom through said regulator outlet valve at an outlet pressure that deviates from a pressure of the gas within said pressure vessel.
- 10. The motorized vehicle of claim 8, said chambers and said conduit sections being formed from a polymer.
- 11. The motorized vehicle of claim 8, said reinforcing filament comprising an aramid fiber.
- 12. The motorized vehicle of claim 8, said gas storage pack further composing a foam core substantially surrounding said chambers and said conduit sections of said pressure vessel.
- 13. The motorized vehicle of claim 8, said columnar gas storage pack having a generally circular transverse shape.
US Referenced Citations (32)
Foreign Referenced Citations (7)
Number |
Date |
Country |
971689 |
Mar 1959 |
DE |
2644806 |
Apr 1978 |
DE |
3413425 |
Oct 1984 |
DE |
0 219 469 |
Apr 1987 |
EP |
1037477 |
Sep 1953 |
FR |
0112115 |
Dec 1917 |
GB |
WO9711734 |
Apr 1997 |
WO |