Vehicle interior systems having a curved cover glass with improved reliability and methods for forming the same

Information

  • Patent Grant
  • 12103397
  • Patent Number
    12,103,397
  • Date Filed
    Thursday, June 8, 2023
    a year ago
  • Date Issued
    Tuesday, October 1, 2024
    3 months ago
Abstract
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, a cold-formed glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 500 mm or greater, and an adhesive between the curved surface and the glass substrate. Methods for forming such systems are also disclosed. The systems and methods include components and/or design modifications or methods for reducing stress in the adhesive.
Description
BACKGROUND

The disclosure relates to vehicle interior systems including glass and methods for forming the same, and more particularly to vehicle interior systems including a curved cover glass that is cold-formed or cold-bent with improved reliability and methods for forming the same.


Vehicle interiors include curved surfaces, which can incorporate displays and/or touch panel in such curved surfaces. The materials used to form such curved surfaces are typically limited to polymers, which do not exhibit the durability and optical performance as glass. As such, curved glass substrates are desirable, especially when used as covers for displays and/or touch panel. Existing methods of forming such curved glass substrates, such as thermal forming, have drawbacks including high cost, optical distortion, and surface marking. Accordingly, Applicant has identified a need for vehicle interior systems that can incorporate a curved glass substrate in a cost-effective manner and without problems typically associated with glass thermal forming processes. In addition, Applicant has identified a need for vehicle interior systems using structural adhesives while achieving improved product reliability and performance, and decreased propensity for flaws to propagate through areas of the adhesive having high stress levels.


SUMMARY

A first aspect of this disclosure pertains to a vehicle interior system. In one or more embodiments, the vehicle interior system includes a base having a curved surface, a cold-formed glass substrate disposed on the curved surface, and an adhesive disposed between the curved surface and the glass substrate. The glass substrate of one or more embodiments comprises a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface. The glass substrate further includes a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, where the thickness is 1.5 mm or less and the second major surface includes a first radius of curvature of 500 mm or greater. According to one or more embodiments, the vehicle interior system further includes at least one stress-reduction component coupled to the glass substrate in a location that reduces an amount of adhesive stress in one or more areas of the adhesive.


A second aspect of this disclosure pertains to a vehicle interior system. In one or more embodiments, the vehicle interior system includes a base having a curved surface, a cold-formed glass substrate disposed on the curved surface, and an adhesive disposed between the curved surface and the glass substrate. The glass substrate of one or more embodiments comprises a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface. The glass substrate further includes a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, where the thickness is 1.5 mm or less and the second major surface includes a first radius of curvature of 500 mm or greater. According to one or more embodiments, the base and/or the second major surface includes a second radius of curvature that is greater than the first radius of curvature.


A third aspect of this disclosure pertains to a vehicle interior system. In one or more embodiments, the vehicle interior system includes a base having a curved surface, a cold-formed glass substrate disposed on the curved surface, and an adhesive disposed between the curved surface and the glass substrate. The glass substrate of one or more embodiments comprises a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface. The glass substrate further includes a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, where the thickness is 1.5 mm or less and the second major surface includes a first radius of curvature of 500 mm or greater. According to one or more embodiments, the second major surface comprises a second area having a hot-formed curved surface including a second radius of curvature.


Another aspect of the disclosure pertains to a method of forming a curved vehicle interior component. The method includes hot-forming a first area of a glass substrate having a first major surface and a second major surface opposite the first major surface to a first radius of curvature as measured on the second major surface, and cold-forming a second area of the glass substrate to a second radius of curvature as measured on the second major surface, the second area being different than the first area.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view illustration of a vehicle interior with vehicle interior systems according to one or more embodiments;



FIG. 2 is a side view illustration of a curved display including a glass substrate and a display module, according to one or more embodiments;



FIG. 3 is a side view illustration of the glass substrate used in the curved display of FIG. 2;



FIG. 4 is a front perspective view illustration of the glass substrate of FIG. 3;



FIG. 5 is a detailed view illustration of an embodiment of the display module of FIG. 2;



FIG. 6 is a detailed view illustration of an alternative embodiment of a display module;



FIG. 7 is a detailed view illustration of the curved display of FIG. 2;



FIG. 8 is a process flow diagram of a method for forming the curved display according to one or more embodiments; and



FIG. 9 is an illustration of the method described in FIG. 8.



FIG. 10 is a flow diagram of a process for forming a curved display, according to another exemplary embodiment.



FIG. 11 is a flow diagram of a process for forming a curved display, according to another exemplary embodiment.



FIG. 12 is a detailed view of the process of FIG. 11, according to another exemplary embodiment.



FIG. 13 is a flow diagram of a process for forming a curved display, according to another exemplary embodiment.



FIG. 14 is a perspective view of a curved display, according to an exemplary embodiment.



FIG. 15 is a side view of the curved display of FIG. 14, according to an exemplary embodiment.



FIGS. 16A-16I are side views of a kit according to one or more embodiments.



FIGS. 17A-17I are side views of a kit according to one or more embodiments.



FIGS. 18A and 18B are side views of a kit according to one or more embodiments.



FIGS. 19A-19E are side view schematics illustrating one or more embodiments of a method for forming a curved display.



FIGS. 20A and 20B are side view schematics illustrating a curved cover glass and corresponding adhesive stress profile with and without a stress-reduction restraint according to one or more embodiments.



FIGS. 21A and 21B are side view schematics illustrating a curved cover glass and corresponding adhesive stress profile with and without a stress-reduction design modification to the cover glass according to one or more embodiments.



FIGS. 22A and 22B are side view schematics illustrating a curved cover glass with a hot-formed portion according to one or more embodiments.





DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In general, a vehicle interior system may include a variety of different curved surfaces that are designed to be transparent, such as curved display surfaces, and the present disclosure provides articles and methods for forming these curved surfaces from a glass material. Forming curved vehicle surfaces from a glass material may provide a number of advantages compared to the typical curved plastic panels that are conventionally found in vehicle interiors. For example, glass is typically considered to provide enhanced functionality and user experience for many curved cover material applications, such as display applications and touch screen applications, compared to plastic cover materials.


While glass provides these benefits, curved glass articles are typically formed using hot forming processes. As discussed herein, a variety of curved glass articles and processes for making the same are provided that avoid the deficiencies of the typical glass hot-forming process. For example, hot-forming processes are energy intensive and increase the cost of forming a curved glass component, relative to the cold-bending process discussed herein. In addition, hot-forming processes typically make application of glass coating layers, such as anti-reflective coatings, significantly more difficult. For example, many coating materials cannot be applied to a flat piece of glass material prior to the hot-forming process because the coating material typically will not survive the high temperatures of the hot-forming process. Further, application of a coating material to surfaces of a curved glass substrate after hot-bending is substantially more difficult than application to a flat glass substrate. In addition, Applicant believes that by avoiding the additional high temperature heating steps needed for thermal forming, the glass articles produced via the cold-forming processes and systems discussed herein have improved optical properties and/or improved surface properties than similarly shaped glass articles made via thermal-shaping processes.


In addition to these advantages relative to plastic cover sheets and hot-formed glass cover sheets, Applicant has found that the systems and processes discussed herein specifically provide for cold-bending of thin, strengthened glass sheets in an economical and efficient process. As one example, Applicant has found that using air pressure (e.g., a vacuum or overpressure) to bend the glass sheet provides a fast and accurate way to conform the glass sheet to a curved device frame. Further, in some specific embodiments, the systems and processes discussed herein provide for bending and curing of bonding adhesive within common equipment and/or common processing steps. In addition, the processes and systems discussed herein may also allow for attachment of the display components to the glass cover sheet during bending utilizing common equipment and/or common processing steps.


A first aspect of the instant application pertains to a vehicle interior system. The various embodiments of the vehicle interior system may be incorporated into vehicles such as trains, automobiles (e.g., cars, trucks, buses and the like), seacraft (boats, ships, submarines, and the like), and aircraft (e.g., drones, airplanes, jets, helicopters and the like).



FIG. 1 illustrates an exemplary vehicle interior 10 that includes three different embodiments of a vehicle interior system 100, 200, 300. Vehicle interior system 100 includes a center console base 110 with a curved surface 120 including a curved display 130. Vehicle interior system 200 includes a dashboard base 210 with a curved surface 220 including a curved display 230. The dashboard base 210 typically includes an instrument panel 215 which may also include a curved display. Vehicle interior system 300 includes a dashboard steering wheel base 310 with a curved surface 320 and a curved display 330. In one or more embodiments, the vehicle interior system may include a base that is an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, or any portion of the interior of a vehicle that includes a curved surface.


The embodiments of the curved display described herein can be used interchangeably in each of vehicle interior systems 100, 200 and 300. Further, the curved glass articles discussed herein may be used as curved cover glasses for any of the curved display embodiments discussed herein, including for use in vehicle interior systems 100, 200 and/or 300.


As shown in FIG. 2, in one or more embodiments the curved display 130 includes cold-formed curved glass article or substrate 140 having a first radius of curvature and a display module 150 attached to the glass substrate, wherein at least a portion of the display module 150 has a second radius of curvature that approximates or matches the first radius of curvature, to provide a curved display with a curved glass substrate as a cover glass.


Referring to FIGS. 3 and 4, the glass substrate 140 includes a first major surface 142 and a second major surface 144 opposite the first major surface. The cold-formed glass substrate exhibits the first radius of curvature as measured on the second major surface 144.


As used herein, the terms “cold-bent,” “cold-bending,” “cold-formed” or “cold-forming” refers to curving the glass substrate at a cold-form temperature which is less than the softening point of the glass (as described herein). A feature of a cold-formed glass substrate is asymmetric surface compressive between the first major surface 142 and the second major surface 144. A minor surface 146 connects the first major surface 142 and the second major surface 144. In one or more embodiments, prior to the cold-forming process or being cold-formed, the respective compressive stresses in the first major surface 142 and the second major surface 144 of the glass substrate are substantially equal. In one or more embodiments in which the glass substrate is unstrengthened, the first major surface 142 and the second major surface 144 exhibit no appreciable compressive stress, prior to cold-forming. In one or more embodiments in which the glass substrate is strengthened (as described herein), the first major surface 142 and the second major surface 144 exhibit substantially equal compressive stress with respect to one another, prior to cold-forming. In one or more embodiments, after cold-forming (shown, for example, in FIGS. 2 and 7, the compressive stress on the surface having a concave shape after bending (e.g., second major surface 144 in FIGS. 2 and 7) increases. In other words, the compressive stress on the concave surface (e.g., second major surface 144) is greater after cold-forming than before cold-forming. Without being bound by theory, the cold-forming process increases the compressive stress of the glass substrate being shaped to compensate for tensile stresses imparted during bending and/or forming operations. In one or more embodiments, the cold-forming process causes the concave surface (second major surface 144) to experience compressive stresses, while the surface forming a convex shape (i.e., the first major surface 142 in FIGS. 2 and 7) after cold-forming experiences tensile stresses. The tensile stress experienced by the convex (i.e., the first major surface 142) following cold-forming results in a net decrease in surface compressive stress, such that the compressive stress in convex surface (i.e., the first major surface 142) of a strengthened glass sheet following cold-forming is less than the compressive stress on the same surface (i.e., first major surface 142) when the glass sheet is flat.


When a strengthened glass substrate is utilized, the first major surface and the second major surface (142, 144) are already under compressive stress, and thus the first major surface can experience greater tensile stress during bending without risking fracture. This allows for the strengthened glass substrate to conform to more tightly curved surfaces.


In one or more embodiments, the thickness of the glass substrate is tailored to allow the glass substrate to be more flexible to achieve the desired radius of curvature. Moreover, a thinner glass substrate 140 may deform more readily, which could potentially compensate for shape mismatches and gaps that may be created by the shape of the display module 150. In one or more embodiments, a thin and strengthened glass substrate 140 exhibits greater flexibility especially during cold-forming. The greater flexibility of the glass substrates discussed herein may both allow for sufficient degrees of bending to be created via the air pressure-based bending processes as discussed herein and also for consistent bend formation without heating. In one or more embodiments, the glass substrate 140 and at least a portion of the display module 150 have substantially similar radii of curvature to provide a substantially uniform distance between the first major surface 142 and the display module 150 (which may be filled with an adhesive).


In one or more embodiments, the cold-formed glass substrate and the curved display may have a compound curve including a major radius and a cross curvature. A complexly curved cold-formed glass substrate and the display according to one or more embodiments may have a distinct radius of curvature in two independent directions. According to one or more embodiments, the complexly curved cold-formed glass substrate and the curved display may thus be characterized as having “cross curvature,” where the cold-formed glass substrate and the curved display are curved along an axis (i.e., a first axis) that is parallel to a given dimension and also curved along an axis (i.e., a second axis) that is perpendicular to the same dimension. The curvature of the cold-formed glass substrate and the curved display can be even more complex when a significant minimum radius is combined with a significant cross curvature, and/or depth of bend.


In the embodiment shown, the glass substrate has a thickness (t) that is substantially constant and is defined as a distance between the first major surface 142 and the second major surface 144. The thickness (t) as used herein refers to the maximum thickness of the glass substrate. In the embodiment shown in FIGS. 3-4, the glass substrate includes a width (W) defined as a first maximum dimension of one of the first or second major surfaces orthogonal to the thickness (t), and a length (L) defined as a second maximum dimension of one of the first or second surfaces orthogonal to both the thickness and the width. In other embodiments, the dimensions discussed herein may be average dimensions.


In one or more embodiments, the glass substrate has a thickness (t) that is about 1.5 mm or less. For example, the thickness may be in a range from about 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm.


In one or more embodiments, the glass substrate has a width (W) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.


In one or more embodiments, the glass substrate has a length (L) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.


In one or more embodiments, the glass substrate may be strengthened. In one or more embodiments, the glass substrate may be strengthened to include compressive stress that extends from a surface to a depth of compression (DOC). The compressive stress regions are balanced by a central portion exhibiting a tensile stress. At the DOC, the stress crosses from a positive (compressive) stress to a negative (tensile) stress.


In one or more embodiments, the glass substrate may be strengthened mechanically by utilizing a mismatch of the coefficient of thermal expansion between portions of the article to create a compressive stress region and a central region exhibiting a tensile stress. In some embodiments, the glass substrate may be strengthened thermally by heating the glass to a temperature above the glass transition point and then rapidly quenching.


In one or more embodiments, the glass substrate may be chemically strengthening by ion exchange. In the ion exchange process, ions at or near the surface of the glass substrate are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In those embodiments in which the glass substrate comprises an alkali aluminosilicate glass, ions in the surface layer of the article and the larger ions are monovalent alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like. In such embodiments, the monovalent ions (or cations) exchanged into the glass substrate generate a stress.


Ion exchange processes are typically carried out by immersing a glass substrate in a molten salt bath (or two or more molten salt baths) containing the larger ions to be exchanged with the smaller ions in the glass substrate. It should be noted that aqueous salt baths may also be utilized. In addition, the composition of the bath(s) may include more than one type of larger ion (e.g., Na+ and K+) or a single larger ion. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass substrate in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass substrate (including the structure of the article and any crystalline phases present) and the desired DOC and CS of the glass substrate that results from strengthening. Exemplary molten bath composition may include nitrates, sulfates, and chlorides of the larger alkali metal ion. Typical nitrates include KNO3, NaNO3, LiNO3, NaSO4 and combinations thereof. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 100 hours depending on glass substrate thickness, bath temperature and glass (or monovalent ion) diffusivity. However, temperatures and immersion times different from those described above may also be used.


In one or more embodiments, the glass substrates may be immersed in a molten salt bath of 100% NaNO3, 100% KNO3, or a combination of NaNO3 and KNO3 having a temperature from about 370° C. to about 480° C. In some embodiments, the glass substrate may be immersed in a molten mixed salt bath including from about 5% to about 90% KNO3 and from about 10% to about 95% NaNO3. In one or more embodiments, the glass substrate may be immersed in a second bath, after immersion in a first bath. The first and second baths may have different compositions and/or temperatures from one another. The immersion times in the first and second baths may vary. For example, immersion in the first bath may be longer than the immersion in the second bath.


In one or more embodiments, the glass substrate may be immersed in a molten, mixed salt bath including NaNO3 and KNO3 (e.g., 49%/51%, 50%/50%, 51%/49%) having a temperature less than about 420° C. (e.g., about 400° C. or about 380° C.). for less than about 5 hours, or even about 4 hours or less.


Ion exchange conditions can be tailored to provide a “spike” or to increase the slope of the stress profile at or near the surface of the resulting glass substrate. The spike may result in a greater surface CS value. This spike can be achieved by single bath or multiple baths, with the bath(s) having a single composition or mixed composition, due to the unique properties of the glass compositions used in the glass substrates described herein.


In one or more embodiments, where more than one monovalent ion is exchanged into the glass substrate, the different monovalent ions may exchange to different depths within the glass substrate (and generate different magnitudes stresses within the glass substrate at different depths). The resulting relative depths of the stress-generating ions can be determined and cause different characteristics of the stress profile.


CS is measured using those means known in the art, such as by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Industrial Co., Ltd. (Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. As used herein CS may be the “maximum compressive stress” which is the highest compressive stress value measured within the compressive stress layer. In some embodiments, the maximum compressive stress is located at the surface of the glass substrate. In other embodiments, the maximum compressive stress may occur at a depth below the surface, giving the compressive profile the appearance of a “buried peak.”


DOC may be measured by FSM or by a scattered light polariscope (SCALP) (such as the SCALP-04 scattered light polariscope available from Glasstress Ltd., located in Tallinn Estonia), depending on the strengthening method and conditions. When the glass substrate is chemically strengthened by an ion exchange treatment, FSM or SCALP may be used depending on which ion is exchanged into the glass substrate. Where the stress in the glass substrate is generated by exchanging potassium ions into the glass substrate, FSM is used to measure DOC. Where the stress is generated by exchanging sodium ions into the glass substrate, SCALP is used to measure DOC. Where the stress in the glass substrate is generated by exchanging both potassium and sodium ions into the glass, the DOC is measured by SCALP, since it is believed the exchange depth of sodium indicates the DOC and the exchange depth of potassium ions indicates a change in the magnitude of the compressive stress (but not the change in stress from compressive to tensile); the exchange depth of potassium ions in such glass substrates is measured by FSM. Central tension or CT is the maximum tensile stress and is measured by SCALP.


In one or more embodiments, the glass substrate maybe strengthened to exhibit a DOC that is described a fraction of the thickness t of the glass substrate (as described herein). For example, in one or more embodiments, the DOC may be equal to or greater than about 0.05 t, equal to or greater than about 0.1 t, equal to or greater than about 0.11 t, equal to or greater than about 0.12 t, equal to or greater than about 0.13 t, equal to or greater than about 0.14 t, equal to or greater than about 0.15 t, equal to or greater than about 0.16 t, equal to or greater than about 0.17 t, equal to or greater than about 0.18 t, equal to or greater than about 0.19 t, equal to or greater than about 0.2 t, equal to or greater than about 0.21 t. In some embodiments, The DOC may be in a range from about 0.08 t to about 0.25 t, from about 0.09 t to about 0.25 t, from about 0.18 t to about 0.25 t, from about 0.11 t to about 0.25 t, from about 0.12 t to about 0.25 t, from about 0.13 t to about 0.25 t, from about 0.14 t to about 0.25 t, from about 0.15 t to about 0.25 t, from about 0.08 t to about 0.24 t, from about 0.08 t to about 0.23 t, from about 0.08 t to about 0.22 t, from about 0.08 t to about 0.21 t, from about 0.08 t to about 0.2 t, from about 0.08 t to about 0.19 t, from about 0.08 t to about 0.18 t, from about 0.08 t to about 0.17 t, from about 0.08 t to about 0.16 t, or from about 0.08 t to about 0.15 t. In some instances, the DOC may be about 20 μm or less. In one or more embodiments, the DOC may be about 40 μm or greater (e.g., from about 40 μm to about 300 μm, from about 50 μm to about 300 μm, from about 60 μm to about 300 μm, from about 70 μm to about 300 μm, from about 80 μm to about 300 μm, from about 90 μm to about 300 μm, from about 100 μm to about 300 μm, from about 110 μm to about 300 μm, from about 120 μm to about 300 μm, from about 140 μm to about 300 μm, from about 150 μm to about 300 μm, from about 40 μm to about 290 μm, from about 40 μm to about 280 μm, from about 40 μm to about 260 μm, from about 40 μm to about 250 μm, from about 40 μm to about 240 μm, from about 40 μm to about 230 μm, from about 40 μm to about 220 μm, from about 40 μm to about 210 μm, from about 40 μm to about 200 μm, from about 40 μm to about 180 μm, from about 40 μm to about 160 μm, from about 40 μm to about 150 μm, from about 40 μm to about 140 μm, from about 40 μm to about 130 μm, from about 40 μm to about 120 μm, from about 40 μm to about 110 μm, or from about 40 μm to about 100 μm.


In one or more embodiments, the strengthened glass substrate may have a CS (which may be found at the surface or a depth within the glass substrate) of about 200 MPa or greater, 300 MPa or greater, 400 MPa or greater, about 500 MPa or greater, about 600 MPa or greater, about 700 MPa or greater, about 800 MPa or greater, about 900 MPa or greater, about 930 MPa or greater, about 1000 MPa or greater, or about 1050 MPa or greater.


In one or more embodiments, the strengthened glass substrate may have a maximum tensile stress or central tension (CT) of about 20 MPa or greater, about 30 MPa or greater, about 40 MPa or greater, about 45 MPa or greater, about 50 MPa or greater, about 60 MPa or greater, about 70 MPa or greater, about 75 MPa or greater, about 80 MPa or greater, or about 85 MPa or greater. In some embodiments, the maximum tensile stress or central tension (CT) may be in a range from about 40 MPa to about 100 MPa.


Suitable glass compositions for use in the glass substrate include soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.


Unless otherwise specified, the glass compositions disclosed herein are described in mole percent (mol %) as analyzed on an oxide basis.


In one or more embodiments, the glass composition may include SiO2 in an amount in a range from about 66 mol % to about 80 mol %, from about 67 mol % to about 80 mol %, from about 68 mol % to about 80 mol %, from about 69 mol % to about 80 mol %, from about 70 mol % to about 80 mol %, from about 72 mol % to about 80 mol %, from about 65 mol % to about 78 mol %, from about 65 mol % to about 76 mol %, from about 65 mol % to about 75 mol %, from about 65 mol % to about 74 mol %, from about 65 mol % to about 72 mol %, or from about 65 mol % to about 70 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes Al2O3 in an amount greater than about 4 mol %, or greater than about 5 mol %. In one or more embodiments, the glass composition includes Al2O3 in a range from greater than about 7 mol % to about 15 mol %, from greater than about 7 mol % to about 14 mol %, from about 7 mol % to about 13 mol %, from about 4 mol % to about 12 mol %, from about 7 mol % to about 11 mol %, from about 8 mol % to about 15 mol %, from 9 mol % to about 15 mol %, from about 9 mol % to about 15 mol %, from about 10 mol % to about 15 mol %, from about 11 mol % to about 15 mol %, or from about 12 mol % to about 15 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the upper limit of Al2O3 may be about 14 mol %, 14.2 mol %, 14.4 mol %, 14.6 mol %, or 14.8 mol %.


In one or more embodiments, the glass article is described as an aluminosilicate glass article or including an aluminosilicate glass composition. In such embodiments, the glass composition or article formed therefrom includes SiO2 and Al2O3 and is not a soda lime silicate glass. In this regard, the glass composition or article formed therefrom includes Al2O3 in an amount of about 2 mol % or greater, 2.25 mol % or greater, 2.5 mol % or greater, about 2.75 mol % or greater, about 3 mol % or greater.


In one or more embodiments, the glass composition comprises B2O3 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises B2O3 in an amount in a range from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 0.1 mol % to about 3 mol %, from about 0.1 mol % to about 2 mol %, from about 0.1 mol % to about 1 mol %, from about 0.1 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition is substantially free of B2O3.


As used herein, the phrase “substantially free” with respect to the components of the composition means that the component is not actively or intentionally added to the composition during initial batching, but may be present as an impurity in an amount less than about 0.001 mol %.


In one or more embodiments, the glass composition optionally comprises P2O5 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises a non-zero amount of P2O5 up to and including 2 mol %, 1.5 mol %, 1 mol %, or 0.5 mol %. In one or more embodiments, the glass composition is substantially free of P2O5.


In one or more embodiments, the glass composition may include a total amount of R2O (which is the total amount of alkali metal oxide such as Li2O, Na2O, K2O, Rb2O, and Cs2O) that is greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In some embodiments, the glass composition includes a total amount of R2O in a range from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 13 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of Rb2O, Cs2O or both Rb2O and Cs2O. In one or more embodiments, the R2O may include the total amount of Li2O, Na2O and K2O only. In one or more embodiments, the glass composition may comprise at least one alkali metal oxide selected from Li2O, Na2O and K2O, wherein the alkali metal oxide is present in an amount greater than about 8 mol % or greater.


In one or more embodiments, the glass composition comprises Na2O in an amount greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In one or more embodiments, the composition includes Na2O in a range from about from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 16 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes less than about 4 mol % K2O, less than about 3 mol % K2O, or less than about 1 mol % K2O. In some instances, the glass composition may include K2O in an amount in a range from about 0 mol % to about 4 mol %, from about 0 mol % to about 3.5 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2.5 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0 mol % to about 0.2 mol %, from about 0 mol % to about 0.1 mol %, from about 0.5 mol % to about 4 mol %, from about 0.5 mol % to about 3.5 mol %, from about 0.5 mol % to about 3 mol %, from about 0.5 mol % to about 2.5 mol %, from about 0.5 mol % to about 2 mol %, from about 0.5 mol % to about 1.5 mol %, or from about 0.5 mol % to about 1 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of K2O.


In one or more embodiments, the glass composition is substantially free of Li2O.


In one or more embodiments, the amount of Na2O in the composition may be greater than the amount of Li2O. In some instances, the amount of Na2O may be greater than the combined amount of Li2O and K2O. In one or more alternative embodiments, the amount of Li2O in the composition may be greater than the amount of Na2O or the combined amount of Na2O and K2O.


In one or more embodiments, the glass composition may include a total amount of RO (which is the total amount of alkaline earth metal oxide such as CaO, MgO, BaO, ZnO and SrO) in a range from about 0 mol % to about 2 mol %. In some embodiments, the glass composition includes a non-zero amount of RO up to about 2 mol %. In one or more embodiments, the glass composition comprises RO in an amount from about 0 mol % to about 1.8 mol %, from about 0 mol % to about 1.6 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1.4 mol %, from about 0 mol % to about 1.2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.8 mol %, from about 0 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes CaO in an amount less than about 1 mol %, less than about 0.8 mol %, or less than about 0.5 mol %. In one or more embodiments, the glass composition is substantially free of CaO.


In some embodiments, the glass composition comprises MgO in an amount from about 0 mol % to about 7 mol %, from about 0 mol % to about 6 mol %, from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0.1 mol % to about 7 mol %, from about 0.1 mol % to about 6 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 1 mol % to about 7 mol %, from about 2 mol % to about 6 mol %, or from about 3 mol % to about 6 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition comprises ZrO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises ZrO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition comprises SnO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises SnO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition may include an oxide that imparts a color or tint to the glass articles. In some embodiments, the glass composition includes an oxide that prevents discoloration of the glass article when the glass article is exposed to ultraviolet radiation. Examples of such oxides include, without limitation oxides of: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ce, W, and Mo.


In one or more embodiments, the glass composition includes Fe expressed as Fe2O3, wherein Fe is present in an amount up to (and including) about 1 mol %. In some embodiments, the glass composition is substantially free of Fe. In one or more embodiments, the glass composition comprises Fe2O3 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises Fe2O3 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


Where the glass composition includes TiO2, TiO2 may be present in an amount of about 5 mol % or less, about 2.5 mol % or less, about 2 mol % or less or about 1 mol % or less. In one or more embodiments, the glass composition may be substantially free of TiO2.


An exemplary glass composition includes SiO2 in an amount in a range from about 65 mol % to about 75 mol %, Al2O3 in an amount in a range from about 8 mol % to about 14 mol %, Na2O in an amount in a range from about 12 mol % to about 17 mol %, K2O in an amount in a range of about 0 mol % to about 0.2 mol %, and MgO in an amount in a range from about 1.5 mol % to about 6 mol %. Optionally, SnO2 may be included in the amounts otherwise disclosed herein.


In one or more embodiments, the cold-formed glass substrate 140 has a curvature (first radius of curvature) that matches the curvature (second radius of curvature) of at least a portion of the display module 150. In one or more embodiments, at least a portion of the display module 150 is curved to approach or match the curvature of the cold-formed glass substrate 140. In one or more embodiments, the display module 150 includes a second glass substrate, a backlight unit and other components, any of which may be flexible or may permanently exhibit a curvature. In some embodiments, the entire display module is curved to a second radius of curvature. In one or more embodiments, the glass substrate 140 is cold-formed to a curvature that approaches or matches the curvature of at least a portion of the display module 150. In one or more embodiments, at least a portion of the display module 150 is cold-formed to a curvature that approaches or matches the curvature of the cold-formed glass substrate 140.


As used herein, when the first radius of curvature of the glass substrate varies across its area, the radius of curvature referred to herein is the minimum first radius of curvature of the glass substrate. Similarly, when the second radius of curvature of the display module varies across its area, the second radius of curvature referred to herein is the minimum radius of curvature of the display module.


In one or more embodiments, the glass substrate 140 has a first radius of curvature of about 60 mm or greater. For example, the first radius of curvature may be in a range from about 60 mm to about 1500 mm, from about 70 mm to about 1500 mm, from about 80 mm to about 1500 mm, from about 90 mm to about 1500 mm, from about 100 mm to about 1500 mm, from about 120 mm to about 1500 mm, from about 140 mm to about 1500 mm, from about 150 mm to about 1500 mm, from about 160 mm to about 1500 mm, from about 180 mm to about 1500 mm, from about 200 mm to about 1500 mm, from about 220 mm to about 1500 mm, from about 240 mm to about 1500 mm, from about 250 mm to about 1500 mm, from about 260 mm to about 1500 mm, from about 270 mm to about 1500 mm, from about 280 mm to about 1500 mm, from about 290 mm to about 1500 mm, from about 300 mm to about 1500 mm, from about 350 mm to about 1500 mm, from about 400 mm to about 1500 mm, from about 450 mm to about 1500 mm, from about 500 mm to about 1500 mm, from about 550 mm to about 1500 mm, from about 600 mm to about 1500 mm, from about 650 mm to about 1500 mm, from about 700 mm to about 1500 mm, from about 750 mm to about 1500 mm, from about 800 mm to about 1500 mm, from about 900 mm to about 1500 mm, from about 9500 mm to about 1500 mm, from about 1000 mm to about 1500 mm, from about 1250 mm to about 1500 mm, from about 60 mm to about 1400 mm, from about 60 mm to about 1300 mm, from about 60 mm to about 1200 mm, from about 60 mm to about 1100 mm, from about 60 mm to about 1000 mm, from about 60 mm to about 950 mm, from about 60 mm to about 900 mm, from about 60 mm to about 850 mm, from about 60 mm to about 800 mm, from about 60 mm to about 750 mm, from about 60 mm to about 700 mm, from about 60 mm to about 650 mm, from about 60 mm to about 600 mm, from about 60 mm to about 550 mm, from about 60 mm to about 500 mm, from about 60 mm to about 450 mm, from about 60 mm to about 400 mm, from about 60 mm to about 350 mm, from about 60 mm to about 300 mm, or from about 60 mm to about 250 mm.


In one or more embodiments, the display module 150 has a second radius of curvature of about 60 mm or greater. For example, the first radius of curvature may be in a range from about 60 mm to about 1500 mm, from about 70 mm to about 1500 mm, from about 80 mm to about 1500 mm, from about 90 mm to about 1500 mm, from about 100 mm to about 1500 mm, from about 120 mm to about 1500 mm, from about 140 mm to about 1500 mm, from about 150 mm to about 1500 mm, from about 160 mm to about 1500 mm, from about 180 mm to about 1500 mm, from about 200 mm to about 1500 mm, from about 220 mm to about 1500 mm, from about 240 mm to about 1500 mm, from about 250 mm to about 1500 mm, from about 260 mm to about 1500 mm, from about 270 mm to about 1500 mm, from about 280 mm to about 1500 mm, from about 290 mm to about 1500 mm, from about 300 mm to about 1500 mm, from about 350 mm to about 1500 mm, from about 400 mm to about 1500 mm, from about 450 mm to about 1500 mm, from about 500 mm to about 1500 mm, from about 550 mm to about 1500 mm, from about 600 mm to about 1500 mm, from about 650 mm to about 1500 mm, from about 700 mm to about 1500 mm, from about 750 mm to about 1500 mm, from about 800 mm to about 1500 mm, from about 900 mm to about 1500 mm, from about 9500 mm to about 1500 mm, from about 1000 mm to about 1500 mm, from about 1250 mm to about 1500 mm, from about 60 mm to about 1400 mm, from about 60 mm to about 1300 mm, from about 60 mm to about 1200 mm, from about 60 mm to about 1100 mm, from about 60 mm to about 1000 mm, from about 60 mm to about 950 mm, from about 60 mm to about 900 mm, from about 60 mm to about 850 mm, from about 60 mm to about 800 mm, from about 60 mm to about 750 mm, from about 60 mm to about 700 mm, from about 60 mm to about 650 mm, from about 60 mm to about 600 mm, from about 60 mm to about 550 mm, from about 60 mm to about 500 mm, from about 60 mm to about 450 mm, from about 60 mm to about 400 mm, from about 60 mm to about 350 mm, from about 60 mm to about 300 mm, or from about 60 mm to about 250 mm.


In one or more embodiments, the glass substrate is cold-formed to exhibit a first radius curvature that is within 10% (e.g., about 10% or less, about 9% or less, about 8% or less, about 7% or less, about 6% or less, or about 5% or less) of the second radius of curvature of the display module 150. For example, if the display module 150 exhibits a radius of curvature of 1000 mmm, the glass substrate is cold-formed to have a radius of curvature in a range from about 900 mm to about 1100 mm.


In one or more embodiments, the display module 150 as shown in FIG. 5 and includes a second glass substrate 152 and a backlight unit 154. As shown in FIG. 6 and FIG. 7, the second glass substrate is disposed adjacent the first major surface 142 of the glass substrate. Accordingly, the second glass substrate 152 is disposed between the backlight unit 154 and the first major surface 142. In the embodiment shown, the backlight unit 154 is optionally curved to exhibit the second radius of curvature of the curved display 150. In one or more embodiments, the backlight unit 154 may be flexible to curve to the second radius of curvature. In one or more embodiments, the second glass substrate 152 may be curved to the second radius of curvature. In one or more specific embodiments, the second glass substrate may be cold-formed to exhibit the second radius of curvature. In such embodiments, the second radius of curvature is measured on the surface of the second glass substrate 152 adjacent the glass substrate 140. In one or more embodiments, the display module 150 (including any one or more of the backlight unit, the second glass substrate, and the frame) are permanently curved to the second radius of curvature of the curved display 150. In one or more embodiments, the second glass substrate may be cold-formed before or during lamination.


In one or more embodiments, the second glass substrate may have a thickness greater than the thickness of the glass substrate. In one or more embodiments, the thickness is greater than 1 mm, or about 1.5 mm or greater. In one or more embodiments, the thickness of the second glass substrate may have a thickness that is substantially the same as the glass substrate. In one or more embodiments, the second glass substrate has a thickness in a range from about 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm.


The second glass substrate may have the same glass composition as the glass substrate 140 or may differ from the glass composition used for the glass substrate 140. In one or more embodiments, the second glass substrate may have an alkali-free glass composition. Suitable glass compositions for use in the second glass substrate may include soda lime glass, alkali-free aluminosilicate glass, alkali-free borosilicate glass, alkali-free boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass. In one or more embodiments, the second glass substrate may be strengthened (as disclosed herein with respect to the glass substrate 140). In some embodiments, the second glass substrate is unstrengthened or strengthened only by mechanical and/or thermal strengthening (i.e., not strengthened by chemical strengthening). In some embodiments, the second glass substrate may be annealed.


In one or more embodiments, the display module 150 includes a frame 158. In the embodiment shown, the frame 158 is positioned between the backlight unit 154 and the second glass substrate 152. The frame may have an “L” shape with flanges 159 extending outward from the display module 150. In one or more embodiments, the frame 158 at least partially surrounds the backlight unit 154. In one or more embodiments as shown in FIG. 6, the frame at least partially surrounds the second glass substrate 152. In one or more embodiments, the frame can either at least partially surrounds the minor surface 146 of the glass substrate 140 or the minor surface of the glass substrate may not be surrounded by the frame. In other words, the frame may include secondary flanges 157 that extend to partially surround the second glass substrate 152 and/or the minor surface of the glass substrate 140.


In one or more embodiments, the curved display includes an adhesive or adhesive layer 160 between the glass substrate 140 and the display module 150. The adhesive may be optically clear. In some embodiments, the adhesive is disposed on a portion of the glass substrate 140 and/or the display module 150. For example, as shown in FIG. 4, the glass substrate may include a periphery 147 adjacent the minor surface 146 defining an interior portion 148, and the adhesive may be disposed on at least a portion of the periphery. The thickness of the adhesive may be tailored to ensure lamination between the display module 150 (and more particularly the second glass substrate) and the glass substrate 140. For example, the adhesive may have a thickness of about 1 mm or less. In some embodiments, the adhesive has a thickness in a range from about 200 μm to about 500 μm, from about 225 μm to about 500 μm, from about 250 μm to about 500 μm, from about 275 μm to about 500 μm, from about 300 μm to about 500 μm, from about 325 μm to about 500 μm, from about 350 μm to about 500 μm, from about 375 μm to about 500 μm, from about 400 μm to about 500 μm, from about 200 μm to about 475 μm, from about 200 μm to about 450 μm, from about 200 μm to about 425 μm, from about 200 μm to about 400 μm, from about 200 μm to about 375 μm, from about 200 μm to about 350 μm, from about 200 μm to about 325 μm, from about 200 μm to about 300 μm, or from about 225 μm to about 275 μm.


In one or more embodiments, the either one of or both the first major surface 142 and the second major surface 144 of the glass substrate includes a surface treatment. The surface treatment may cover at least a portion of the first major surface 142 and the second major surface 144. Exemplary surface treatments include an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design. In one or more embodiments, the at least a portion of the first major surface and 142/or the second major surface 144 may include any one, any two or all three of an anti-glare surface, an anti-reflective surface, and a pigment design. For example, first major surface 142 may include an anti-glare surface and the second major surface 144 may include an anti-reflective surface. In another example, the first major surface 142 includes an anti-reflective surface and the second major surface 144 includes an anti-glare surface. In yet another example, the first major surface 142 comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface 144 includes the pigment design.


The pigment design may include any aesthetic design formed from a pigment (e.g., ink, paint and the like) and can include a wood-grain design, a brushed metal design, a graphic design, a portrait, or a logo. The pigment design may be printed onto the glass substrate. In one or more embodiments, the anti-glare surface includes an etched surface. In one or more embodiments, the anti-reflective surface includes a multi-layer coating. In one or more embodiments, the easy-to-clean surface includes an oleophobic coating that imparts anti-fingerprint properties.


In one or more embodiments, the surface treatment (i.e., the easy-to-clean surface, the anti-glare surface, the anti-reflective surface and/or the pigment design) is disposed on at least a portion of the periphery 147 and the interior portion 148 is substantially free of the surface treatment.


In one or more embodiments, the display module includes touch functionality and such functionality is accessible through the glass substrate 140. In one or more embodiments, displayed images or content shown by the display module is visible through the glass substrate 140.


A second aspect of this disclosure pertains to various methods and systems for cold-bending a glass sheet/substrate, such as substrate 140, and/or forming a curved display. In various embodiments, the methods and systems discussed herein utilize air pressure differentials to cause bending of the glass sheet/substrate. As noted above, these systems and methods bend the glass sheet/substrate without use of the high temperatures (e.g., temperatures greater than the glass transition temperature) that are typical with hot-bending/hot-forming processes.


Referring to FIGS. 8 and 9, a method 1000 of forming a curved display is shown according to exemplary embodiments. In one or more embodiments, the method includes a step 1100 of cold-forming a glass substrate, such as substrate 140, to a first radius of curvature (as described herein), and laminating a display module 150 to the first one of the major surfaces 142 or 144 (see FIGS. 2 and 3) while maintaining the first radius of curvature in the glass substrate to form the curved display, wherein the display module has a second radius of curvature (as described herein) that is within 10% of the first radius of curvature. As shown in FIG. 9, in one or more embodiments, cold-forming the glass substrate 140 includes applying a vacuum to the second major surface 144 of the glass substrate to generate the first radius of curvature 1120. Accordingly, in the embodiment shown in FIG. 9, applying the vacuum includes placing the glass substrate on a vacuum fixture 1110 before applying the vacuum to the second major surface. To maintain the first radius of curvature, the glass substrate and subsequent assembly with the display module (steps 1150, 1200) is performed while the vacuum is applied to the glass substrate to cold-form the glass substrate to the first radius of curvature. In other words, the glass substrate 140 is temporarily cold-formed by applying the vacuum, and subsequent lamination with the display module 150 permanently cold-forms the glass substrate and forms the curved display. In such embodiments, the display module provides the rigidity needed to permanently cold-form the glass substrate. Other mechanisms to temporarily cold-form the glass substrate may be used. For example, the glass substrate may be temporarily affixed to a mold having the desired curvature to cold-form the glass substrate. The glass substrate may be temporarily affixed by a pressure sensitive adhesive or other mechanism.


After cold-forming the glass substrate, the method of one or more embodiments includes laminating an adhesive to the first major surface 142 of the glass substrate 140 before laminating the display module to the first major surface such that the adhesive is disposed between the first major surface and the display module. In one or more embodiments, laminating the adhesive may include applying a layer of the adhesive and then applying a normal force using roller or other mechanism. Exemplary examples include any suitable optically clear adhesive for bonding the glass substrate to the second glass substrate of the display module 150. In one example, the adhesive may include an optically clear adhesive available from 3M Corporation under the trade name 8215. The thickness of the adhesive may be in a range from about 200 μm to about 500 μm.


In one or more embodiment, step 1200 of laminating a display module includes laminating the second glass substrate 152 to the glass substrate 140 (step 1210 in FIG. 9) and then attaching the backlight unit 154 to the second glass substrate (step 1220, in FIG. 9). In one or more embodiments, the method includes cold-forming the second glass substrate during lamination to the glass substrate. In one or more embodiments, the second glass substrate is curved prior to lamination. For example, the second glass substrate may be temporarily curved or cold-formed before lamination to exhibit the second radius of curvature. In another example, the second glass substrate may be permanently curved (by, for example, hot forming) to exhibit the second radius of curvature). In one or more embodiments, the backlight unit is curved to exhibit the second radius of curvature. In one or more embodiments, the backlight unit is flexible and is curved during lamination to the second radius of curvature. In one or more embodiments, the backlight unit may be curved prior to lamination. For example, the backlight unit may be temporarily curved before lamination to exhibit the second radius of curvature. In another example, the backlight unit may be permanently curved to exhibit the second radius of curvature).


In one or more embodiments, step 1220 includes attaching a frame with the backlight unit to the second glass substrate. In one or more embodiments, the method includes step 1230 of removing the vacuum from the second major surface of glass substrate 140. For example, removing the vacuum from the second major surface may include removing the curved display from the vacuum fixture.


In one or more embodiments, the method includes disposing or assembling the curved display in a vehicle interior system 100, 200, 300.


Referring to FIGS. 10-15, additional systems and methods for forming a curved glass sheet/substrate via cold-forming is shown and described. In the specific embodiments shown and described, the curved glass substrate is utilized for a curved display for a vehicle, such as in vehicle interior system 100, 200, 300. It should be understood that any of the glass substrate, frame, and display module embodiments described herein may be formed or utilized in the processes and systems discussed in relation to FIGS. 10-15.


Referring to FIG. 10, a method 1300 for cold-bending a glass substrate is shown. At step 1310, a glass substrate, such as glass substrate 140, is supported and/or placed on a curved frame. The frame may be a frame of a display, such as frame 158 that defines a perimeter and curved shape for a vehicle display. In general, the curved frame includes a curved support surface and one of the major surfaces 142 or 144 of glass substrate 140 is placed into contact with the curved support surface of the frame.


At step 1320, an air pressure differential is applied to the glass substrate while it is supported by the frame causing the glass substrate to bend into conformity with the curved shape of the curved support surface of the frame. In this manner, a curved glass substrate is formed from a generally flat glass substrate/sheet (see FIGS. 3 and 4). In this arrangement, curving the flat piece of glass material forms a curved shape on the major surface facing the frame, while also causing a corresponding (but complimentary) curve to form in the major surface of the glass substrate opposite of the frame. Applicant has found that by bending the glass substrate directly on the curved frame, the need for a separate curved die or mold (typically needed in other glass bending processes) is eliminated. Further, Applicant has found that by shaping the glass substrate directly to the curved frame, a wide range of glass radii may be achieved in a low complexity manufacturing process.


In some embodiments, the vacuum may be generated by a vacuum fixture, such as fixture 1110. In some other embodiments, the air pressure differential is formed by applying a vacuum to an airtight enclosure surrounding the frame and the glass substrate. In specific embodiments, the airtight enclosure is a flexible polymer shell, such as a plastic bag or pouch. In other embodiments, the air pressure differential is formed by generating increased air pressure around the glass substrate and the frame with an overpressure device, such as an autoclave. Applicant has further found that air pressure provides a consistent and highly uniform bending force (as compared to a contact-based bending method) which further leads to a robust manufacturing process.


At step 1330, the temperature of the glass substrate is maintained below the glass transition temperature of the material of the glass substrate during bending. As such, method 1300 is a cold-forming or cold-bending process. In particular embodiments, the temperature of the glass substrate is maintained below 500 degrees C., 400 degrees C., 300 degrees C., 200 degrees C. or 100 degrees C. In a particular embodiment, the glass substrate is maintained at or below room temperature during bending. In a particular embodiment, the glass substrate is not actively heated via a heating element, furnace, oven, etc. during bending, as is the case when hot-forming glass to a curved shape.


As noted above, in addition to providing processing advantages such as eliminating expensive and/or slow heating steps, the cold-forming processes discussed herein are believed to generate curved glass sheets with a variety of properties that are superior to hot-formed glass sheets, particularly for display cover glass applications. For example, Applicant believes that, for at least some glass materials, heating during hot-forming processes decreases optical properties of curved glass sheets, and thus, the curved glass substrates formed utilizing the cold-bending processes/systems discussed herein provide for both curved glass shape along with improved optical qualities not believed achievable with hot-bending processes.


Further, many glass coating materials (e.g., anti-glare coatings, anti-reflective coatings, etc.) are applied via deposition processes, such as sputtering processes that are typically ill-suited for coating curved glass articles. In addition, many coating materials also are not able to survive the high temperatures associated with hot-bending processes. Thus, in particular embodiments discussed herein, one or more coating material is applied to major surface 142 and/or to major surface 144 of glass substrate 140 prior to cold-bending, and the coated glass substrate is bent to a curved shape as discussed herein. Thus, Applicant believes that the processes and systems discussed herein allow for bending of glass after one or more coating material has been applied to the glass, in contrast to typical hot-forming processes.


Referring to FIG. 11, a process 1400 for forming a curved display is shown. At step 1410 an adhesive material is applied between a curved support surface of the frame and first major surface 142 of glass substrate 140. In a particular embodiment, the adhesive is placed first onto the frame support surface, and then at step 1420, glass substrate 140 is placed onto the adhesive coated frame. In another embodiment, the adhesive may be placed onto first major surface 142 which is then placed into contact with the support surface of the frame.


The adhesive material may be applied in a variety ways. In one embodiment, the adhesive is applied using an applicator gun and mixing nozzle or premixed syringes, and spread uniformly using any of the following, for example, a roller, a brush, a doctor blade or a draw down bar. In various embodiments, the adhesives discussed herein are structural adhesives. In particular embodiments, the structural adhesives may include, but not limited to, an adhesive selected from one of more of the categories: (a) Toughened Epoxy (for example, Masterbond EP21TDCHT-LO, 3M Scotch Weld Epoxy DP460 Off-white); (b) Flexible Epoxy (for example, Masterbond EP21TDC-2LO, 3M Scotch Weld Epoxy 2216); (c) Acrylics and/or Toughened Acrylics (for example, LORD Adhesive 403, 406 or 410 Acrylic adhesives with LORD Accelerator 19 or 19 GB w/LORD AP 134 primer, LORD Adhesive 850 or 852/LORD Accelerator 25 GB, Loctite HF8000, Loctite AA4800); (d) Urethanes (for example, 3M Scotch Weld Urethane DP640 Brown, Sikaflex 552 and Polyurethane (PUR) Hot Melt adhesives such as, Technomelt PUR 9622-02 UVNA, Loctite HHD 3542, Loctite HEM 3580, 3M Hotmelt adhesives 3764 and 3748); and (e) Silicones (Dow Corning 995, Dow Corning 3-0500 Silicone Assembly adhesive, Dow Corning 7091, SikaSil-GP). In some cases, structural adhesives available as sheets or films (for example, but not limited to, 3M Structural adhesive films AF126-2, AF 163-2M, SBT 9263 and 9214, Masterbond FLM36-LO) may be utilized. Furthermore, pressure sensitive structural adhesives such as 3M VHB tapes may be utilized. In such embodiments, utilizing a pressure sensitive adhesive allows for the curved glass substrate to be bonded to the frame without the need for a curing step.


At step 1420, a variety of different techniques or mechanisms can be utilized to align the glass substrate with the frame. For example, tabs, markings and clamps can be utilized to align the glass substrate with the frame support surface.


At step 1430, an air pressure differential is applied to cause glass substrate 140 to bend into conformance with the shape of curved support surface of the curved frame, as discussed above regarding step 1320. At step 1440, the now curved glass substrate is bonded to the curved frame support surface via the adhesive. Because the air pressure does not permanently deform the glass substrate, the bonding step occurs during application of the air pressure differential. In various embodiments, the air pressure differential is between 0.5 and 1.5 atmospheres of pressure (atm), specifically between 0.7 and 1.1 atm, and more specifically is 0.8 to 1 atm.


Performance of step 1440 is based upon the type of adhesive used to create the bond between the glass substrate and the frame. For example, in embodiments where increasing the temperature will accelerate the cure of the adhesive, heat is applied to cure the adhesive. In one such embodiment, the heat-curable adhesive is cured by raising the temperature to the cure temperature of the adhesive but lower than the glass transition temperature of the glass substrate, while the glass sheet is held bent in conformance with the shape of curved support surface of the curved frame via the pressure differential. In a specific embodiment, the heat may be applied using an oven or a furnace. In another embodiment, both heat and pressure may be applied via an overpressure device, such as an autoclave.


In embodiments where the adhesive is a UV-curable adhesive, UV light is applied to cure the adhesive. In other embodiments, the adhesive is a pressure sensitive adhesive, pressure is applied to bond the adhesive between the glass substrate and the frame. In various embodiments, regardless of the process by which the bond between the glass substrate and the frame is formed, the adhesive may be an optically clear adhesive, such as a liquid optically clear adhesive.


At step 1450, a display module, such as display module 150, is attached to the frame supporting the now curved and bonded glass substrate. In specific embodiments, the glass substrate-frame assembly may be removed from the device applying the pressure differential, prior to attachment of the display module to the frame. In a specific embodiment, the display module is attached to the frame via an adhesive such as an optically clear adhesive. In other embodiments, the display module may be attached to the frame by a variety of mechanical coupling devices, such as screws, snap-fit components, etc. In a specific embodiment, a liquid optically clear adhesive (LOCA) available from E3 Display at thickness of 125 um is applied to bond the display module to the frame and then the adhesive is UV cured to obtain the assembled part.



FIG. 12 shows a graphical representation of process 1400 including additional steps according to an exemplary embodiment. At step 1425, the glass substrate supported on the frame is positioned within an airtight enclosure, shown as plastic vacuum bag 1426. In a specific embodiment, a breather cloth is placed on the frame 158/glass substrate 140 to provide connectivity of the part surface to the vacuum port. Additionally, the breather cloth helps in absorbing excess glue that may ooze out of the part during the process.


Then at step 1430 a vacuum is drawn within vacuum bag 1426. At step 1440, the vacuum bag 1426 with the glass substrate and frame are positioned within an autoclave 1442 which generates heat to cure the adhesive bonding the glass substrate to the frame. In a specific embodiment, vacuum bag 1426 is placed in the autoclave at 66 degrees C./90 psi for 1 hour duration to cure the adhesive. At step 1460, following display module attachment at step 1450, an assembled display assembly 1470 including the glass substrate (e.g., cover glass), display frame, and display module is completed with all parts attached together and is ready for mounting in a vehicle interior.


Referring to FIG. 13, a process 1500 for forming a curved display is shown according to another embodiment. Process 1500 is substantially the same as process 1400, except as discussed herein. Rather than attach the display module to the frame following bending and following attachment of the glass substrate to the frame, process 1500 attaches the display module to the frame beforehand, at step 1510. In some such embodiments, the display module is bonded to frame via an adhesive that is cured during the same cure step that bonds the glass substrate to the frame. In such embodiments, the display module is bonded to the frame during application of the air pressure differential that causes the bending of glass substrate to the frame.


Referring to FIGS. 14 and 15, display assembly 1470 is shown according to an exemplary embodiment. In the embodiment shown, the display assembly includes frame 158 supporting both a display module 150 and a cover glass sheet, glass substrate 140. As shown in FIGS. 14 and 15, both display module 150 and glass substrate 140 are coupled to frame 158, and display module 150 is positioned to allow a user to view display module 150 through glass substrate 140. In various embodiments, frame 158 may be formed from a variety of materials that include, but not limited to plastics such as polycarbonate (PC), polypropylene (PP), Acrylonitrile-Butadiene-Styrene (ABS), PC/ABS blends, etc.), metals (Al-alloys, Mg-alloys, Fe-alloys, etc.), glass-filled resins, fiber reinforced plastics and fiber reinforced composites. Various processes such as casting, machining, stamping, injection molding, extrusion, pultrusion, resin transfer molding etc. may be utilized to form the curved shape of frame 158.


In another example, toughened epoxy adhesive (supplied by 3M under the tradename 3M Scotch Weld Epoxy DP460 Off-white) was applied to a major surface of a glass substrate or on a curved frame using an applicator gun and mixing nozzle. A roller or brush was used to spread the adhesive uniformly. The glass substrate and frame were stacked or assembled such that the adhesive layer is between the glass substrate and the frame. A high temperature resistant tape was then applied to temporarily maintain the stack alignment. The stack was then placed in a vacuum bag. In this particular example, a release cloth (optional) was placed over the stack to prevent sticking to the vacuum bag, and then a breather cloth was placed over to provide connectivity of the part surface to the vacuum port, and finally, the stack, release cloth and breather cloth assembly was placed in a vacuum bag. The vacuum bag was then sealed to withstand 760 mm of Hg. The vacuum bag was then deaired by drawing a vacuum during which the glass substrate was bent to conform to the curved shape of frame support surface. The vacuum bag with the curved glass substrate and supporting frame were placed in an autoclave at 66 degrees C./90 psi for 1 hour duration to cure the adhesive. The glass substrate is bonded to the curved frame support surface via the cured adhesive. The autoclave was then cooled down to a temperature below 45° C. before the pressure was released. The curved glass substrate/frame stack was removed from the vacuum bag. The resulting curved glass substrate maintained the curved shape of the frame, with no delamination visible to the naked eye. A display module may be assembled to the stack to provide a curved display assembly


It should be understood that the adhesive may be applied and the cold-formed stack can be assembled with the curing of the adhesive either at room temperature or at elevated temperature or using UV depending on the cure schedule of the particular adhesive. In some embodiments, pressure may be applied, along with heat. In some instances, heat alone is applied to the stack. In one or more embodiments, heat may be applied such that the temperature of the stack is in a range from greater than room temperature (i.e., 23° C.) up to 300° C., from about 25° C. to about 300° C., from about 50° C. to about 300° C., from about 75° C. to about 300° C., from about 100° C. to about 300° C., from about 110° C. to about 300° C., from about 115° C. to about 300° C., from about 120° C. to about 300° C., from about 150° C. to about 300° C., from about 175° C. to about 300° C., from about 200° C. to about 300° C., from about 25° C. to about 250° C., from about 25° C. to about 200° C., from about 25° C. to about 150° C., from about 25° C. to about 125° C., from about 25° C. to about 115° C., from about 25° C. to about 110° C., or from about 25° C. to about 100° C. The stack may be heated to such temperatures for a duration from about 2 seconds to about 24 hours, 10 seconds to about 24 hours, from about 30 seconds to about 24 hours, from about 1 minute to about 24 hours, from about 10 minutes to about 24 hours, from about 15 minutes to about 24 hours, from about 20 minutes to about 24 hours, from about 30 minutes to about 24 hours, from about 1 hour to about 24 hours, from about 1.5 hours to about 24 hours, from about 2 hours to about 24 hours, from about 3 hours to about 24 hours, from about 2 seconds to about 4.5 hours, from about 2 seconds to about 4 hours, from about 2 seconds to about 3 hours, from about 2 seconds to about 2 hours, from about 2 seconds to about 1.5 hours, from about 2 seconds to about 1 hour, from about 2 seconds to about 45 minutes, from about 2 seconds to about 30 minutes, from about 2 seconds to about 15 minutes, from about 2 seconds to about 10 minutes, from about 10 minutes to about 45 minutes, or from about 15 minutes to about 45 minutes.


In various embodiments, the systems and methods described herein allow for formation of glass substrate to conform to a wide variety of curved shapes that frame 158 may have. As shown in FIG. 14, frame 158 has a support surface 155 that has a curved shape to which glass substrate 140 is shaped to match. In the specific embodiment shown in FIGS. 14 and 15, support surface 155 includes a convex section 161 and a concave section 163, and glass substrate 140 is shaped to conform to the curved shapes of sections 161 and 163.


As will be generally understood, the opposing first and second major surfaces of glass substrate 140 both form curved shapes as glass substrate is bent to conform to the curved shape of frame support surface 155. Referring to FIG. 15, a first major surface 1471 of glass substrate 140 is the surface in contact with frame support surface 155, and during bending adopts the complementary shape of opposing shape of support surface 155, while an outer, second major surface 1472 of glass substrate 140 adopts a curved shape that generally matches the curved shape support surface 155. Thus, in this arrangement, second major surface 1472 has a convex section at the position of convex section 161 of frame support surface 155 and has a concave section at the position of concave section 163 of support surface 155. Conversely, first major surface 1471 has a concave section at the position of convex section 161 of frame support surface 155 and has a convex section at the position of concave section 163 of support surface 155.


In specific embodiments, the radius of curvature of convex curve 161 is 250 mm, and the radius of concave curve 163 is 60 mm. In some embodiments, a non-curved central section is located between the two curved sections. Further, in some embodiments, glass substrate 14 is chemically strengthened aluminosilicate glass with a thickness of 0.4 mm.


It should be understood that FIGS. 14 and 15 provide a specific example of a glass substrate formed with more than one curved section, but in various embodiments, the processes and systems discussed herein can be used to form a wide variety of curved substrates having more or less curved sections than shown in FIGS. 14 and 15. Further, it should be understood that while the exemplary embodiments discussed herein are described primarily in relation to bending display cover glass, glass substrate 140 may be formed for any non-display curved glass application, such as cover glass for an instrument panel in a vehicle.


Referring to FIGS. 16A-16I, another aspect of this disclosure pertains to kits and methods for assembling such kits to provide a curved display. FIGS. 16A-16I show a concave curvature with the cold-formed glass 2010 disposed between a viewer and the display. In one or more embodiments, the curvature may be convex, or may have a combination of convex and concave portions having the same or different radii from one another. Referring to FIGS. 16A-16C, a kit 2000 according to one or more embodiments includes a cold-formed glass substrate 2010 (as described herein according to one or more embodiments) and a frame 2020. In one or more embodiments, the cold-formed glass substrate includes a first major surface 2012, a second major surface 2014 opposing the first major surface and a minor surface 2016 connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width wherein the second major surface 2014 comprises a first radius of curvature. In the embodiments shown in FIGS. 16A-16F, the second major surface forms a concave surface that exhibits a greater compressive stress than the same surface exhibits prior to cold-forming. In some embodiments, the second major surface exhibits a greater compressive stress than the first major surface. The frame 2020 has a curved surface 2022 that is coupled to the second major surface of the cold-formed glass substrate. In one or more embodiments, the curved surface 2022 may have substantially the same radius of curvature as the first radius of curvature. In one or more embodiments, the curved surface 2022 has the same radius of curvature as the first radius of curvature. The thickness of the cold-formed glass substrate is about 1.5 mm or less. In one or more embodiments, the width of the cold-formed glass substrate is in a range from about 5 cm to about 250 cm, and the length of the cold-formed glass substrate is from about 5 cm to about 250 cm. In one or more embodiments, the first radius of curvature is 500 nm or greater.


In one or more embodiments, the kit includes a display module. As shown in the embodiment of FIG. 16B and FIG. 16C, the display module includes a display including a second glass substrate 2030, and an optional back-light unit (BLU) 2040. In some embodiments, the display module includes only a display (with no BLU 2040), as shown in FIG. 16E. In such embodiments, the BLU may be provided separately, and attached to the display, as shown in FIG. 16F. In one or more embodiments, the display may be liquid crystal display or an organic light-emitting diode (OLED) display. In one or more embodiments, the kit may include a touch panel instead of the display module or in addition to the display module (with the touch panel positioned to be disposed between the cold-formed glass substrate and the display module). In the embodiments shown in FIGS. 16B and 16C, the display or touch panel comprises a second glass substrate 2030 that is curved. In such embodiments, the second glass substrate comprises a curved display surface or curved touch panel surface having a second radius of curvature that is within 10% of the first radius of curvature. In some embodiments, such as shown in FIGS. 16C, 16E, 16F, 16H and 16I, the kit includes an adhesive layer 2050 for attachment of the second glass substrate 2030 to the cold-formed glass substrate or the frame. The adhesive layer may be disposed on the cold-formed glass substrate on the surface thereof to be attached to the second glass substrate. In the embodiment shown in FIGS. 16A-16I, the adhesive layer is disposed on the first major surface). In one or more embodiments, the adhesive layer may be disposed on the second glass substrate or both the cold-formed glass substrate and the second glass substrate. The adhesive 2050 may be an optically clear adhesive, such as the optically clear adhesives described herein. In one or more embodiments, after the cold-formed substrate 2010 and the curved second glass substrate 2030 are laminated, it is believed that such lamination exerts lower stress on any adhesive layer disposed therein. In one or more embodiments, the second radius of curvature may be within 5%, within 4%, within 3% or within 2% of the first radius of curvature. In some embodiments, the cold-formed glass substrate (and corresponding frame) and the second glass substrate are substantially aligned such that less than 2% of the width, less than 2% of the length or less than 2% of both the width and the length of the cold-formed glass is unaligned with the curved second glass substrate (i.e., unaligned portions are exposed), after lamination. In one or more embodiments, less than 5% of the surface area of the first major surface 2012 is unaligned with the second glass substrate or exposed after lamination. In some embodiments, the thickness of the adhesive may be increased to enhance alignment between the cold-formed glass substrate and the second glass substrate.


As shown in FIG. 16C, 16E, 16F, 16H or 16I, the kit may include a second glass substrate that is attached to the first major surface 2012. In one or more embodiments, the second glass substrate is attached to the frame 2020 (not shown). A shown in the embodiments of FIGS. 16D and 16G, the second glass substrate 2030 is substantially flat and is cold-formable to a second radius of curvature that is within 10% of the first radius of curvature. As shown in FIGS. 16D through 16F, the second glass substrate may be cold-formed to the second radius of curvature and attached to the cold-formed glass substrate or, optionally, the frame (not shown). In such embodiments, the second glass substrate 2030 or the cold-formed glass substrate 2010 may comprises an adhesive layer to attach the second glass substrate to the cold-formed glass substrate or the frame, as applicable. In one or more particular embodiments, the first major surface 2012 includes an adhesive disposed thereon. In such embodiments, the adhesive may be an optically clear adhesive that is a composite or exhibits different Young's modulus values on the surface in contact with or adjacent the first major surface, than the opposite surface that contacts or will contact the second glass substrate. It is believed that the second glass substrate may exert lower stress on the adhesive layer and thus a lower bending force may be required to cold-form the second glass substrate to the cold-formed glass substrate. In some such embodiments, the cold-formed glass substrate and the second glass substrate are substantially aligned such that less than 2% of the width, less than 2% of the length or less than 2% of both the width and the length of the cold-formed glass is unaligned with the second glass substrate (i.e., unaligned portions are exposed), after lamination. In one or more embodiments, less than 5% of the surface area of the first major surface 2012 is unaligned with the second glass substrate or exposed after lamination.


As shown in FIGS. 16B-16C and 16F, the BLU may be curved. In some embodiments, the BLU exhibits a third radius of curvature that is within 10% of the first radius of curvature, within 10% of the second radius of curvature, or within 10% of the first radius of curvature and the second radius of curvature.


In the embodiments shown in FIGS. 16H-16I, the display comprises a second glass substrate that is substantially flat and is attached to the first major surface. In such embodiments, the second glass substrate or the cold-formed glass substrate comprises an adhesive layer 2050 that attaches the second glass substrate to the cold-formed glass substrate (i.e., either directly to the first major surface or a portion of the frame). In such embodiments, the adhesive attaches a cold-formed glass substrate to a flat second glass substrate. A shown, in one or more embodiments, the adhesive layer comprises a first surface that is substantially flat and an opposing second surface having a second radius of curvature that is within the 10% of the first radius of curvature. In such embodiments, the adhesive may be a liquid optically clear adhesive. In some embodiments, the first radius of curvature is in a range from about 500 nm to about 1000 nm.


In one or more embodiments, in the kit shown in FIGS. 16A-16I, an air gap may be present between the second glass substrate and the cold-formed glass substrate (i.e., the first major surface). In one or more embodiments, the adhesive layer may be present on only a portion of the cold-formed glass substrate and/or the second glass substrate such that there is no attachment between a portion of the cold-formed glass substrate and the second glass substrate (as there is no adhesive present to form such attachment).



FIGS. 17A-17I illustrate various embodiments of a kit 3000 that includes a frame 3020 that is removable or is temporarily attached to a cold-formed glass substrate 3010. FIGS. 17A-17I show a convex curvature with the cold-formed glass 3010 disposed between a viewer and the display. In one or more embodiments, the curvature may be concave, or may have a combination of convex and concave portions having the same or different radii from one another. In one or more embodiments, the kit includes a cold-formed glass substrate 3010 comprises a first major surface 3012, a second major surface 3014 opposing the first major surface having a first radius of curvature, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, wherein the second major surface comprises a first radius of curvature, and a removable frame 3020 removably coupled to the second major surface. In one or more embodiments, the frame has a curved surface that is coupled to the second major surface. The curved surface of the frame may have the same radius of curvature as the first radius of curvature. In the embodiments shown in FIGS. 17A-17I, the second major surface forms a concave surface that exhibits a greater compressive stress than the same surface exhibits prior to cold-forming. In some embodiments, the second major surface exhibits a greater compressive stress than the first major surface.


The thickness of the cold-formed glass substrate is about 1.5 mm or less. In one or more embodiments, the width of the cold-formed glass substrate is in a range from about 5 cm to about 250 cm, and the length of the cold-formed glass substrate is from about 5 cm to about 250 cm. In one or more embodiments, the first radius of curvature is 500 nm or greater.


In one or more embodiments shown in FIGS. 17A-17I, the kit includes a display module. As shown in FIG. 17B and FIG. 17C, the display module includes a display including a second glass substrate 3030, and an optional back-light unit (BLU) 3040. In some embodiments, the display module includes only a display (with no BLU 3040), as shown in FIG. 17E. In such embodiments, the BLU or other mechanism or structure may be provided separately, and attached as shown in FIG. 17F to maintain the curved shape of the cold-formed glass substrate and the second glass substrate after the removable frame is removed. In one or more embodiments, the display may be liquid crystal display or an organic light-emitting diode (OLED) display. In one or more embodiments, the kit may include a touch panel instead of the display module or in addition to the display module (with the touch panel positioned to be disposed between the cold-formed glass substrate and the display module). In the embodiments shown in FIGS. 17B and 17C, the display or touch panel comprises a second glass substrate 3030 that is curved. In such embodiments, the second glass substrate comprises a curved display surface or curved touch panel surface having a second radius of curvature that is within 10% of the first radius of curvature. In one or more embodiments, the second glass substrate may curved and have sufficient rigidity or structure to maintain the cold-formed shape of the cold-formed glass after the removable frame is removed. In some embodiments, such as shown in FIGS. 17C, 17E, 17F, 17H and 17I, the kit comprises an adhesive layer 3050 for attachment of the second glass substrate to the cold-formed glass substrate (and specifically, the first major surface 3012). The adhesive layer may be provided on the cold-formed glass substrate (i.e., the first major surface), on the second glass substrate or both the cold-formed glass substrate and the second glass substrate. The adhesive 3050 may be an optically clear adhesive, such as the optically clear adhesives described herein. In one or more embodiments as shown in FIGS. 17B and 17C, after the curved cold-formed substrate 3010 and the curved second glass substrate 3030 are laminated, it is believed that such lamination exerts lower stress on any adhesive layer disposed therein. In one or more embodiments, after the cold-formed substrate 3010 and the curved second glass substrate 3030 are laminated, the second radius of curvature may be within 5%, within 4%, within 3% or within 2% of the first radius of curvature. In some embodiments, the cold-formed glass substrate and the second glass substrate are substantially aligned such that less than 2% of the width, less than 2% of the length or less than 2% of both the width and the length of the cold-formed glass is unaligned with the second glass substrate (i.e., unaligned portions are exposed), after lamination. In one or more embodiments, less than 5% of the surface area of the first major surface 2012 is unaligned with the second glass substrate or exposed after lamination. In some embodiments, the thickness of the adhesive may be increased to enhance alignment between the cold-formed glass substrate and the second glass substrate.


As shown in FIG. 17C, 17E, 17F, 17H or 17I, the kit may include a second glass substrate that is attached to the first major surface 3012. A shown in FIGS. 17D and 17G, the second glass substrate 3030 may be substantially flat and is cold-formable to a second radius of curvature that is within 10% of the first radius of curvature. As shown in FIGS. 17D through 17F, the second glass substrate may be cold-formed to the second radius of curvature and may be attached to the cold-formed glass substrate (i.e., the first major surface 3012). In such embodiments, the second glass substrate 3030 or the cold-formed glass substrate 3010 may comprises an adhesive layer to attach the second glass substrate to the cold-formed glass substrate, as applicable. In one or more particular embodiments, the adhesive layer may be disposed on the first major surface. In such embodiments, the adhesive may be an optically clear adhesive that is a composite or exhibits different Young's modulus values on the surface in contact with or adjacent the first major surface, than the opposite surface that contacts or will contact the second glass substrate. It is believed that the second glass substrate may exert lower stress on the adhesive layer and thus a lower bending force is required to cold-form the second glass substrate to the cold-formed glass substrate. In some such embodiments, the cold-formed glass substrate and the second glass substrate are substantially aligned such that less than 2% of the width, less than 2% of the length or less than 2% of both the width and the length of the cold-formed glass is unaligned with the second glass substrate (i.e., unaligned portions are exposed), after lamination. In one or more embodiments, less than 5% of the surface area of the first major surface 2012 is unaligned with the second glass substrate or exposed after lamination.


As shown in FIGS. 17B-17C and 17F, a curved BLU 3040 may be attached to the second glass substrate 3030. In some embodiments, the BLU 3040 exhibits a third radius of curvature that is within 10% of the first radius of curvature, within 10% of the second radius of curvature, or within 10% of the first radius of curvature and the second radius of curvature. In such embodiments, the BLU 3040 provides the structure to maintain the curved shape of the cold-formed glass substrate and the second glass substrate, after the removable frame is removed, as shown in FIGS. 17C and 17F. Where a touch panel is included, a corresponding structure is attached to the second substrate opposite the surface that is attached or will attach to the cold-formed glass substrate.


In the embodiments shown in FIGS. 17H-17I, the display comprises a second glass substrate 3030 that is substantially flat and is attached to the first major surface. In such embodiments, the frame 3020 maintains the curved shape of the cold-formed glass substrate, and the second glass substrate 3030 or the cold-formed glass substrate 3010 comprises an adhesive layer 3050 that attaches the second glass substrate to the first major surface. In such embodiments, the adhesive attaches a cold-formed glass substrate to a flat second glass substrate. A shown, in one or more embodiments, the adhesive layer comprises a first surface that is substantially flat and an opposing second surface having a second radius of curvature that is within the 10% of the first radius of curvature. In such embodiments, the adhesive may be a liquid optically clear adhesive. In some embodiments, the first radius of curvature is in a range from about 500 nm to about 1000 nm. In such embodiments, the adhesive layer is a structural adhesive that provides the structure to maintain the curved shape of the cold-formed glass substrate after the frame is removed, as shown in FIG. 17I.


In one or more embodiments, an air gap may be present between the second glass substrate and the cold-formed glass substrate (i.e., the first major surface). In such embodiments, the adhesive layer may be present on only a portion of the cold-formed glass substrate and/or the second glass substrate such that there is no attachment between a portion of the cold-formed glass substrate and the second glass substrate (as there is no adhesive present to form such attachment).



FIGS. 18A-18B illustrate a kit that includes a flexible glass substrate 4010 that comprises a first major surface, a second major surface opposing the first major surface and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, and a curved display module 4020 or a curved touch panel having a first radius of curvature, as shown in FIG. 18A. FIGS. 18A-18B show a convex curvature with the flexible glass substrate 4010 disposed between a viewer and the display. In one or more embodiments, the curvature may be concave, or may have a combination of convex and concave portions having the same or different radii from one another.


The thickness of the flexible glass substrate 4010 is about 1.5 mm or less. In one or more embodiments, the width of the flexible glass substrate is in a range from about 5 cm to about 250 cm, and the length of the flexible glass substrate is from about 5 cm to about 250 cm. In one or more embodiments, the first radius of curvature is 500 nm or greater.


As shown in FIG. 18A and FIG. 18B, the display module includes a display including a second glass substrate 4030, and a back-light unit (BLU) 4040 or other structure for maintaining the curved shape of the curved display module 4020. In some embodiments, the display module includes only a display (with no BLU 4040), as shown in FIG. 16E and FIG. 18F. In such embodiments, the BLU or other structure may be provided separately, and attached to the display, as shown in FIG. 18G. In one or more embodiments, the display may be liquid crystal display or an organic light-emitting diode (OLED) display. In the embodiments shown in FIG. 18B, the display comprises a second glass substrate 4030 that is curved and exhibits the first radius of curvature. In one or more embodiments, the kit includes a curved touch panel instead of the curved display module or in addition to the curved display module (with the touch panel positioned to be disposed between the cold-formed glass substrate and the curved display module). In such embodiments, the curved touch panel includes a second glass substrate that is curved, and which may optionally provide the structural rigidity to maintain its curved shape (even after attachment to the flexible glass substrate as shown in FIG. 18B). In some embodiments, the kit includes an adhesive layer 4050 for attachment of the second glass substrate 4030 to the flexible glass substrate 4010 (i.e., the first major surface 4012). The adhesive layer may be provided on the flexible glass substrate (i.e., the first major surface), on the second glass substrate or both the flexible glass substrate and the second glass substrate. The adhesive 4050 may be an optically clear adhesive, such as the optically clear adhesives described herein. In one or more embodiments, after the flexible glass substrate is cold-formed and laminated to the curved display module or touch panel, the second major surface 4014 exhibits a second radius of curvature that is within 10%, within 5%, within 4%, within 3% or within 2% of the first radius of curvature. In the embodiments shown in FIG. 18B, the second major surface forms a concave surface that exhibits a greater compressive stress than the same surface exhibits prior to cold-forming. In some embodiments, the second major surface exhibits a greater compressive stress than the first major surface.


In some embodiments, the resulting cold-formed glass substrate (and corresponding frame) and the second glass substrate are substantially aligned such that less than 2% of the width, less than 2% of the length or less than 2% of both the width and the length of the cold-formed glass is unaligned with the second glass substrate (i.e., unaligned portions are exposed), after lamination. In one or more embodiments, less than 5% of the surface area of the first major surface 2012 is unaligned with the second glass substrate or exposed after lamination. In some embodiments, the thickness of the adhesive may be increased to enhance alignment between the cold-formed glass substrate and the second glass substrate.


In one or more embodiments, after the flexible glass substrate 4010 is cold-formed and laminated to the curved second glass substrate 4030, it is believed that the stress exerted on any adhesive layer disposed therein may be minimized by minimizing the thickness of the flexible glass substrate (i.e., to the ranges described herein). In one or more embodiments, the kit includes a bezel formed on the flexible glass substrate to reduce stress on the flexible glass substrate when cold-forming.


As shown in FIG. 18B, the second glass substrate is attached to the first major surface 4012. A shown in FIG. 18A, the flexible glass substrate 4010 is substantially flat and is cold-formable to a second radius of curvature that is within 10% of the first radius of curvature. As shown in FIG. 18B, the flexible glass substrate is cold-formed to the second radius of curvature and attached to the second glass substrate. As shown in FIGS. 18A-18B, the BLU is curved and provides the structure to maintain the cold-formed shape of the second glass substrate and the flexible glass substrate (after it is cold-formed to the second glass substrate). In some embodiments, the BLU exhibits a third radius of curvature that is within 10% of the first radius of curvature, within 10% of the second radius of curvature, or within 10% of the first radius of curvature and the second radius of curvature. In some embodiments, the second glass substrate is curved and can maintain the curved shape of the cold-formed glass substrate with the BLU or other structure.


In one or more embodiments, an air gap may be present between the second glass substrate and the cold-formed glass substrate (i.e., the first major surface). In such embodiments, the adhesive layer may be present on only a portion of the cold-formed glass substrate and/or the second glass substrate such that there is no attachment between a portion of the cold-formed glass substrate and the second glass substrate (as there is no adhesive present to form such attachment).



FIGS. 19A-19E illustrate embodiments of a method of forming a curved display. FIGS. 19A-19E show a convex curvature; however, the curvature may be concave, or may have a combination of convex and concave portions having the same or different radii from one another. In one or more embodiments, the method 5000 includes cold-forming a stack 5001 to a first radius of curvature as measured on a first surface 5005 of the stack. The stack may be a display stack, a touch panel stack or a stack that includes a touch panel and display. In one or more embodiments, the display may be liquid crystal display or an organic light-emitting diode (OLED) display. The stack is shown in FIG. 19A and includes a first glass substrate 5010 having a first major surface 5012 forming the first surface of the display stack and a second major surface 5014 opposite the first major surface, a display and/or touch panel module comprising a second glass substrate 5030 disposed on the second major surface 5014. In the embodiment shown in FIG. 19A, the stack is placed on a frame 5020 prior to and during cold-forming to maintain the cold-formed shape of the stack. In one or more embodiments, the method includes laminating the display and/or touch panel module to the second major surface such that second glass substrate comprises a second radius of curvature that is within 10% of the first radius of curvature. In one or more embodiments, the first radius of curvature is in a range from about 60 mm to about 1500 mm. In the embodiments shown in FIGS. 19A-19E, after cold-forming, the second major surface forms a concave surface that exhibits a greater compressive stress than the same surface exhibits prior to cold-forming. In some embodiments, the second major surface exhibits a greater compressive stress than the first major surface. In one or more embodiments, the method includes cold-forming the stack by applying a vacuum to the first surface to generate the first radius of curvature. In one or more embodiments, applying the vacuum comprises placing the stack on a vacuum fixture before applying the vacuum to the first surface. In the embodiment shown in FIG. 19A, the method includes applying an adhesive layer 5050 between the second glass substrate and the first glass substrate before cold-forming the stack. In some embodiments, the adhesive layer is disposed on a portion of the second glass substrate or the first glass substrate.


In the embodiment shown in FIG. 19A, the display module may include a cold-formable backlight unit 5040 disposed on the second glass substrate opposite the first glass substrate. In the embodiment shown in FIGS. 19C through 19E, the module includes only a display or touch panel (with no BLU 5040). In such embodiments, the BLU or other mechanism or structure may be provided separately, and attached to the display or touch panel, as shown in FIG. 19E to maintain the curved shape of the display stack. In some embodiments, the frame 5020 may be removed if the BLU, second glass substrate, or other component provides adequate structure to maintain the curved shape of the cold-formed glass substrate. In some embodiments, the frame and the BLU work together to maintain the cold-formed shape. Accordingly, in one or more embodiments, cold-forming and/or laminating a display stack comprises attaching a BLU to the second glass substrate opposite the first glass substrate, wherein the BLU is optionally curved to exhibit the second radius of curvature.


In one or more embodiments, the method includes attaching a frame to the first glass substrate to maintain the first radius of curvature, and simultaneously cold-forming and laminating the display stack.


In one or more embodiments, the first glass substrate is strengthened. In one or more embodiments, the second glass substrate is unstrengthened. In one or more embodiments, the second glass substrate has a thickness that is greater than a thickness of the glass substrate. In one or more embodiments, the method includes disposing the curved display in a vehicle interior system.



FIGS. 20A-22B relate to embodiments that address an effective stress that may be found in a structural adhesive used in one or more embodiments discussed herein. While structural adhesives are sufficient to hold the cold-bent glass in shape, stress is generated in the adhesive due to elastic properties and relatively high modulus of the glass substrate that can make the glass substrate want to return back to a flat, 2D shape. Under these circumstances, there will be one or more areas of maximum stress generated in the adhesive layer. While not intending to be constrained by this theory, it is thought that some area of the curved part of the glass substrate may have a higher tendency to retain 2D shape compared to other areas. These areas that have higher tendency to return back to 2D shape lead to higher stress in the adhesive layer. This tendency can be conceptualized as a restoring force present in the elastically deformed or cold-formed glass substrate. The “restoring force,” as used herein, refers to a force that tends to return the cold-formed or cold-bent glass substrate to the glass substrate's pre-bent state.


The higher stress areas in the adhesive are potential failure points during the life of the product, particularly when used in the automotive environment, which may require long product life times and relatively harsh environmental conditions. For example, once a crack initiates in the high stress area, it could propagate over a larger area or the entire area of the product. This is true for high modulus adhesive materials that have a tendency to show brittle characteristics. Consequently, an adhesive with higher safety margin between the adhesive stresses in the part versus the adhesive strength is preferred for such applications. This leads to a reduced number of choices for adhesive materials for cold-bend applications. Therefore, there is a need to minimize the peak stress in the adhesive layer.


Generally, the embodiments of FIGS. 20B, 21B, and 22B illustrate the use of one or more components, design elements, and/or methods to address this effective stress in the adhesive, in ways that can result in cold-formed, curved glass surfaces with improved performance, adhesion, and shape retention. In addition, according to these embodiments, the above advantages can be achieved at low cost.


As shown in FIG. 20A, a glass substrate 6010 is cold-formed to a base 6020 having a curved surface with a first radius of curvature 6030. The first radius of curvature 6030 can be, for example, about 500 mm or more. In some cases, the first radius of curvature 6030 can be from about 60 mm to about 1500 mm. Cold-forming of the glass substrate 6010 can result in an effective stress 6040 in the adhesive used between the glass substrate 6010 and the base 6020. As shown in FIG. 20A, where 6050 represents an effective stress of zero, the magnitude of the effective stress 6040 can vary over a length of the curved surface of the glass substrate 6010. Thus, the effective stress 6040 has areas of high stress 6060, 6062. In this case, the areas of high stress 6060, 6062 include the maximum effective stress values in the adhesive.


To mitigate the areas of high stress 6060, 6062 in FIG. 20A, a stress-mitigation component. FIG. 20B shows one embodiment of a stress-mitigation component in the form of mechanical restraints 6072 located near the areas where the effective stress is highest. In the example shown in FIGS. 20A, the areas of high stress 6060, 6062 are at the edges of the glass substrate 6010. Accordingly, in FIG. 20B, the mechanical restraints 6070, 6072 are placed at the edges of the glass substrate 6010. The mechanical restraints 6070, 6072 can be placed around substantially an entire edge of the glass substrate 6010, or only at select locations determined to be most pertinent to reducing the effective stress in the adhesive. The mechanical restraints 6070, 6072 can be bezel, clamps, clips, or springs configured to reinforce or hold the cold-bent shape of the glass substrate 6010. In some embodiments, the mechanical restraints 6070, 6072 can be made from plastic, metal, or other known materials suitable for engaging the glass substrate 6010, as long as the mechanical restraint is configured to have mechanical properties to sufficient to at least partially counter any restoring force exerted by the glass substrate 6010. Examples of the stress-mitigation component are not limited to these examples, and a person of ordinary skill in the art would recognize suitable alternatives that can be configured to mitigate or reduce the areas of high stress 6060, 6062. As shown in FIG. 20B, the mechanical restraints 6070, 6072 result in an altered effective stress profile 6080 in the adhesive, without the peaks of maximum stress shown in FIG. 20A.


As shown in FIGS. 21A and 21B, according to one or more embodiments, a design modification of the component having curved, cold-formed glass can be used to mitigate high effective stress levels in the adhesive. FIG. 21A illustrates the cold-formed glass substrate 6010 without the design modification, and substantially corresponds to FIG. 20A. For brevity, the components of FIG. 21A discussed above with reference to FIG. 20A will not be repeated here. As shown in FIG. 21B, the design modification includes forming the base 6020 to have a second radius of curvature 6032, where the second radius of curvature 6032 is larger than the first radius of curvature 6030. The location of the area of the base having the second radius of curvature 6032 corresponds to an area of the glass substrate 6010 where the adhesive would contain areas of high stress 6060, 6062, shown in FIG. 21A. In some embodiments, the second radius of curvature is about 500 mm or more; or about 1000 mm or more; or is substantially flat. As shown in FIG. 21B, the area having the second radius of curvature 6032 can include more than one area or separate areas of the base 6020. In the example of FIG. 21B, these separate areas correspond to edges of the glass substrate 6010. However, embodiments are not limited to these specific locations.



FIGS. 22A and 22B represent an additional approach to mitigating high effective stress in the adhesive. In this approach, areas 7040 of the glass substrate 7010 that may correspond to areas of potentially high effective stress in the adhesive are hot-formed. The hot-forming can be selectively performed on the areas 7040, while a remainder or another portion of the glass substrate can be cold-formed to the surface 7020. In some embodiments, the glass-substrate 7010 can selectively hot-formed, and then subsequently chemically strengthened, and finally cold-formed to the surface 7020. In the embodiment shown in FIGS. 22A and 22B, the areas 7040 that are selectively hot-formed are areas of a local radius of curvature that is smaller than a global radius of curvature 7030 of the surface 7020, where the glass substrate 7010 is cold-formed to the portion of the surface 7020 having the global radius of curvature 7030. In some embodiments, the local radius of curvature is about 100 mm or less and the global radius of curvature is about 500 mm or more. Embodiments include a glass substrate or component having a glass substrate, as well as methods of forming the glass substrate and/or component having the glass substrate.


The embodiments shown in FIGS. 20B, 21B, and 22B may be implemented individually or in one or more combinations for a given curved vehicle interior to provide enhanced reliability and adhesion of cold-bent glass using structural adhesives.


Example 1

Example 1 included a curved display formed from a 0.55 mm thick glass substrate that is chemically strengthened and exhibits a first radius of curvature of about 1000 mm. The glass substrate was provided flat and one major surface (the second major surface) was placed on a vacuum chuck having a radius of curvature of 1000 mm. The vacuum was applied to the major surface of the glass substrate to temporarily cold-from the glass substrate to exhibit a first radius of curvature of about 1000 mm, matching the radius of curvature of the vacuum chuck. If the vacuum was removed, the glass substrate would return to being flat and would no longer be cold-formed. While the glass substrate was disposed on the vacuum chuck and temporarily cold-formed, a layer of adhesive supplied by 3M corporation under the tradename 8215 having a thickness of 250 μm is applied to the first major surface of the glass substrate (i.e., the surface that is exposed and not in contact with the vacuum chuck). Normal force was applied to a roller to laminate the adhesive to the first major surface of the cold-formed glass substrate. The adhesive layer included a carrier film, which was removed after the adhesive layer was laminated to the cold-formed glass substrate.


A second glass substrate (which was an LCD glass substrate) was disposed on the adhesive layer. The second glass substrate was cold-formed and laminated to adhesive layer using a roller and applying normal force. During lamination of the second glass substrate, the glass substrate continued to be temporarily cold-formed using the vacuum. After lamination of the second glass substrate, a backlight and frame was applied to the second glass substrate. In Example 1, a double sided tape was applied between the frame and the glass substrate. The double sided tape was a double-sided acrylic foam tapes supplied by 3M Corporation under the trademark VHB™ Tapes. The frame had an L-shaped bezel. The assembly of the frame and backlight unit completed formation of the curved display. The vacuum was then removed from the glass substrate and the curved display was removed. The cold-formed glass substrate was permanently cold-formed and had a first radius of curvature. The display module (and particularly the second glass substrate) exhibited a second radius of curvature that approached or matched the first radius of curvature.


Aspect (1) of this disclosure pertains to a vehicle interior system comprising a base having a curved surface; a cold-formed glass substrate disposed on the curved surface, the glass substrate comprising a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width; an adhesive disposed between the curved surface and the glass substrate; and at least one stress-reduction component coupled to the glass substrate in a location that reduces an amount of adhesive stress in one or more areas of the adhesive, wherein the thickness is 1.5 mm or less, and wherein the second major surface comprises a first radius of curvature of 500 mm or greater.


Aspect (2) of this disclosure pertains to the vehicle interior system of Aspect (1), further comprising a display module attached to the first major surface and comprising a second radius of curvature that is within 10% of the first radius of curvature.


Aspect (3) of this disclosure pertains to the vehicle interior system of Aspect (1) or Aspect (2), wherein the width is in a range from about 5 cm to about 250 cm, and the length is from about 5 cm to about 250 cm.


Aspect (4) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(3), wherein the cold-formed glass substrate is strengthened.


Aspect (5) of this disclosure pertains to the vehicle interior system of any one of Aspects (2)-(4), wherein the adhesive is disposed between the glass substrate and the display module.


Aspect (6) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(5), wherein the adhesive is optically clear.


Aspect (7) of this disclosure pertains to the vehicle interior system of Aspect (1) or Aspect (2), wherein the glass substrate comprises a periphery adjacent the minor surface, and the adhesive is disposed between the periphery of the second major surface and the display module.


Aspect (8) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(7), wherein the display module comprises a second glass substrate and a backlight unit, wherein the second glass substrate is disposed adjacent the first major surface and between the backlight unit and the first major surface, and wherein the backlight unit is optionally curved to exhibit the second radius of curvature.


Aspect (9) of this disclosure pertains to the vehicle interior system of Aspect (8), wherein the second glass substrate comprises a cold-formed second glass substrate.


Aspect (10) of this disclosure pertains to the vehicle interior system of Aspect (8) or Aspect (9), wherein the display module further comprises a frame at least partially surrounding the backlight unit.


Aspect (11) of this disclosure pertains to the vehicle interior system of Aspect (10), wherein the frame at least partially surrounds the second glass substrate.


Aspect (12) of this disclosure pertains to the vehicle interior system of Aspect (10) or Aspect (11), wherein the frame at least partially surrounds the minor surface of the glass substrate.


Aspect (13) of this disclosure pertains to the vehicle interior system of Aspect (10) or Aspect (11), wherein the minor surface of the glass substrate is not surrounded by the frame.


Aspect (14) of this disclosure pertains to the vehicle interior system of Aspect (10), wherein the frame comprises an L-shape.


Aspect (15) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(14), wherein either one of or both the first major surface and the second major surface comprises a surface treatment.


Aspect (16) of this disclosure pertains to the vehicle interior system of Aspect (15), wherein the surface treatment covers at least a portion of the first major surface and the second major surface.


Aspect (17) of this disclosure pertains to the vehicle interior system of Aspect (15) or Aspect (16), wherein the surface treatment comprises any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (18) of this disclosure pertains to the vehicle interior system of Aspect (17), wherein the surface treatment comprises at least two of any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (19) of this disclosure pertains to the vehicle interior system of Aspect (18), wherein the first major surface comprises the anti-glare surface and the second major surface comprises the anti-reflective surface.


Aspect (20) of this disclosure pertains to the vehicle interior system of Aspect (18), wherein the first major surface comprises the anti-reflective surface and the second major surface comprises the anti-glare surface.


Aspect (21) of this disclosure pertains to the vehicle interior system of Aspect (18), wherein the first major surface comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface comprises the pigment design.


Aspect (22) of this disclosure pertains to the vehicle interior system of Aspect (18), wherein the pigment design is disposed on at least a portion of the periphery and the interior portion is substantially free of the pigment design.


Aspect (23) of this disclosure pertains to the vehicle interior system of any one of Aspects (17)-(22), wherein the pigment design comprises any one of a wood-grain design, a brushed metal design, a graphic design, a portrait, and a logo.


Aspect (24) of this disclosure pertains to the vehicle interior system of any one of Aspects (17)-(23), wherein the anti-glare surface comprises an etched surface, and wherein the anti-reflective surface comprises a multi-layer coating.


Aspect (25) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(24), further comprising touch functionality.


Aspect (26) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(25), wherein the base comprises any one of a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, and a steering wheel.


Aspect (27) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(26), wherein the vehicle is any one of an automobile, a seacraft, and an aircraft.


Aspect (28) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(27), wherein the at least one stress-reduction component comprises a mechanical restraint.


Aspect (29) of this disclosure pertains to the vehicle interior system of Aspect (28), wherein the mechanical restraint comprises at least one of a bezel, a clamp, and a spring.


Aspect (30) of this disclosure pertains to the vehicle interior system of Aspect (28), wherein the mechanical restraint is configured to exert a force on the glass substrate to maintain a cold-formed shape of the glass substrate.


Aspect (31) of this disclosure pertains to the vehicle interior system of Aspect (30), wherein the force is directed opposite to a restoring force of the glass substrate in the cold-formed shape.


Aspect (32) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(31), wherein the location of the at least one stress-reduction component comprises an edge of the first major surface.


Aspect (33) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(32), wherein the one or more areas of the adhesive comprises an area of maximum adhesive stress.


Aspect (34) of this disclosure pertains to the vehicle interior system of any one of Aspects (1)-(32), wherein the one or more areas of the adhesive comprises an area having a local maximum adhesive stress.


Aspect (35) of this disclosure pertains to a vehicle interior system comprising a base having a curved surface; a cold-formed glass substrate disposed on the curved surface, the glass substrate comprising a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width; and an adhesive disposed between the curved surface and the glass substrate, wherein the thickness is 1.5 mm or less, wherein the second major surface comprises a first radius of curvature of 500 mm or greater, and wherein the second major surface comprises a second radius of curvature that is greater than the first radius of curvature.


Aspect (36) of this disclosure pertains to the vehicle interior system of Aspect (35), further comprising a display module attached to the first major surface and comprising a third radius of curvature that is within 10% of the first radius of curvature.


Aspect (37) of this disclosure pertains to the vehicle interior system of Aspect (35) or Aspect (36), wherein the width is in a range from about 5 cm to about 250 cm, and the length is from about 5 cm to about 250 cm.


Aspect (38) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(37), wherein the cold-formed glass substrate is strengthened.


Aspect (39) of this disclosure pertains to the vehicle interior system of any one of Aspects (36)-(38), wherein the adhesive is disposed between the glass substrate and the display module.


Aspect (40) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(39), wherein the adhesive is optically clear.


Aspect (41) of this disclosure pertains to the vehicle interior system of Aspect (35) or Aspect (36), wherein the glass substrate comprises a periphery adjacent the minor surface, and the adhesive is disposed between the periphery of the second major surface and the display module.


Aspect (42) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(41), wherein the display module comprises a second glass substrate and a backlight unit, wherein the second glass substrate is disposed adjacent the first major surface and between the backlight unit and the first major surface, and wherein the backlight unit is optionally curved to exhibit the second radius of curvature.


Aspect (43) of this disclosure pertains to the vehicle interior system of Aspect (42), wherein the second glass substrate comprises a cold-formed second glass substrate.


Aspect (44) of this disclosure pertains to the vehicle interior system of Aspect (42) or Aspect (43), wherein the display module further comprises a frame at least partially surrounding the backlight unit.


Aspect (45) of this disclosure pertains to the vehicle interior system of Aspect (44), wherein the frame at least partially surrounds the second glass substrate.


Aspect (46) of this disclosure pertains to the vehicle interior system of Aspect (44) or Aspect (45), wherein the frame at least partially surrounds the minor surface of the glass substrate.


Aspect (47) of this disclosure pertains to the vehicle interior system of Aspect (44) or Aspect (45), wherein the minor surface of the glass substrate is not surrounded by the frame.


Aspect (48) of this disclosure pertains to the vehicle interior system of Aspect (44), wherein the frame comprises an L-shape.


Aspect (49) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(48), wherein either one of or both the first major surface and the second major surface comprises a surface treatment.


Aspect (50) of this disclosure pertains to the vehicle interior system of Aspect (49), wherein the surface treatment covers at least a portion of the first major surface and the second major surface.


Aspect (51) of this disclosure pertains to the vehicle interior system of Aspect (49) or Aspect (50), wherein the surface treatment comprises any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (52) of this disclosure pertains to the vehicle interior system of Aspect (51), wherein the surface treatment comprises at least two of any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (53) of this disclosure pertains to the vehicle interior system of Aspect (52), wherein the first major surface comprises the anti-glare surface and the second major surface comprises the anti-reflective surface.


Aspect (54) of this disclosure pertains to the vehicle interior system of Aspect (52), wherein the first major surface comprises the anti-reflective surface and the second major surface comprises the anti-glare surface.


Aspect (55) of this disclosure pertains to the vehicle interior system of Aspect (52), wherein the first major surface comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface comprises the pigment design.


Aspect (56) of this disclosure pertains to the vehicle interior system of Aspect (52), wherein the pigment design is disposed on at least a portion of the periphery and the interior portion is substantially free of the pigment design.


Aspect (57) of this disclosure pertains to the vehicle interior system of any one of Aspects (51)-(56), wherein the pigment design comprises any one of a wood-grain design, a brushed metal design, a graphic design, a portrait, and a logo.


Aspect (58) of this disclosure pertains to the vehicle interior system of any one of Aspects (51)-(57), wherein the anti-glare surface comprises an etched surface, and wherein the anti-reflective surface comprises a multi-layer coating.


Aspect (59) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(58), further comprising touch functionality.


Aspect (60) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(59), wherein the base comprises any one of a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, and a steering wheel.


Aspect (61) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(60), wherein the vehicle is any one of an automobile, a seacraft, and an aircraft.


Aspect (62) of this disclosure pertains to the vehicle interior system of any one of Aspects (35)-(61), wherein the second radius of curvature is disposed in an area of the second major surface that is opposite to an area of the first major surface at which the adhesive has an elevated adhesive stress.


Aspect (63) of this disclosure pertains to the vehicle interior system of Aspect (62), wherein the elevated adhesive stress is above an average adhesive stress of the adhesive over an area of the first major surface of the cold-formed glass substrate.


Aspect (64) of this disclosure pertains to the vehicle interior system of Aspect (62), wherein the elevated adhesive stress is an area of maximum adhesive stress in the adhesive over an area of the first major surface.


Aspect (65) of this disclosure pertains to the vehicle interior system of Aspect (62), wherein the elevated adhesive stress is an area of a local maximum adhesive stress in the adhesive over an area of the first major surface.


Aspect (66) of this disclosure pertains to a vehicle interior system comprising a base having a curved surface; a glass substrate disposed on the curved surface, the glass substrate comprising a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width; and an adhesive disposed between the curved surface and the glass substrate, wherein the thickness is 1.5 mm or less, wherein the second major surface comprises a first area having a cold-formed curved surface including a first radius of curvature of 500 mm or greater, and wherein the second major surface comprises a second area having a hot-formed curved surface including a second radius of curvature.


Aspect (67) of this disclosure pertains to the vehicle interior system of Aspect (66), further comprising a display module attached to the first major surface and comprising a third radius of curvature that is within 10% of the first radius of curvature.


Aspect (68) of this disclosure pertains to the vehicle interior system of Aspect (66) or Aspect (67), wherein the width is in a range from about 5 cm to about 250 cm, and the length is from about 5 cm to about 250 cm.


Aspect (69) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(68), wherein the cold-formed glass substrate is strengthened.


Aspect (70) of this disclosure pertains to the vehicle interior system of any one of Aspects (67)-(69), wherein the adhesive is disposed between the glass substrate and the display module.


Aspect (71) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(70), wherein the adhesive is optically clear.


Aspect (72) of this disclosure pertains to the vehicle interior system of Aspect (66) or Aspect (67), wherein the glass substrate comprises a periphery adjacent the minor surface, and the adhesive is disposed between the periphery of the second major surface and the display module.


Aspect (73) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(72), wherein the display module comprises a second glass substrate and a backlight unit, wherein the second glass substrate is disposed adjacent the first major surface and between the backlight unit and the first major surface, and wherein the backlight unit is optionally curved to exhibit the second radius of curvature.


Aspect (74) of this disclosure pertains to the vehicle interior system of Aspect (73), wherein the second glass substrate comprises a cold-formed second glass substrate.


Aspect (75) of this disclosure pertains to the vehicle interior system of Aspect (73) or Aspect (74), wherein the display module further comprises a frame at least partially surrounding the backlight unit.


Aspect (76) of this disclosure pertains to the vehicle interior system of Aspect (75), wherein the frame at least partially surrounds the second glass substrate.


Aspect (77) of this disclosure pertains to the vehicle interior system of Aspect (75) or Aspect (76), wherein the frame at least partially surrounds the minor surface of the glass substrate.


Aspect (78) of this disclosure pertains to the vehicle interior system of Aspect (75) or Aspect (76), wherein the minor surface of the glass substrate is not surrounded by the frame.


Aspect (79) of this disclosure pertains to the vehicle interior system of Aspect (75), wherein the frame comprises an L-shape.


Aspect (80) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(79), wherein either one of or both the first major surface and the second major surface comprises a surface treatment.


Aspect (81) of this disclosure pertains to the vehicle interior system of Aspect (80), wherein the surface treatment covers at least a portion of the first major surface and the second major surface.


Aspect (82) of this disclosure pertains to the vehicle interior system of Aspect (80) or Aspect (81), wherein the surface treatment comprises any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (83) of this disclosure pertains to the vehicle interior system of Aspect (82), wherein the surface treatment comprises at least two of any one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (84) of this disclosure pertains to the vehicle interior system of Aspect (83), wherein the first major surface comprises the anti-glare surface and the second major surface comprises the anti-reflective surface.


Aspect (85) of this disclosure pertains to the vehicle interior system of Aspect (83), wherein the first major surface comprises the anti-reflective surface and the second major surface comprises the anti-glare surface.


Aspect (86) of this disclosure pertains to the vehicle interior system of Aspect (83), wherein the first major surface comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface comprises the pigment design.


Aspect (87) of this disclosure pertains to the vehicle interior system of Aspect (83), wherein the pigment design is disposed on at least a portion of the periphery and the interior portion is substantially free of the pigment design.


Aspect (88) of this disclosure pertains to the vehicle interior system of any one of Aspects (82)-(87), wherein the pigment design comprises any one of a wood-grain design, a brushed metal design, a graphic design, a portrait, and a logo.


Aspect (89) of this disclosure pertains to the vehicle interior system of any one of Aspects (82)-(88), wherein the anti-glare surface comprises an etched surface, and wherein the anti-reflective surface comprises a multi-layer coating.


Aspect (90) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(89), further comprising touch functionality.


Aspect (91) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(90), wherein the base comprises any one of a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, and a steering wheel.


Aspect (92) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(91), wherein the vehicle is any one of an automobile, a seacraft, and an aircraft.


Aspect (93) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(92), wherein the second radius of curvature is smaller than the first radius of curvature.


Aspect (94) of this disclosure pertains to the vehicle interior system of any one of Aspects (66)-(93), wherein the second radius of curvature is less than 500 mm.


Aspect (95) of this disclosure pertains to the vehicle interior system of Aspect (94), wherein the second radius of curvature is about 100 mm or less.


Aspect (96) of this disclosure pertains to a method of forming a curved vehicle interior component comprising: hot-forming a first area of a glass substrate having a first major surface and a second major surface opposite the first major surface to a first radius of curvature as measured on the second major surface; and cold-forming a second area of the glass substrate to a second radius of curvature as measured on the second major surface, the second area being different than the first area.


Aspect (97) of this disclosure pertains to the method of Aspect (96), further comprising laminating a display module to the first major surface while maintaining the second radius of curvature in the glass substrate to form a curved display, wherein the display module has a third radius of curvature that is within 10% of the second radius of curvature.


Aspect (98) of this disclosure pertains to the method of Aspect (96), wherein cold-forming the glass substrate comprises applying a vacuum to the second major surface to generate the second radius of curvature.


Aspect (99) of this disclosure pertains to the method of Aspect (97), wherein applying the vacuum comprises placing the glass substrate on a vacuum fixture before applying the vacuum to the second major surface.


Aspect (100) of this disclosure pertains to the method of any one of Aspects (96)-(98), further comprising laminating an adhesive to the first major surface before laminating the display module to the first major surface such that the adhesive is disposed between the first major surface and the display module.


Aspect (101) of this disclosure pertains to the method of any one of Aspects (96)-(100), wherein laminating a display module comprises laminating a second glass substrate to the glass substrate; and attaching a backlight unit to the second glass substrate, wherein the backlight unit is optionally curved to exhibit the third radius of curvature.


Aspect (102) of this disclosure pertains to the method of Aspect (101), wherein laminating the second glass substrate comprises cold-forming the second glass substrate.


Aspect (103) of this disclosure pertains to the method of Aspect (101) or Aspect (102), further comprising attaching a frame with the backlight unit to the second glass substrate.


Aspect (104) of this disclosure pertains to the method of any one of Aspects (101)-(103), wherein the adhesive is disposed between the second glass substrate and the glass substrate.


Aspect (105) of this disclosure pertains to the method of any one of any one of Aspects (97)-(104), further comprising removing the vacuum from the second major surface.


Aspect (106) of this disclosure pertains to the method of Aspect (105), wherein removing the vacuum from the second major surface comprises removing the curved display from the vacuum fixture.


Aspect (107) of this disclosure pertains to the method of any one of Aspects (95)-(106), wherein the glass substrate has a thickness of about 1.5 mm or less.


Aspect (108) of this disclosure pertains to the method of any one of Aspects (95)-(107), wherein the glass substrate is strengthened.


Aspect (109) of this disclosure pertains to the method of any one of Aspects (101)-(108), wherein the second glass substrate is unstrengthened.


Aspect (110) of this disclosure pertains to the method of any one of Aspects (101)-(109), wherein the second glass substrate has a thickness that is greater than a thickness of the glass substrate.


Aspect (111) of this disclosure pertains to the method of any one of Aspect (96)-(110), wherein the second radius of curvature is in a range from about 60 mm to about 1500 mm.


Aspect (112) of this disclosure pertains to the method of any one of Aspects (99)-(111), wherein the adhesive has a thickness of about 1 mm or less.


Aspect (113) of this disclosure pertains to the method of any one of Aspects (96)-(112), further comprising disposing the curved display in a vehicle interior system.


Aspect (114) of this disclosure pertains to the method of any one of Aspects (96)-(113), wherein the first radius of curvature is less than the second radius of curvature.


Aspect (115) of this disclosure pertains to the method of any one of Aspects (96)-(114), wherein the first radius of curvature is about 100 mm or less.


Aspect (116) of this disclosure pertains to the method of any one of Aspects (96)-(115), wherein the hot-forming of the first area occurs before the cold-forming of the second area.


Aspect (117) of this disclosure pertains to the method of any one of Aspects (96)-(116), further comprising treating at least one of the first major surface and the second major surface with a surface treatment after the hot-forming.


Aspect (118) of this disclosure pertains to the method of Aspect (117), wherein the surface treatment covers at least a portion of the first major surface and the second major surface.


Aspect (119) of this disclosure pertains to the method of Aspect (117) or Aspect (118), wherein the surface treatment comprises at least one of an easy-to-clean surface, an anti-glare surface, an anti-reflective surface, and a pigment design.


Aspect (120) of this disclosure pertains to the method of any one of Aspects (96)-(119), wherein, during cold-forming, a maximum temperature of the glass substrate is less than a glass transition temperature of the glass substrate.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention.

Claims
  • 1. A vehicle interior system comprising a base having a curved surface;a cold-formed glass substrate disposed on the curved surface, the glass substrate comprising a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width;
  • 2. The vehicle interior system of claim 1, further comprising a display module attached to the first major surface and comprising a second radius of curvature that is within 10% of the first radius of curvature.
  • 3. The vehicle interior system of claim 2, wherein the adhesive is disposed between the glass substrate and the display module.
  • 4. The vehicle interior system of claim 1, wherein the glass substrate comprises a periphery adjacent the minor surface, and the adhesive is disposed between the periphery and the curved surface.
  • 5. The vehicle interior system of claim 4, wherein the glass substrate comprises a cold-formed portion that is cold-formed to the curved surface such that the portion is held by the adhesive in a bent shape despite there being elastic stresses in the cold-formed portion.
  • 6. The vehicle interior system of claim 5, wherein the adhesive stress is generated due to the elastic stresses in the cold-formed portion.
  • 7. The vehicle interior system of claim 6, wherein the cold-formed portion is cold-formed to comprise a global radius of curvature of 500 mm or more.
  • 8. The vehicle interior system of claim 7, wherein the hot-formed portion comprises a local radius of curvature that is less than the global radius of curvature.
  • 9. The vehicle interior system of claim 8, wherein the local radius of curvature is less than or equal to 100 mm.
  • 10. The vehicle interior system of claim 8, wherein the first major surface comprises a concave shape in the cold-formed portion and a convex shape in the hot-formed portion.
  • 11. The vehicle interior system of claim 1, wherein the thickness is greater than or equal to 0.7 mm and less than or equal to 1.5 mm.
  • 12. The vehicle interior system of claim 11, wherein the adhesive comprises a thickness that is greater than or equal to 200 μm and less than or equal to 500 μm.
  • 13. The vehicle interior system of claim 12, wherein the adhesive comprises a pressure sensitive structural adhesive.
  • 14. A vehicle interior system comprising a base having a curved surface;a cold-formed glass substrate disposed on the curved surface, the glass substrate comprising a first major surface, a second major surface opposing the first major surface and facing the curved surface, and a minor surface connecting the first major surface and the second major surface, a thickness defined as a distance between the first major surface and the second major surface, a width defined as a first dimension of one of the first or second major surfaces orthogonal to the thickness, and a length defined as a second dimension of one of the first or second major surfaces orthogonal to both the thickness and the width, wherein the thickness is greater than or equal to 0.5 mm and less than or equal to 1.5 mm;an adhesive disposed between the curved surface and the glass substrate at a periphery of the cold-formed glass substrate adjacent to the minor surface, wherein the adhesive holds a cold-formed portion of the glass substrate in an elastically bent state such that there are stresses in the adhesive; andat least one stress-reduction component configured to alleviate the stresses in the adhesive, wherein: the at least one stress-reduction component comprises a hot-formed portion of the cold-formed glass substrate proximate to the minor surface, andwherein the second major surface comprises a first radius of curvature of 500 mm or greater.
  • 15. The vehicle interior system of claim 14, further comprising a display module attached to the first major surface and comprising a second radius of curvature that is within 10% of the first radius of curvature.
  • 16. The vehicle interior system of claim 15, wherein the adhesive is disposed between the glass substrate and the display module.
  • 17. The vehicle interior system of claim 14, wherein the cold-formed portion is cold-formed to comprise a global radius of curvature of 500 mm or more.
  • 18. The vehicle interior system of claim 17, wherein the hot-formed portion comprises a local radius of curvature that is less than the global radius of curvature.
  • 19. The vehicle interior system of claim 18, wherein the local radius of curvature is less than or equal to 100 mm.
  • 20. The vehicle interior system of claim 18, wherein the first major surface comprises a concave shape in the cold-formed portion and a convex shape in the hot-formed portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/754,853, filed on Apr. 9, 2020, which is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2018/055217, filed on Oct. 10, 2018, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/570,430 filed on Oct. 10, 2017, the contents of which relied upon and incorporated herein by reference in their entirety.

US Referenced Citations (508)
Number Name Date Kind
2068030 Lieser Jan 1937 A
2352957 Kell Jul 1944 A
2403060 Downes Jul 1946 A
2608030 Jendrisak Aug 1952 A
3197903 Walley Aug 1965 A
3338696 Dockerty Aug 1967 A
3582456 Stolki Jun 1971 A
3674589 Schaab et al. Jul 1972 A
3682609 Dockerty Aug 1972 A
3737212 Antonson et al. Jun 1973 A
3753840 Plumat Aug 1973 A
3778335 Boyd Dec 1973 A
3790430 Mochel Feb 1974 A
3799817 Laethem Mar 1974 A
3881043 Rieser et al. Apr 1975 A
4052236 Kapasi Oct 1977 A
4081263 Mestre et al. Mar 1978 A
4147527 Bystrov et al. Apr 1979 A
4238265 Deminet Dec 1980 A
4289520 Bolton Sep 1981 A
4400419 Laczynski Aug 1983 A
4445953 Hawk May 1984 A
4455338 Henne Jun 1984 A
4470837 Seymour Sep 1984 A
4508556 Bennett et al. Apr 1985 A
4606159 Kunert Aug 1986 A
4746348 Frank May 1988 A
4802903 Kuster et al. Feb 1989 A
4859636 Aratani et al. Aug 1989 A
4899507 Mairlot Feb 1990 A
4969966 Norman Nov 1990 A
4978405 Hickman Dec 1990 A
4985099 Mertens et al. Jan 1991 A
5106671 Amberger et al. Apr 1992 A
5108480 Sugiyama Apr 1992 A
5154117 Didelot et al. Oct 1992 A
5173102 Weber et al. Dec 1992 A
5245468 Demiryont et al. Sep 1993 A
5250146 Horvath Oct 1993 A
5264058 Hoagland et al. Nov 1993 A
5279635 Flaugher et al. Jan 1994 A
5282911 Natorff et al. Feb 1994 A
5300184 Masunaga Apr 1994 A
5468346 Bruce et al. Nov 1995 A
5589248 Tomozane et al. Dec 1996 A
5668663 Varaprasad et al. Sep 1997 A
5707581 Yamazaki Jan 1998 A
5711119 Cornils et al. Jan 1998 A
5713976 Kuster et al. Feb 1998 A
5897937 Cornils et al. Apr 1999 A
5916600 Dubay et al. Jun 1999 A
6044662 Morin Apr 2000 A
6066218 Kuhn et al. May 2000 A
6071456 Hanamoto et al. Jun 2000 A
6086983 Yoshizawa Jul 2000 A
6101748 Cass et al. Aug 2000 A
6170956 Rumsey et al. Jan 2001 B1
6212805 Hill Apr 2001 B1
6242931 Hembree et al. Jun 2001 B1
6265054 Bravet et al. Jul 2001 B1
6270605 Doerfler Aug 2001 B1
6274219 Schuster et al. Aug 2001 B1
6287674 Verlinden et al. Sep 2001 B1
6302985 Takahashi et al. Oct 2001 B1
6305492 Oleiko et al. Oct 2001 B1
6332690 Murofushi Dec 2001 B1
6359737 Stringfellow Mar 2002 B1
6387515 Joret et al. May 2002 B1
6420800 Levesque et al. Jul 2002 B1
6426138 Narushima et al. Jul 2002 B1
6582799 Brown et al. Jun 2003 B1
6620365 Odoi et al. Sep 2003 B1
6816225 Colgan et al. Nov 2004 B2
6903871 Page Jun 2005 B2
7297040 Chang et al. Nov 2007 B2
7375782 Yamazaki et al. May 2008 B2
7478930 Choi Jan 2009 B2
7489303 Pryor Feb 2009 B1
7542302 Curnalia et al. Jun 2009 B1
7750821 Taborisskiy et al. Jul 2010 B1
7955470 Kapp et al. Jun 2011 B2
8298431 Chwu et al. Oct 2012 B2
8344369 Yamazaki et al. Jan 2013 B2
8521955 Arulambalam et al. Aug 2013 B2
8549885 Dannoux et al. Oct 2013 B2
8586492 Barefoot et al. Nov 2013 B2
8652978 Dejneka et al. Feb 2014 B2
8692787 Yoshikatsu Apr 2014 B2
8702253 Lu et al. Apr 2014 B2
8765262 Gross Jul 2014 B2
8814372 Vandal et al. Aug 2014 B2
8833106 Dannoux et al. Sep 2014 B2
8912447 Leong et al. Dec 2014 B2
8923693 Yeates Dec 2014 B2
8962084 Brackley et al. Feb 2015 B2
8967834 Timmerman et al. Mar 2015 B2
8969226 Dejneka et al. Mar 2015 B2
8978418 Balduin et al. Mar 2015 B2
9007226 Chang Apr 2015 B2
9061934 Bisson et al. Jun 2015 B2
9090501 Okahata et al. Jul 2015 B2
9109881 Roussev et al. Aug 2015 B2
9140543 Allan et al. Sep 2015 B1
9156724 Gross Oct 2015 B2
9223162 Deforest et al. Dec 2015 B2
9240437 Shieh et al. Jan 2016 B2
9278500 Filipp Mar 2016 B2
9278655 Jones et al. Mar 2016 B2
9290413 Dejneka et al. Mar 2016 B2
9346703 Bookbinder et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9357638 Lee et al. May 2016 B2
9376337 Odani et al. Jun 2016 B2
9442028 Roussev et al. Sep 2016 B2
9446723 Stepanski Sep 2016 B2
9469561 Kladias et al. Oct 2016 B2
9517967 Dejneka et al. Dec 2016 B2
9522837 Afzal et al. Dec 2016 B2
9555516 Brown et al. Jan 2017 B2
9573843 Keegan et al. Feb 2017 B2
9593042 Hu et al. Mar 2017 B2
9595960 Wilford Mar 2017 B2
9606625 Levesque et al. Mar 2017 B2
9617180 Bookbinder et al. Apr 2017 B2
9637926 Kraus et al. May 2017 B2
9663396 Miyasaka et al. May 2017 B2
9688562 Ukrainczyk et al. Jun 2017 B2
9694570 Levasseur et al. Jul 2017 B2
9700985 Kashima et al. Jul 2017 B2
9701564 Bookbinder et al. Jul 2017 B2
9720450 Choi et al. Aug 2017 B2
9724727 Domey et al. Aug 2017 B2
9802485 Masuda et al. Oct 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9821509 Kastell Nov 2017 B2
9895975 Lee et al. Feb 2018 B2
9902640 Dannoux et al. Feb 2018 B2
9927650 Almanza-Workman et al. Mar 2018 B1
9931817 Rickerl Apr 2018 B2
9933820 Helot et al. Apr 2018 B2
9947882 Zhang et al. Apr 2018 B2
9955602 Wildner et al. Apr 2018 B2
9957190 Finkeldey et al. May 2018 B2
9963374 Jouanno et al. May 2018 B2
9972645 Kim May 2018 B2
9975801 Maschmeyer et al. May 2018 B2
9992888 Moon et al. Jun 2018 B2
10005246 Stepanski Jun 2018 B2
10017033 Fisher et al. Jul 2018 B2
10042391 Yun et al. Aug 2018 B2
10074824 Han et al. Sep 2018 B2
10086762 Uhm Oct 2018 B2
10131118 Kang et al. Nov 2018 B2
10140018 Kim et al. Nov 2018 B2
10153337 Lee et al. Dec 2018 B2
10175802 Boggs et al. Jan 2019 B2
10191199 Nichol et al. Jan 2019 B2
10211416 Jin et al. Feb 2019 B2
10222825 Wang et al. Mar 2019 B2
10246364 Nitschke et al. Apr 2019 B2
10273184 Garner et al. Apr 2019 B2
10303223 Park et al. May 2019 B2
10303315 Jeong et al. May 2019 B2
10326101 Oh et al. Jun 2019 B2
10328865 Jung Jun 2019 B2
10343377 Levasseur et al. Jul 2019 B2
10343944 Jones et al. Jul 2019 B2
10347700 Yang et al. Jul 2019 B2
10377656 Dannoux et al. Aug 2019 B2
10421683 Schillinger et al. Sep 2019 B2
10427383 Levasseur et al. Oct 2019 B2
10444427 Bookbinder et al. Oct 2019 B2
10483210 Gross et al. Nov 2019 B2
10500958 Cho et al. Dec 2019 B2
10549704 McFarland Feb 2020 B2
10556818 Fujii et al. Feb 2020 B2
10606395 Boggs et al. Mar 2020 B2
10649267 Tuan et al. May 2020 B2
10712850 Brandao et al. Jul 2020 B2
10732753 Boggs et al. Aug 2020 B2
10788707 Al et al. Sep 2020 B2
10976607 Huang et al. Apr 2021 B2
10995028 Mannheim et al. May 2021 B2
11016590 Brandao et al. May 2021 B2
11025892 Aman et al. Jun 2021 B1
11097974 Lezzi et al. Aug 2021 B2
11192815 Fujii et al. Dec 2021 B2
11292343 Kumar et al. Apr 2022 B2
11331886 Brennan et al. May 2022 B2
11377383 Frebourg et al. Jul 2022 B2
11745588 Kumar Sep 2023 B2
20020039229 Hirose et al. Apr 2002 A1
20030031842 Marietti et al. Feb 2003 A1
20030156080 Koike et al. Aug 2003 A1
20040016738 Bartrug et al. Jan 2004 A1
20040026021 Groh et al. Feb 2004 A1
20040069770 Cary et al. Apr 2004 A1
20040107731 Doehring et al. Jun 2004 A1
20040154227 Yoshimura Aug 2004 A1
20040258929 Glaubitt et al. Dec 2004 A1
20050091890 Snyder May 2005 A1
20050178158 Moulding et al. Aug 2005 A1
20050209401 Lutz et al. Sep 2005 A1
20050235698 Siskos Oct 2005 A1
20060227125 Wong et al. Oct 2006 A1
20060277947 Funk et al. Dec 2006 A1
20070188871 Fleury et al. Aug 2007 A1
20070195419 Tsuda et al. Aug 2007 A1
20070210621 Barton et al. Sep 2007 A1
20070221313 Franck et al. Sep 2007 A1
20070223121 Franck et al. Sep 2007 A1
20070291384 Wang Dec 2007 A1
20080031991 Choi et al. Feb 2008 A1
20080049198 Vrachan et al. Feb 2008 A1
20080049437 Takayama et al. Feb 2008 A1
20080057260 Buchhauser et al. Mar 2008 A1
20080074368 Edwards et al. Mar 2008 A1
20080093753 Schuetz Apr 2008 A1
20080120946 Bayne et al. May 2008 A1
20080285134 Closset et al. Nov 2008 A1
20080303976 Nishizawa et al. Dec 2008 A1
20090015747 Nishizawa et al. Jan 2009 A1
20090046240 Bolton Feb 2009 A1
20090096937 Bauer et al. Apr 2009 A1
20090096965 Nagata Apr 2009 A1
20090101208 Vandal et al. Apr 2009 A1
20090108477 Yamakaji et al. Apr 2009 A1
20090117332 Ellsworth et al. May 2009 A1
20090179840 Tanaka et al. Jul 2009 A1
20090185127 Tanaka et al. Jul 2009 A1
20090201443 Sasaki et al. Aug 2009 A1
20090311497 Aoki Dec 2009 A1
20100000259 Ukrainczyk et al. Jan 2010 A1
20100031590 Buchwald et al. Feb 2010 A1
20100065342 Shaikh Mar 2010 A1
20100103138 Huang et al. Apr 2010 A1
20100107694 Dannoux et al. May 2010 A1
20100123741 Shin et al. May 2010 A1
20100164860 Misono Jul 2010 A1
20100182143 Lynam Jul 2010 A1
20100220043 Broughton et al. Sep 2010 A1
20100245253 Rhyu et al. Sep 2010 A1
20100247977 Tsuchiya et al. Sep 2010 A1
20110051252 Poulsen Mar 2011 A1
20110057465 Beau et al. Mar 2011 A1
20110078832 Koecher et al. Mar 2011 A1
20110148267 McDaniel et al. Jun 2011 A1
20110176236 Lu et al. Jul 2011 A1
20120050975 Garelli et al. Mar 2012 A1
20120111056 Prest May 2012 A1
20120128952 Miwa et al. May 2012 A1
20120134025 Hart May 2012 A1
20120144866 Liu et al. Jun 2012 A1
20120152897 Cheng et al. Jun 2012 A1
20120196110 Murata et al. Aug 2012 A1
20120202030 Kondo et al. Aug 2012 A1
20120218640 Gollier et al. Aug 2012 A1
20120263945 Yoshikawa Oct 2012 A1
20120280368 Garner et al. Nov 2012 A1
20120280921 Kwon Nov 2012 A1
20120320509 Kim et al. Dec 2012 A1
20130020007 Niiyama et al. Jan 2013 A1
20130033885 Oh et al. Feb 2013 A1
20130044138 Koga Feb 2013 A1
20130070340 Shelestak et al. Mar 2013 A1
20130081428 Liu et al. Apr 2013 A1
20130086948 Bisson et al. Apr 2013 A1
20130088441 Chung et al. Apr 2013 A1
20130108855 Marchelli et al. May 2013 A1
20130120850 Lambert et al. May 2013 A1
20130186141 Henry Jul 2013 A1
20130194749 Choi et al. Aug 2013 A1
20130209824 Sun et al. Aug 2013 A1
20130279188 Entenmann et al. Oct 2013 A1
20130298608 Langsdorf et al. Nov 2013 A1
20130314642 Timmerman et al. Nov 2013 A1
20130329346 Dannoux et al. Dec 2013 A1
20130330495 Maatta et al. Dec 2013 A1
20130334302 Shigeta Dec 2013 A1
20140002975 Lee et al. Jan 2014 A1
20140011000 Dunkmann et al. Jan 2014 A1
20140014260 Chowdhury et al. Jan 2014 A1
20140036428 Seng et al. Feb 2014 A1
20140065374 Tsuchiya et al. Mar 2014 A1
20140132407 Kumai et al. May 2014 A1
20140133046 Sung et al. May 2014 A1
20140141206 Gillard et al. May 2014 A1
20140146538 Zenker et al. May 2014 A1
20140147624 Streltsov et al. May 2014 A1
20140153234 Knoche et al. Jun 2014 A1
20140153894 Jenkins et al. Jun 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140168546 Magnusson et al. Jun 2014 A1
20140170388 Kashima et al. Jun 2014 A1
20140210847 Knibbeler et al. Jul 2014 A1
20140234581 Immerman et al. Aug 2014 A1
20140251548 Bedell et al. Sep 2014 A1
20140308464 Levasseur et al. Oct 2014 A1
20140312518 Levasseur et al. Oct 2014 A1
20140333848 Chen Nov 2014 A1
20140340609 Taylor et al. Nov 2014 A1
20140345791 Son et al. Nov 2014 A1
20150000341 Bisson et al. Jan 2015 A1
20150015807 Franke et al. Jan 2015 A1
20150072125 Murashige et al. Mar 2015 A1
20150072129 Okahata et al. Mar 2015 A1
20150077429 Eguchi et al. Mar 2015 A1
20150115229 Jung Apr 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150168768 Nagatani Jun 2015 A1
20150175468 Sheehan et al. Jun 2015 A1
20150175478 Ravichandran et al. Jun 2015 A1
20150177443 Faecke et al. Jun 2015 A1
20150210588 Chang et al. Jul 2015 A1
20150212549 Shin et al. Jul 2015 A1
20150246424 Venkatachalam et al. Sep 2015 A1
20150246507 Brown et al. Sep 2015 A1
20150253914 Hamada et al. Sep 2015 A1
20150274570 Wada et al. Oct 2015 A1
20150274572 Wada et al. Oct 2015 A1
20150274585 Rogers et al. Oct 2015 A1
20150294627 Yoo et al. Oct 2015 A1
20150321940 Dannoux et al. Nov 2015 A1
20150322270 Amin et al. Nov 2015 A1
20150336357 Kang et al. Nov 2015 A1
20150351272 Wildner et al. Dec 2015 A1
20150357387 Lee et al. Dec 2015 A1
20160009066 Nieber et al. Jan 2016 A1
20160009068 Garner Jan 2016 A1
20160016849 Allan Jan 2016 A1
20160031737 Hoppe et al. Feb 2016 A1
20160039705 Kato et al. Feb 2016 A1
20160052241 Zhang Feb 2016 A1
20160066463 Yang et al. Mar 2016 A1
20160081204 Park et al. Mar 2016 A1
20160083282 Jouanno et al. Mar 2016 A1
20160083292 Tabe et al. Mar 2016 A1
20160091645 Birman et al. Mar 2016 A1
20160102015 Yasuda et al. Apr 2016 A1
20160113135 Kim et al. Apr 2016 A1
20160124534 Ahn May 2016 A1
20160137550 Murata et al. May 2016 A1
20160145148 Imakita et al. May 2016 A1
20160152819 Balijepalli et al. Jun 2016 A1
20160176746 Hunzinger et al. Jun 2016 A1
20160207290 Cleary et al. Jul 2016 A1
20160207818 Lee et al. Jul 2016 A1
20160214889 Garner et al. Jul 2016 A1
20160216434 Shih et al. Jul 2016 A1
20160250982 Fisher et al. Sep 2016 A1
20160252656 Waldschmidt et al. Sep 2016 A1
20160259365 Wang et al. Sep 2016 A1
20160266383 Liu Sep 2016 A1
20160272529 Hong et al. Sep 2016 A1
20160280576 Hong et al. Sep 2016 A1
20160280590 Kashima et al. Sep 2016 A1
20160282814 Sagardoyburu Sep 2016 A1
20160297176 Rickerl Oct 2016 A1
20160300537 Hoffman et al. Oct 2016 A1
20160306451 Soda et al. Oct 2016 A1
20160313494 Hamilton et al. Oct 2016 A1
20160318790 Hosseini et al. Nov 2016 A1
20160334094 Bach et al. Nov 2016 A1
20160354996 Alder et al. Dec 2016 A1
20160355091 Lee et al. Dec 2016 A1
20160355901 Isozaki et al. Dec 2016 A1
20160375808 Etienne et al. Dec 2016 A1
20160376184 Atkins-Barratt et al. Dec 2016 A1
20170008377 Fisher et al. Jan 2017 A1
20170021661 Pelucchi Jan 2017 A1
20170022093 Demartino et al. Jan 2017 A1
20170023830 Yang et al. Jan 2017 A1
20170028688 Dannhauser et al. Feb 2017 A1
20170059749 Wakatsuki et al. Mar 2017 A1
20170066223 Notsu et al. Mar 2017 A1
20170081238 Jones et al. Mar 2017 A1
20170088454 Fukushima et al. Mar 2017 A1
20170090247 Lee et al. Mar 2017 A1
20170094039 Lu Mar 2017 A1
20170115518 Shin et al. Apr 2017 A1
20170115944 Oh et al. Apr 2017 A1
20170126865 Lee May 2017 A1
20170158551 Bookbinder et al. Jun 2017 A1
20170160434 Hart et al. Jun 2017 A1
20170185289 Kim et al. Jun 2017 A1
20170190152 Notsu et al. Jul 2017 A1
20170197561 McFarland Jul 2017 A1
20170197870 Finkeldey et al. Jul 2017 A1
20170213872 Jinbo et al. Jul 2017 A1
20170215514 Miller Aug 2017 A1
20170217290 Yoshizumi et al. Aug 2017 A1
20170217815 Dannoux et al. Aug 2017 A1
20170240772 Dohner et al. Aug 2017 A1
20170245962 Skamser et al. Aug 2017 A1
20170247291 Hatano et al. Aug 2017 A1
20170262057 Knittl et al. Sep 2017 A1
20170263690 Lee et al. Sep 2017 A1
20170274627 Chang et al. Sep 2017 A1
20170283295 Immerman et al. Oct 2017 A1
20170285227 Chen et al. Oct 2017 A1
20170305786 Roussev et al. Oct 2017 A1
20170327402 Fujii et al. Nov 2017 A1
20170329182 Privitera et al. Nov 2017 A1
20170334770 Luzzato et al. Nov 2017 A1
20170349473 Moriya et al. Dec 2017 A1
20180009197 Gross et al. Jan 2018 A1
20180014420 Amin et al. Jan 2018 A1
20180024594 Park et al. Jan 2018 A1
20180031743 Wakatsuki et al. Feb 2018 A1
20180037488 Liu et al. Feb 2018 A1
20180050948 Faik et al. Feb 2018 A1
20180065881 Hashimoto et al. Mar 2018 A1
20180069053 Bok Mar 2018 A1
20180072022 Tsai et al. Mar 2018 A1
20180088399 Fukushi et al. Mar 2018 A1
20180089811 Shin Mar 2018 A1
20180103132 Prushinskiy et al. Apr 2018 A1
20180111569 Faik et al. Apr 2018 A1
20180112903 Celik et al. Apr 2018 A1
20180122863 Bok May 2018 A1
20180125228 Porter et al. May 2018 A1
20180134232 Helot May 2018 A1
20180141850 Dejneka et al. May 2018 A1
20180147985 Brown et al. May 2018 A1
20180149777 Brown May 2018 A1
20180149907 Gahagan et al. May 2018 A1
20180164850 Sim et al. Jun 2018 A1
20180186674 Kumar et al. Jul 2018 A1
20180188869 Boggs et al. Jul 2018 A1
20180208131 Mattelet et al. Jul 2018 A1
20180208494 Mattelet et al. Jul 2018 A1
20180210118 Gollier et al. Jul 2018 A1
20180215125 Gahagan Aug 2018 A1
20180237327 Chae et al. Aug 2018 A1
20180245125 Tsai et al. Aug 2018 A1
20180272657 Ryu et al. Sep 2018 A1
20180273422 Hori et al. Sep 2018 A1
20180282207 Fujii et al. Oct 2018 A1
20180290438 Notsu et al. Oct 2018 A1
20180292650 Sato et al. Oct 2018 A1
20180304825 Mattelet et al. Oct 2018 A1
20180319144 Faik Nov 2018 A1
20180324964 Yoo et al. Nov 2018 A1
20180327301 Fujii et al. Nov 2018 A1
20180345644 Kang et al. Dec 2018 A1
20180354988 Tezcan et al. Dec 2018 A1
20180364760 Ahn et al. Dec 2018 A1
20180374906 Everaerts et al. Dec 2018 A1
20190012032 Brandao et al. Jan 2019 A1
20190034017 Boggs et al. Jan 2019 A1
20190039352 Zhao et al. Feb 2019 A1
20190039935 Couillard et al. Feb 2019 A1
20190069451 Myers et al. Feb 2019 A1
20190077262 Benjamin et al. Mar 2019 A1
20190077337 Gervelmeyer Mar 2019 A1
20190135677 Fukushi et al. May 2019 A1
20190152831 An et al. May 2019 A1
20190163308 Wang et al. May 2019 A1
20190223309 Amin et al. Jul 2019 A1
20190256398 Palmantier et al. Aug 2019 A1
20190263706 Atkins-Barratt et al. Aug 2019 A1
20190263713 Murayama et al. Aug 2019 A1
20190279580 Noh et al. Sep 2019 A1
20190295494 Wang et al. Sep 2019 A1
20190315648 Kumar et al. Oct 2019 A1
20190329531 Brennan et al. Oct 2019 A1
20190332217 Boggs et al. Oct 2019 A1
20200023611 Chowdhury et al. Jan 2020 A1
20200052245 Qiao et al. Feb 2020 A1
20200064535 Haan et al. Feb 2020 A1
20200115272 Li et al. Apr 2020 A1
20200123050 Black et al. Apr 2020 A1
20200136069 Paek et al. Apr 2020 A1
20200171952 Couillard et al. Jun 2020 A1
20200234676 Li Jul 2020 A1
20200239351 Bhatia et al. Jul 2020 A1
20200262744 Fenton et al. Aug 2020 A1
20200278541 Kim et al. Sep 2020 A1
20200294470 Ku Sep 2020 A1
20200301192 Huang et al. Sep 2020 A1
20200325057 Burdette et al. Oct 2020 A1
20200333594 Chae et al. Oct 2020 A1
20200346969 Li et al. Nov 2020 A1
20200385301 Chae et al. Dec 2020 A1
20210003672 Yokogawa et al. Jan 2021 A1
20210031493 Benjamin et al. Feb 2021 A1
20210055599 Chen et al. Feb 2021 A1
20210074690 Lee et al. Mar 2021 A1
20210101820 Frebourg et al. Apr 2021 A1
20210116706 Aoki et al. Apr 2021 A1
20210122661 Ogawa Apr 2021 A1
20210179893 Ogino et al. Jun 2021 A1
20210284565 Thellier et al. Sep 2021 A1
20210308953 Kim et al. Oct 2021 A1
20210323270 Weikel et al. Oct 2021 A1
20210395130 Yu et al. Dec 2021 A1
20210396997 Kim et al. Dec 2021 A1
20220001650 Dave et al. Jan 2022 A1
20220009201 Kumar et al. Jan 2022 A1
20220017400 Harris et al. Jan 2022 A1
20220024798 Galgalikar et al. Jan 2022 A1
20220169554 Du et al. Jun 2022 A1
20220184909 Lutz et al. Jun 2022 A1
20220185718 Renaud et al. Jun 2022 A1
20220204381 Layouni Jun 2022 A1
20220227664 Ambricht et al. Jul 2022 A1
20220274368 Burdette et al. Sep 2022 A1
20220306523 Horn et al. Sep 2022 A1
Foreign Referenced Citations (349)
Number Date Country
1111906 Nov 1995 CN
1400476 Mar 2003 CN
1587132 Mar 2005 CN
1805849 Jul 2006 CN
1860081 Nov 2006 CN
101320182 Dec 2008 CN
101496082 Jul 2009 CN
101496083 Jul 2009 CN
101563643 Oct 2009 CN
101600846 Dec 2009 CN
101684032 Mar 2010 CN
101754865 Jun 2010 CN
101828142 Sep 2010 CN
102131743 Jul 2011 CN
201989544 Sep 2011 CN
102341356 Feb 2012 CN
102464456 May 2012 CN
102566841 Jul 2012 CN
102811875 Dec 2012 CN
202806307 Mar 2013 CN
103136490 Jun 2013 CN
103150964 Jun 2013 CN
103172254 Jun 2013 CN
103249581 Aug 2013 CN
103587161 Feb 2014 CN
103794631 May 2014 CN
103930270 Jul 2014 CN
203825589 Sep 2014 CN
104220253 Dec 2014 CN
104302589 Jan 2015 CN
204111583 Jan 2015 CN
104380715 Feb 2015 CN
104395949 Mar 2015 CN
104516562 Apr 2015 CN
104656999 May 2015 CN
104679341 Jun 2015 CN
204439971 Jul 2015 CN
204463066 Jul 2015 CN
104843976 Aug 2015 CN
104851889 Aug 2015 CN
105118391 Dec 2015 CN
105121156 Dec 2015 CN
105246850 Jan 2016 CN
105511127 Apr 2016 CN
105593185 May 2016 CN
205239166 May 2016 CN
105705330 Jun 2016 CN
105924018 Sep 2016 CN
105938684 Sep 2016 CN
106029293 Oct 2016 CN
106033283 Oct 2016 CN
106102980 Nov 2016 CN
106256794 Dec 2016 CN
106346844 Jan 2017 CN
205905907 Jan 2017 CN
106458683 Feb 2017 CN
106573814 Apr 2017 CN
206114596 Apr 2017 CN
206114956 Apr 2017 CN
106660316 May 2017 CN
107074010 Aug 2017 CN
107076875 Aug 2017 CN
107207314 Sep 2017 CN
107613809 Jan 2018 CN
107735697 Feb 2018 CN
107757516 Mar 2018 CN
108519831 Sep 2018 CN
108550587 Sep 2018 CN
108725350 Nov 2018 CN
109070470 Dec 2018 CN
109135605 Jan 2019 CN
109690662 Apr 2019 CN
109743421 May 2019 CN
111758063 Oct 2020 CN
4415787 Nov 1995 DE
4415878 Nov 1995 DE
69703490 May 2001 DE
102004022008 Dec 2004 DE
102004002208 Aug 2005 DE
102009021938 Nov 2010 DE
102010007204 Aug 2011 DE
102013214108 Feb 2015 DE
102014116798 May 2016 DE
0076924 Apr 1983 EP
0241355 Oct 1987 EP
0316224 May 1989 EP
0347049 Dec 1989 EP
0418700 Mar 1991 EP
0423698 Apr 1991 EP
0525970 Feb 1993 EP
0664210 Jul 1995 EP
1013622 Jun 2000 EP
1031409 Aug 2000 EP
1046493 Oct 2000 EP
0910721 Nov 2000 EP
1647663 Apr 2006 EP
2236281 Oct 2010 EP
2385630 Nov 2011 EP
2521118 Nov 2012 EP
2852502 Apr 2015 EP
2933718 Oct 2015 EP
3093181 Nov 2016 EP
3100854 Dec 2016 EP
3118174 Jan 2017 EP
3118175 Jan 2017 EP
3144141 Mar 2017 EP
3156286 Apr 2017 EP
3189965 Jul 2017 EP
3288791 Mar 2018 EP
3315467 May 2018 EP
3426614 Jan 2019 EP
3532442 Sep 2019 EP
3714316 Sep 2020 EP
2750075 Dec 1997 FR
2918411 Jan 2009 FR
3012073 Apr 2015 FR
3059318 Jun 2018 FR
0805770 Dec 1958 GB
0991867 May 1965 GB
1319846 Jun 1973 GB
2011316 Jul 1979 GB
2281542 Mar 1995 GB
53-147708 Dec 1978 JP
55-154329 Dec 1980 JP
57-048082 Mar 1982 JP
58-073681 May 1983 JP
58-194751 Nov 1983 JP
59-076561 May 1984 JP
60-222316 Nov 1985 JP
63-089317 Apr 1988 JP
63-190730 Aug 1988 JP
03-059337 Jun 1991 JP
03-228840 Oct 1991 JP
04-119931 Apr 1992 JP
04-357127 Dec 1992 JP
05-004842 Jan 1993 JP
05-058683 Mar 1993 JP
05-116972 May 1993 JP
06-340029 Dec 1994 JP
07-257169 Oct 1995 JP
10-059733 Mar 1998 JP
10-218630 Aug 1998 JP
11-001349 Jan 1999 JP
11-006029 Jan 1999 JP
11-059172 Mar 1999 JP
11-060293 Mar 1999 JP
3059337 Jul 2000 JP
2000-260330 Sep 2000 JP
2002-255574 Sep 2002 JP
2003-500260 Jan 2003 JP
2003-276571 Oct 2003 JP
2003-281959 Oct 2003 JP
2003-321257 Nov 2003 JP
2004-045529 Feb 2004 JP
2004-101712 Apr 2004 JP
2004-212461 Jul 2004 JP
2004-284839 Oct 2004 JP
2005-097109 Apr 2005 JP
2006-181936 Jul 2006 JP
2006-323158 Nov 2006 JP
2007-188035 Jul 2007 JP
2007-197288 Aug 2007 JP
2007-232473 Sep 2007 JP
2007-535144 Nov 2007 JP
2008-081334 Apr 2008 JP
2008-156547 Jul 2008 JP
2008-175584 Jul 2008 JP
2009-042565 Feb 2009 JP
2009-064761 Mar 2009 JP
4302812 Jul 2009 JP
2010-145731 Jul 2010 JP
2010-156784 Jul 2010 JP
2010-256769 Nov 2010 JP
2010-257562 Nov 2010 JP
2011-194799 Oct 2011 JP
2011-198721 Oct 2011 JP
2012-111661 Jun 2012 JP
2013-084269 May 2013 JP
2013-099821 May 2013 JP
2013-117665 Jun 2013 JP
2013-188993 Sep 2013 JP
2014-126564 Jul 2014 JP
2014-137497 Jul 2014 JP
2014-189478 Oct 2014 JP
2015-502901 Jan 2015 JP
2015-060174 Mar 2015 JP
2015-508369 Mar 2015 JP
2015-092422 May 2015 JP
5748082 Jul 2015 JP
2015-162184 Sep 2015 JP
2015-527946 Sep 2015 JP
5796561 Oct 2015 JP
2016-500458 Jan 2016 JP
2016-021266 Feb 2016 JP
2016-031696 Mar 2016 JP
2016-037446 Mar 2016 JP
2016-506351 Mar 2016 JP
2016-045374 Apr 2016 JP
2016-517380 Jun 2016 JP
2016-124723 Jul 2016 JP
2016-130810 Jul 2016 JP
2016-132140 Jul 2016 JP
2016-144008 Aug 2016 JP
5976561 Aug 2016 JP
2016-173794 Sep 2016 JP
2016-530204 Sep 2016 JP
2016-530987 Oct 2016 JP
2016-203609 Dec 2016 JP
2016-207200 Dec 2016 JP
2016-539067 Dec 2016 JP
2017-502260 Jan 2017 JP
2017-026694 Feb 2017 JP
2017-507878 Mar 2017 JP
6281825 Feb 2018 JP
6340029 Jun 2018 JP
2018-528116 Sep 2018 JP
2018-528912 Oct 2018 JP
2018-529611 Oct 2018 JP
2019-501052 Jan 2019 JP
2021-507273 Feb 2021 JP
2002-0019045 Mar 2002 KR
10-0479282 Aug 2005 KR
10-2008-0023888 Mar 2008 KR
10-2012-0100879 Sep 2012 KR
10-2013-0005776 Jan 2013 KR
10-2014-0111403 Sep 2014 KR
10-2015-0026911 Mar 2015 KR
10-2015-0033969 Apr 2015 KR
10-2015-0036499 Apr 2015 KR
10-2015-0051458 May 2015 KR
10-1550833 Sep 2015 KR
10-2015-0121101 Oct 2015 KR
10-2015-0125971 Nov 2015 KR
10-2016-0118746 Oct 2016 KR
10-1674060 Nov 2016 KR
10-2016-0144008 Dec 2016 KR
10-2017-0000208 Jan 2017 KR
10-2017-0028998 Mar 2017 KR
10-2017-0106263 Sep 2017 KR
10-2017-0107124 Sep 2017 KR
10-2017-0113822 Oct 2017 KR
10-2017-0121674 Nov 2017 KR
10-2018-0028597 Mar 2018 KR
10-2018-0049484 May 2018 KR
10-2018-0049780 May 2018 KR
10-2019-0001864 Jan 2019 KR
10-2019-0081264 Jul 2019 KR
200632435 Sep 2006 TW
200704268 Jan 2007 TW
200821221 May 2008 TW
201017499 May 2010 TW
201405802 Feb 2014 TW
201438895 Oct 2014 TW
201504058 Feb 2015 TW
201523021 Jun 2015 TW
201546006 Dec 2015 TW
201617808 May 2016 TW
201636309 Oct 2016 TW
201637857 Nov 2016 TW
201708135 Mar 2017 TW
201715257 May 2017 TW
201730645 Sep 2017 TW
201928469 Jul 2019 TW
58334 Jul 2018 VN
9425272 Nov 1994 WO
9739074 Oct 1997 WO
9801649 Jan 1998 WO
0073062 Dec 2000 WO
2004087590 Oct 2004 WO
2006095005 Sep 2006 WO
2007108861 Sep 2007 WO
2008042731 Apr 2008 WO
2008153484 Dec 2008 WO
2009072530 Jun 2009 WO
2010125976 Nov 2010 WO
2011029852 Mar 2011 WO
2011115403 Sep 2011 WO
2011144359 Nov 2011 WO
2011155403 Dec 2011 WO
2012005307 Jan 2012 WO
2012058084 May 2012 WO
2012166343 Dec 2012 WO
2013031547 Mar 2013 WO
2013072611 May 2013 WO
2013072612 May 2013 WO
2013174715 Nov 2013 WO
2013175106 Nov 2013 WO
2013176150 Nov 2013 WO
2014045809 Mar 2014 WO
2014085663 Jun 2014 WO
2014107640 Jul 2014 WO
2014118293 Aug 2014 WO
2014172237 Oct 2014 WO
2014175371 Oct 2014 WO
2015031594 Mar 2015 WO
2015055583 Apr 2015 WO
2015057552 Apr 2015 WO
2015084902 Jun 2015 WO
2015085283 Jun 2015 WO
2015141966 Sep 2015 WO
2016007815 Jan 2016 WO
2016007843 Jan 2016 WO
2016010947 Jan 2016 WO
2016010949 Jan 2016 WO
2016027812 Feb 2016 WO
2016028542 Feb 2016 WO
2016028580 Feb 2016 WO
2016044360 Mar 2016 WO
2016069113 May 2016 WO
2016070974 May 2016 WO
2016115311 Jul 2016 WO
2016125713 Aug 2016 WO
2016136758 Sep 2016 WO
2016173699 Nov 2016 WO
2016183059 Nov 2016 WO
2016194916 Dec 2016 WO
2016195301 Dec 2016 WO
2016196531 Dec 2016 WO
2016196540 Dec 2016 WO
2016196546 Dec 2016 WO
2016202605 Dec 2016 WO
2016208967 Dec 2016 WO
2017011270 Jan 2017 WO
2017015392 Jan 2017 WO
2017019851 Feb 2017 WO
2017020040 Feb 2017 WO
2017023673 Feb 2017 WO
2017106081 Jun 2017 WO
2017110560 Jun 2017 WO
2017146866 Aug 2017 WO
2017155932 Sep 2017 WO
2017158031 Sep 2017 WO
2018005646 Jan 2018 WO
2018009504 Jan 2018 WO
2018015392 Jan 2018 WO
2018075853 Apr 2018 WO
2018081068 May 2018 WO
2018102332 Jun 2018 WO
2018125683 Jul 2018 WO
2018129065 Jul 2018 WO
2018160812 Sep 2018 WO
2018200454 Nov 2018 WO
2018200807 Nov 2018 WO
2018213267 Nov 2018 WO
2019055469 Mar 2019 WO
2019055652 Mar 2019 WO
2019074800 Apr 2019 WO
2019075065 Apr 2019 WO
2019151618 Aug 2019 WO
Non-Patent Literature Citations (49)
Entry
“Curved Glass: an obstacle or opportunity in glass architecture”, Retrieved from: https://www.glastory.net/tag/safety-glass/, 2015, 16 pages.
“Product Information Sheet”, Coming® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, Rev: F_090315, 2015, 2 pages.
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages.
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation: C770-16, 2016.
“Stiles Custom Metal, Inc”., Installation Recommendations, Retrieved from: https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf), 2010, 3 Pages.
[NPL-1] Kuribayashi (JP H07-257169 A); Oct. 1995 (EPO machine translation to English). (Year: 1995).
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages.
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages.
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages.
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”, 2013, 8 pages.
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages.
Baillon et al.: “An Improved Method for Manufacturing Accurate and Cheap Glass Parabolic Mirrors”, Nuclear Instruments & Methods in Physics Research. Section A, Elsevier BV * North-Holland, NL, vol. A276, No. 3, 1988, 13 pages, XP000051982.
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages.
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages.
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006.
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages.
Doyle et al; “Manual On Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics, 1989, 31 Pages.
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages.
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages.
Fauercia “Intuitive HMI for a Smart Life On Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI.
“Faurecia: Smart Pebbles”, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles[retrieved on Nov. 23, 2017], 4 Pages.
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136.
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference At Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages.
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages.
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference On Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages.
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (Eds) (2014); 9 Pages.
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages.
Galuppi et al; “Buckling Phenomena In Double Curved Cold-Bent Glass;” Intl. Journal of Non-Linear Mechanics, vol. 64, 2014, pp. 70-84.
Galuppi et al; “Cold-Lamination-Bending Of Glass: Sinusoidal Is Better Than Circular”, Composites Part B, 79, 2015, pp. 285-300.
Galuppi et al; “Large Deformations And Snap-Through Instability Of Cold-Bent Glass”; Challenging Glass 4 & Cost Action TU0905 Final Conference, 2014, pp. 681-689.
Galuppi et al; “Optical Cold Bending Of Laminated Glass”; International Journal Of Solids And Structures, vol. 67-68, 2015, pp. 231-243.
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2001 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146.
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297.
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014).
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469.
Martin Wolf et al., “Metrological Challenges of Curved Displays”, SID Symposium Digest of Technical Papers, May 2015, 4 pages.
Millard; “Bending Glass In The Parametric Age”, Retrieved from: http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age, ENCLOS, 2015, pp. 1-6.
Neugebauer et al; “Let Thin Glass In The Faade Move Thin Glass-New Possibilities For Glass In The Faade”, Conference Paper, Jun. 2018, 12 Pages.
Pambianchi et al; “Corning Incorporated: Designing A New Future With Glass And Optics”; Chapter 1 In “Materials Research For Manufacturing: An Industrial Perspective Of Turning Materials Into New Products”; Springer Series Material Science, Issue 224, 2016, p. 12.
Pegatron Corp. “Pegaton Navigate The Future”; Ecockpit/Center Console Work Premiere; Automotive Worlds, Downloaded on Jul. 12, 2017, 2 Pages.
Photodon, “Screen Protectors For Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015).
Qilin Zhang, “Glass Curtain Wall Structure Design”, Tongji University Press, 2007, 8 pages. (5 pages of English Translation and 3 pages of original Document).
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10.
Stattler, “New Wave—Curved Glass Shapes Design”, Glass Magazine, 2013; 2 Pages.
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550.
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities In Design”; Structural Engineering International, vol. 2, 2004, pp. 95-97.
Wang, “Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques”, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages.
Weijde; “Graduation Plan”, Jan. 2017; 30 Pages.
Werner; “Display Materials And Processes,” Information Display; May 2015; 8 Pages.
Related Publications (1)
Number Date Country
20230311661 A1 Oct 2023 US
Provisional Applications (1)
Number Date Country
62570430 Oct 2017 US
Continuations (1)
Number Date Country
Parent 16754853 US
Child 18207444 US