The present invention relates to a so-called projector-type vehicle lamp using a semiconductor-type light source as a light source.
A vehicle lamp of this type is conventional (for example, Patent Literatures 1, 2). The vehicle lamp of Patent Literature 1 includes a light source, a reflector having a spheroidal reflection surface, and a projection lens, in which a longitudinal axis of the reflector is arranged to be inclined rearward and downward from a second focal point, and the light source is arranged to be inclined downward toward the rear along a long axis of the inclined reflector. The vehicle lamp of Patent Literature 1 is configured such that a light source and a reflector are arranged to be inclined rearward, and light emitted from the light source reflects on the reflector with high efficiency, and enters a projection lens.
The vehicle lamp of Patent Literature 2 includes an LED light source, a spheroidal reflection surface, and a projection lens, in which a longitudinal axis of the reflection surface is arranged to be inclined downward toward the rear, and the LED light source is arranged downward toward the rear. The vehicle lamp of Patent Literature 2 can effectively use directional characteristics of the LED light source.
Patent Literature 1: JP-A-2006-351425
Patent Literature 2: JP-A-2008-288113
However, in the vehicle lamps of Patent Literatures 1, 2 the light source, the LED light source, the reflector and the reflection surface are arranged to be simply inclined rearward. Thus, the reflector and the reflection surface shift greatly to a lower side relative to the lens axis of the projection lens. Therefore, the vertical dimension may increase.
A problem to be solved by the present invention is that the vertical dimension may increase in a conventional vehicle lamp.
The present invention as summarized as a vehicle lamp, comprising: a reflector having a basically elliptical reflection surface; a semiconductor-type light source in which a center of a light emission surface is located at a first focal point or near of the reflection surface; and a projection lens in which a lens focus is located at a second focal point or near of the reflection surface, wherein a lens axis of the projection lens is shifted upward or downward relative to a center of the light emission surface, the reflection surface is rotated upward or downward about a center or its vicinity of the light emission surface, the light emission surface is rotated upward or downward about a center or its vicinity of the light emission surface so as to face the reflection surface, and a rotation angle of the light emission surface is greater than a rotation angle of the reflection surface.
The present invention as summarized as a vehicle lamp, comprising: a reflector having a basically elliptical reflection surface; a semiconductor-type light source in which a center of a light emission surface is located at a first focal point or near of the reflection surface; and a projection lens in which a lens focus is located at a second focal point or near of the reflection surface, wherein the second focal point and the lens focus are located upward or downward than the first focal point, an optical axis of the reflection surface and a lens axis of the projection lens cross at the second focal point or the lens focus or in the vicinity thereof, the light emission surface and the optical axis cross at the first focal point or at a center or its vicinity of the light emission surface, and an angle formed by an extension line of the light emission surface and the lens axis is greater than an angle formed by the optical axis and the lens axis.
In the vehicle lamp according to the present invention, the rotation angle of the light emission surface of the semiconductor-type light source is greater than the rotation angle of the reflection surface of the reflector. In other words, the angle formed by the extension line of the light emission surface of the semiconductor-type light source and the lens axis of the projection lens is greater than the angle formed by the optical axis of the reflection surface of the reflector and the lens axis of the projection lens. Thus, it is possible to reduce the angle of rotating the reflector, and possible to reduce the dimension that the reflection surface of the reflector shifts to the lower side or the upper side relative to the lens axis of the projection lens, as compared with the conventional vehicle lamp. As a result, it is possible to make the vertical dimension compact. Further, in the vehicle lamp of the present invention, it is possible to efficiently and effectively utilize the light from the semiconductor-type light source by increasing the angle of rotating the semiconductor-type light source to be greater than the angle of rotating the reflector, while reducing the angle of rotating the reflector.
Hereinafter, two exemplary embodiments of the vehicle lamp according to the present invention will be described in detail with reference to the drawings. The invention is not limited to the embodiments. In this specification and attached claims, front, back, top, bottom, left, right are front, back, top, bottom, left, right when a vehicle lamp according to the present invention is mounted on a vehicle.
In
The lamp housing and the lamp lens (e.g., a plain outer lens) define a lamp chamber (not shown). The semiconductor-type light source 2, the projection lens 3, the reflector 4, and the heat sink member 5 configure a projector-type lamp unit. The lamp units 2, 3, 4, 5 are arranged in the lamp chamber, and attached to the lamp housing via a vertical direction optical axis adjustment mechanism (not shown) and a horizontal direction optical axis adjustment mechanism (not shown).
The light emission surface 20 of the semiconductor-type light source 2 is faced upward. The reflector 4 is arranged on the upper side relative to the semiconductor-type light source 2. The semiconductor-type light source 2 and the reflector 4 are arranged on the rear side relative to the projection lens 3.
The heat sink member 5 is made of a material having high thermal conductivity, such as resin or metal die cast (aluminum die cast). The heat sink member 5 comprises a plate-shaped mounting portion, and a fin-shaped heat radiating portion. The heat sink member 5 is also used as a mounting member for mounting the semiconductor-type light source 2, the projection lens 3, and the reflector 4.
The reflector 4 is made of a material with high thermal conductivity and light-impermeability, such as resin or metal die cast (aluminum the cast). The reflector 4 is attached to the heat sink member 5. The reflector 4 is formed in a hollow shape in which front and lower portions are opened, and rear and upper portions and right and left side portions are closed. In the concave inner surface of the closed portion of the reflector 4, a reflection surface (convergent reflection surface) 40 comprising a free-form surface based on a spheroidal (elliptical) surface is provided. The reflection surface 40 is configured to reflect light L1 from the semiconductor-type light source 2 toward the projection lens 3 as reflected light (L1). The reflection surface 40 may be a reflection surface comprising a simple spheroidal surface.
The reflection surface 40 comprises a free-form surface. Thus, the reflection surface 40 does not have a single focus, in strict sense, in a first focal point F1 and second focal point (or second focal line) F2, but shares substantially the same focal point, because a difference in the focal length of the plurality of reflection surfaces is small. In this specification and drawings, a focal point is simply referred to as a first focal point or a second focal point.
The reflection surface 40 has an optical axis Z2 that connects the first focal point F1 and the second foal point F2. In the optical axis Z2 of the reflection surface 40, the reflection surface 40 does not have a single optical axis, in strict sense, but shares substantially the same optical axis, because a difference in the optical axis of the plurality of reflection surfaces is small. In this specification and drawings, the optical axis is simply referred to as an optical axis.
The second focal point F2 is located above the first focal point F1. In other words, the reflection surface 40 is formed by rotationally moving the second focal point F2 of the projection lens 3 upward about the center or near the center of the first focal point F1 of the semiconductor-type light source 2. As a result, in the optical axis Z2 of the reflection surface 40, the front side is inclined upward, and the rear side is inclined downward.
An optical axis Z20 of a reflection surface in an ordinary projector-type lamp unit (hereinafter referred to as an “ordinary vehicle lamp (1)”) is, as shown in
The semiconductor-type light source 2 is a self-emitting semiconductor-type light source, such as an LED, OEL, or OLED (organic EL). The semiconductor-type light source 2 has the light emission surface 20 for radiating the light L1. The semiconductor-type light source 2 is attached to the heat sink member 5. The center O of the light emitting surface 20 of the semiconductor-type light source 2 is located at or near the first focal point F1 of the reflection surface 40 of the reflector 4.
The light emission surface 20 of the semiconductor-type light source 2 is faced upward, and opposite to the reflection surface 40 of the reflector 4. In the light emission surface 20 of the semiconductor-type light source 2, the front side is inclined upward, and the rear side is inclined downward about the center O or near of the the light emission surface 20.
The projection lens 3 comprises a resin lens made of PC material, PMMA material, or PCO material. In other words, the light L1 emitted from the semiconductor-type light source 2 does not have high heat, and the projection lens 3 may be a resin lens. The projection lens 3 is attached to the heat sink member 5 via a holder (not shown).
The projection lens 3 radiates a predetermined main light distribution pattern, for example, a high beam light distribution pattern (not shown), that is the light L1 from the semiconductor-type light source 2, to the outside, that is, the forward of a vehicle. The projection lens 3 is a basically aspherical projection lens. The projection lens 3 is configured with a rear incident surface 30 and a front exit surface 31. The incident surface 30 faces the reflection surface 40 of the reflector 4. The incident surface 30 is formed plain or substantially plain aspherical (convex or concave with respect to the reflection surface 40). The exit surface 31 forms a convex aspherical surface.
A lens focus F3 of the projection lens 3 (Meridional image plane that is a focal plane of object space side) coincides or nearly coincides with the second focal point F2 of the reflection surface 40. Thus, the lens focus F3 is located above the first focal point F1. As a result, the projection lens 3 moves upward in accordance with the amount of upward rotational movement of the second focal point F2 of the reflection surface 40. In other words, the lens axis Z1 of the projection lens 3 moves upward in accordance with the amount of upward rotational movement of the second focal point F2 of the reflection surface 40. Thus, the optical axis Z2 and the lens axis Z1 cross at the second focal point F2 or at the lens focus F3 or in the vicinity thereof.
Here, the light L1 emitted from the light emission surface 20 of the semiconductor-type light source 2, that is, the light passing through or near the lens axis Z1 of the projection lens 3 (see the solid arrow in
A lens axis Z10 in an ordinary vehicle lamp (1) coincides or nearly coincides with the optical axis Z20 as shown in
Hereinafter, the relationship between the reflector 4, the semiconductor-type light source 2, and the projection lens 3 will be described with reference to
First, as shown in
On the other hand, as shown in
Further, as indicated by the solid line in
Furthermore, as shown in
And, as shown in
In other words, as shown in
The vehicle lamp 1 according to the embodiment 1 has the above configuration. Hereinafter, the functions of the embodiment will be described.
When the semiconductor-type light source 2 is turned on, the light L1 emitted from the light emission surface 20 of the semiconductor-type light source 2 reflects on the reflection surface 40 of the reflector 4, and enters the projection lens 3. The reflected light L1 passes through the projection lens 3, and is emitted to the outside, that is, forward of a vehicle, as a predetermined light distribution pattern, a high beam light distribution pattern in this example.
At this time, out of the light L1 emitted from the light emission surface 20 of the semiconductor-type light source 2, the light that is vertical or nearly vertical to the center O of the light emission surface 20 of the semiconductor-type light source 2 (see the solid arrow in
The heat generated in the semiconductor-type light source 2 is radiated to the outside via the heat sink member 5.
The vehicle lamp 1 according to the embodiment 1 has the above configuration and functions. Hereinafter, the effects of the embodiment will be described.
In the vehicle lamp 1 according to the embodiment 1, as shown in
Further, in the vehicle lamp 1 according to the embodiment 1, it is possible to efficiently and effectively utilize the light L1 from the semiconductor-type light source 2, by increasing the angle θ1 of rotating the semiconductor-type light source 2 to be greater than the rotation angle θ2 of the reflector 4, thereby it is possible to make the vertical dimension compact, while reducing the angle η2 of rotating the reflector 4. In other words, out of the light L1 emitted from the light emission surface 20 of the semiconductor-type light source 2, the light that is vertical or nearly vertical to the center O of the light emission surface 20 of the semiconductor-type light source 2 (see the solid arrow in
In the vehicle lamp 1 according to the embodiment 1, the light emission surface 20 of the semiconductor-type light source 2 is faced upward. The reflector 4 is arranged on the upper side relative to the semiconductor-type light source 2. On the other hand, in a vehicle lamp 100 according to the embodiment 2, the light emission surface 20 of the semiconductor-type light source 2 is faced downward. The reflector 4 is arranged on the lower side relative to the semiconductor-type light source 2.
In the vehicle lamp 100 according to the embodiment 2, the lens axis Z1 of the projection lens 3 is shifted downward relative to the center O of the light emission surface 20, the reflection surface 40 is rotated downward about the center O or its vicinity of the light emission surface 20, the light emission surface 20 is rotated downward about the center O or its vicinity of the light emission surface 20 so as to face the reflection surface 40, and the rotation angle θ1 of the light emission surface 20 is greater than the rotation angle θ2 of the reflection surface 40.
In other words, in the vehicle lamp 100 according to the embodiment 2, the second focal point F2 and the lens focus F3 are located below the first focal point F1, the optical axis Z2 of the reflection surface 40 and the lens axis Z1 of the projection lens 3 cross at the second focal point F2 or the lens focus F3 or in the vicinity thereof, the light emission surface 20 and the optical axis Z2 cross at the first focal point F1 or at the center O or its vicinity of the light emission surface 20, and the angle θ1 formed by the extension line L2 of the light emission surface 20 and the lens axis Z1 is greater than the angle θ2 formed by the optical axis Z2 and the lens axis Z1.
The vehicle lamp 100 according to the embodiment 2 has the above configuration. Thus, it is possible to achieve almost the same effects as the vehicle lamp 1 of the embodiment 1.
In the embodiments 1, 2, a headlamp for radiating a high beam light distribution pattern has been described. However, in the present invention, a vehicle lamp may radiate a light distribution pattern other than a high beam light distribution patter, for example, a low beam light distribution pattern. In this case, as shown by the two-dot chain line in
Number | Date | Country | Kind |
---|---|---|---|
2013-078413 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/060015 | 4/4/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/163197 | 10/9/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7410282 | Eichelberger | Aug 2008 | B2 |
20050068787 | Ishida | Mar 2005 | A1 |
20050259431 | Iwasaki | Nov 2005 | A1 |
20060215415 | Suzuki | Sep 2006 | A1 |
20090097269 | Stauss | Apr 2009 | A1 |
20090103323 | Ishida | Apr 2009 | A1 |
20090231874 | Kishimoto | Sep 2009 | A1 |
20090316423 | Futami | Dec 2009 | A1 |
20110032722 | Ishida | Feb 2011 | A1 |
20110170306 | Yatsuda et al. | Jul 2011 | A1 |
20110205748 | Yatsuda | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2006-351425 | Dec 2006 | JP |
2008-288113 | Nov 2008 | JP |
2010-161048 | Jul 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20160047520 A1 | Feb 2016 | US |