The present invention generally relates to an interior light of a vehicle and a method, and more particularly, a hidden dome lamp that emits light through an at least partially transparent material and method thereof.
Lamps are generally disposed about a vehicle interior to provide light inside the automobile. Generally, lamps extend through a headliner to illuminate a cabin of the vehicle. Thus, lamps are typically designed to minimize attenuation of the light emitted from the lamp.
Accordingly, in a first disclosed embodiment, an interior light in a vehicle is provided that includes a circuit board configured to be attached to a roof support structure of the vehicle, an at least partially transparent material proximate to the circuit board and attached to the roof support structure, wherein the at least partially transparent material changes a perceived color of light propagating there-through, and at least one light source electrically connected to the circuit board, such that the at least one light source is between the circuit board and the at least partially transparent material, wherein the at least one light source is configured to emit light that propagates through the at least partially transparent material, and further configured to compensate for the change of the color of light propagating through the at least partially transparent material.
In another disclosed embodiment, a method of compensating for a change in a perceived color of light emitted from a hidden dome lamp in a vehicle is provided that includes the steps of emitting light from at least one light source, propagating the emitted light through an at least partially transparent headliner fabric, wherein the at least partially transparent headliner fabric attenuates the emitted light propagating there-through, such that the color of the emitted light is changed, and configuring the at least one light source to compensate for the change of the color of the light propagating through the at least partially transparent headliner fabric.
In another disclosed embodiment, a hidden dome lamp in a vehicle is provided that includes an at least partially transparent headliner fabric that changes color of light propagating there-through, and at least one LED emits light that propagates through the fabric, wherein the LED is configured to compensate for the change in the color of the light propagating through the fabric.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design; some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In regards to
By way of explanation and not limitation, a standard dome lamp in a vehicle typically extends outwards and through the headliner, and has light emitting characteristics to adequately illuminate the interior of the vehicle, an adequate hue (an adequate color rendering), and an adequate intensity, since the emitted light only propagates through a lens of the dome lamp. Thus, the standard dome lamp is configured to minimize attenuation of the emitted light. However, the interior light 102, in accordance with one or more embodiments of the present invention, can be a hidden dome lamp, which emits light that propagates through the at least partially transparent material 108, so that when the light source 110 is turned OFF, an occupant of the vehicle 100 does not see the dome lamp, but instead sees a continuous or seamless piece of the at least partially transparent material 108. Exemplary hidden dome lamps are described in U.S. patent application Ser. No. 12/577,294 entitled “HIDDEN LAMP MANUFACTURING PROCESS,” and U.S. patent application Ser. No. 12/390,495 entitled “CONCEALED INTERIOR LIGHTS FOR AUTOMOBILE,” the entire references hereby being incorporated herein by reference.
Typically, the at least partially transparent material 108 is a headliner fabric, wherein the color, and thus, the attenuation characteristics can vary for different vehicles or vehicle models. The light emitted from the light source and propagating through the at least partially transmitted material 108 can have an adverse effect on the color of the emitted light, which can result in an undesirable light output viewed by a passenger. According to one embodiment, the at least partially transparent material 108 can be adequately translucent so that light emitted from the light source 110 can propagate through the at least partially transparent material 108 to suitably illuminate at least a portion of the vehicle's 100 interior cabin, but at least partially opaque so an occupant of the vehicle 100 does not see the light source 110 through the at least partially transparent material 108 when the light source 110 is OFF. For purposes of explanation and not limitation, the at least partially transparent material 108 can have approximately six percent (6%) transmission (i.e., the amount of light that passes there-through), and/or can be an off-white foamless prism fabric. The transmission of the at least partially transparent material 108 can be lower, such as, but not limited to, when a black foam is used. Alternatively, the transmission can be greater, such as, but not limited to, approximately fifty percent (50%) transmission.
In other words, the hue of the light viewed from the light source 110 is different than the hue of the light viewed through the at least partially transparent material 108. Therefore, the light source 110, other components of the interior light 102, or a combination thereof, can be configured to compensate for these adverse attenuation affects of the at least partially transparent material 108. According to one embodiment, the emitted light propagating through the at least partially transparent material 108 and the attenuation characteristics thereof can be the light that is viewed through the at least partially transparent material 108.
Generally, perceived color can be described with respect to various color spaces. One color space is the x,y color space (
The at least one light source 110 can include at least one light emitting diode (LED), according to one embodiment. In such an embodiment, the at least one light source 110 compensates for the change of the perceived color by shifting LED bins as a function of attenuation characteristics of the at least partially transparent material 108. Thus, the LED bin shift can be based upon the attenuation characteristics of the at least partially transparent material 108. Generally, LED bins or bin coding can be used for describing specifications (e.g., operating characteristics) of an LED, and include a flux rating, a tint, a forward voltage (Vf), a color, or a combination thereof. Since the LED bins can include color, the LED bin chart illustrated in
For purposes of explanation and not limitation, the LED bin shift can include shifting from a W bin to a blue white Y bin. Such an exemplary bin shift can be used when the light emitted from the light source without an LED bin shift and viewed through the at least partially transparent material 108 has a greenish-white hue. It should be appreciated by those skilled in the art that the selected LED bin shift can be dependent upon the attenuation characteristics of the at least partially transparent material 108, and that other LED bin shifts can be utilized.
In such an exemplary scenario, with respect to
An additional or alternative embodiment is where the at least one LED can include a plurality of red, green, and blue LEDs, and the light emitted from the red, green, and blue LEDs can be controlled to blend the emitted light as a function of the attenuation characteristics of the at least partially transparent material 108. Thus, the light emitted from the various red, green, and blue LEDs can be configured to compensate for adverse attenuation effects of the light propagating through the at least partially transparent material 108. It should be appreciated by those skilled in the art that the blending of light emitted by the red, green, and blue LEDs can be dependent upon the attenuation characteristics of the at least partially transparent material 108. It should be further appreciated by those skilled in the art that additional or alternative colors of LEDs can be used.
In such an exemplary scenario, with respect to
Typically, the red, green, and blue LEDs can be separate LEDs configured to emit light having different dominant wavelengths (e.g., perceived as different colors). At least a portion of the red, green, and blue LEDs can have different housings, be enclosed in a single housing, have separate components, share components, or a combination thereof.
Yet another additional or alternative embodiment is where the at least one light source 110 can be at least one LED that is a red, green, blue (RGB) LED, wherein the light emitted from the RGB LED is controlled to blend the emitted light as a function of the attenuation characteristics of the at least partially transparent material 108. Thus, the light emitted from the RGB LED can be configured to compensate for adverse attenuation effects of the light propagating through the at least partially transparent material 108. It should be appreciated by those skilled in the art that the blending of light emitted by the RGB LED can be dependent upon the attenuation characteristics of the at least partially transparent material 108. It should further be appreciated by those skilled in the art that additional or alternative colors can be included in the LED.
In such an exemplary scenario, with respect to
Typically, the RGB LED includes multiple semiconductor dies enclosed in a single housing (e.g., a red semiconductor die, a green semiconductor die, and a blue semiconductor die). However, it should be appreciated by those skilled in the art that separate components can be used in the RGB LED.
In an embodiment of the interior lamp 102 that compensates for the adverse attenuation effects of the at least partially transparent material 108 by controlling the light emitted from one or more light sources (e.g., red, green, and blue LED or a RGB LED), the interior lamp 102 can include a controller 111. The controller 111 can be configured to receive an instruction and/or execute one or more executable software routines to control the light emitted from the light source 110. Thus, the controller 111 can be electrically connected to the circuit board 104 and in communication with the light source 110.
For purposes of explanation and not limitation, the light source 110 can be configured once at the time of manufacturing the vehicle 100 based upon the vehicle or vehicle model and the selected at least partially transparent material 108. Thus, the same light source 110 can be configured for all vehicles 100, and the light emitting characteristics of the light source 110 can be configured during manufacturing of the vehicle 100 by programming or activating/de-activating one or more executable software routines on the controller 111. However, it should be appreciated by those skilled in the art that the controller 111 can be re-programmed or otherwise control the light source 111 to alter the light emitting characteristics after manufacturing the vehicle 100 is complete.
According to another additional or alternative embodiment, the light source 110 can include a filter 112 configured to compensate for the change of the perceived color of the emitted light propagating through the at least partially transparent material 108. Thus, the light emitted from the light source 110 and propagated through the filter 112 can be configured to compensate for adverse attenuation effects of the light propagating through the at least partially transparent material 108. It should be appreciated by those skilled in the art that the optical characteristics of the filter 112 can be dependent upon the attenuation characteristics of the at least one partially transparent material 108. It should further be appreciated by those skilled in the art that the filter can be an un-alterable filter, an alterable filter (e.g., a liquid crystal display (LCD)), or a combination thereof.
In such an exemplary scenario, with respect to
It should be appreciated by those skilled in the art that the adverse attenuation characteristics of the at least partially transparent material 108 compensated for by a configuration of the light source 110 can include other characteristics in addition to or in alternative to perceived color correction. Exemplary adverse attenuation characteristics can include intensity, readability, the like, or a combination thereof.
According to one embodiment, the light source 110 can be electrically connected to the circuit board 104 and the circuit board 114 can be attached to a frame structure 114. The framing structure 114 can be attached to the roof structure 106, and the at least partially transparent material 108 can extend along the roof structure 106 to cover the circuit board 104, the light source 110, and the framing structure 114. It should be appreciated by those skilled in the art that components that are attached can be directly or indirectly (i.e., one or more intermediate components) attached, according to one embodiment. In an embodiment that utilizes the filter 112, the at least partially transparent material 108 can also cover the filter 112.
Typically, when the interior lamp 102 is a hidden dome lamp, the light source 110 can be activated to be ON or OFF by a proximity switch 116. The proximity switch 116 detects a touch or that an object is proximate thereto. By way of explanation and not limitation, the proximity switch can be, but is not limited to, a capacitive switch, a resistive switch, an inductive switch, an optical switch, a thermal switch, the like, or a combination thereof.
Additionally, the interior lamp 102 can include an indicator light source 118, which can emit light only when the light source 110 is OFF or the indicator light source 118 can continuously emit light. Typically, the indicator light source 118 is a low powered LED; however, it should be appreciated by the skilled in the art that one or more suitable light sources can be used. The indicator light source 118 can be electrically connected to the circuit board 104 adjacent the proximity switch 116 to indicate a location of the proximity switch 116. Thus, if a user moves an object (e.g., the user's hand) proximate the indicator light source 118, the proximity switch 116 detects the object and activates or de-activates the light source 110. The indicator light source 118 can be configured to compensate for attenuation effects of the light propagating through the at least partially transparent material 108, as described herein with respect to the light source 110.
In regards to
Advantageously, the interior light 102 and the method 200 can adequately compensate for adverse attenuation effects of light propagating through the at least partially transparent material 108. In prior art dome lamps, the dome lamps extended outwards from the roof structure and were not covered by the headliner material, and thus, the light emitted from the light source only propagated through a lens; however, the hidden dome lamp 102 emits light that propagates through the headliner fabric that hides the hidden dome lamp 102 when not in use. Thus, the light source of the hidden dome lamp 102 is configured to compensate for one or more adverse attenuation effects of the at least partially transparent material 108. Typically, the light source 110 is configured to compensate for adverse color rendering. It should be appreciated by those skilled in the art that additional or alternative advantages can be present from the interior light 102 and the method 200. It should further be appreciated by those skilled in the art that the above-described components can be combined in additional or alternative ways not explicitly described herein.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.