1. Field of the Invention
This invention relates generally to a system and method for estimating vehicle lateral velocity and, more particularly, to a system and method for estimating vehicle lateral velocity and surface coefficient of friction using front and rear axle lateral force versus side-slip angle tables and standard sensor measurements.
2. Discussion of the Related Art
Vehicle stability control systems are known in the art to enhance vehicle stability in the event that the system detects that the vehicle may not be operating as the driver intends. For example, on an icy or snowy surface, the driver may steer the vehicle in one direction, but the vehicle may actually travel in another direction. Signals from various sensors, such as yaw-rate sensors, hand-wheel angle sensors, lateral acceleration sensors, etc., can detect the vehicle instability. Calculations made by these types of vehicle stability control systems often require an estimation of the vehicle's lateral velocity and/or the surface coefficient of friction. Typically, it is necessary to know at least some assumption of the surface coefficient of friction to estimate the vehicles lateral velocity. The estimation of the surface coefficient of friction based on a lateral acceleration is typically not robust relative to a banked curve because of the gravity bias effect on the body mounted lateral accelerometer.
Estimation of a vehicle's lateral velocity, or vehicle side-slip angle, has been a research subject for many years. Known work has shown the performance of four different methods to estimate side-slip angle. These methods include the integration of a lateral acceleration signal, with and without a “washout” filter, a simple algebraic approach and a non-linear observer with and without measurement update, sometimes referred to as an output injection. Other work combined a model-based observer with direct integration of vehicle kinematic equations based on weights determined by the degree of a nonlinear state of the vehicle. The nonlinear state of the vehicle is established by the deviation of the yaw-rate from a predetermined reference value. The resulting observer utilizes an estimate of surface coefficient of friction and road bank angle to maintain accuracy and robustness. Other work demonstrated the performance of an extended Kalman filter based on the single track bicycle model. The estimation of surface coefficient of friction is based on a least squares regression of the difference between the actual and tire model-based lateral forces. The stability of the proposed observer on banked roads and in the presence of sensor bias was not addressed. Other work proposed two nonlinear observers based on a two track vehicle model. The proposed observers use the estimation of cornering stiffness from a nonlinear least squares technique.
Current production yaw stability control systems do not rely directly on feedback control of lateral velocity or side-slip angle estimates because a production level robust and accurate estimate of lateral velocity has not been fully developed. However, production yaw stability control systems do utilize an estimate of a vehicle's lateral velocity to influence or modify the yaw-rate error used for feedback control. The lateral velocity estimate can influence the yaw control strategy, but typically only when a non-zero yaw-rate error is calculated. In general, there are dynamic conditions in which the vehicle develops a side-slip angle that the yaw stability controller will not detect and stabilize. When the vehicle develops large side-slip angles, it becomes less responsive to steering input and more difficult for the driver to control. This can happen, for example, during open loop steering maneuvers on low coefficient of friction surfaces. During an open loop steering maneuver, the driver inputs a ramp steer up to 90° and holds the steering wheel angle. While such maneuvers might seem unreasonable because they require the driver not to correct a possible vehicle over-steer behavior, it cannot be assumed that all drivers would know when and how to counter-steer the vehicle out of the unstable condition. Any instance in which the vehicle's side-slip angle increases to a relatively large level for a given surface the driver may have trouble controlling the vehicle. Standard stability control systems allow the estimation of lateral velocity to rely only on the use of yaw-rate, lateral acceleration, steering wheel angle, and wheel speed sensor measurements. The estimation of lateral velocity also requires an estimate of the lateral surface coefficient of friction.
In accordance with the teachings of the present invention, a system and method are disclosed for estimating vehicle lateral velocity and surface coefficient of friction using front and rear axle lateral force versus side-slip angle tables and sensor measurements. The sensor measurements include lateral acceleration, yaw-rate, longitudinal speed and steering angle of the vehicle. The method includes calculating front and rear axle lateral forces and front and rear side-slip angles on the axles of the vehicle. The method also includes identifying two equations from the calculated lateral forces and the vehicle measurements. The method provides tables that identify a relationship between the calculated front and rear axle lateral forces and the front and rear side-slip angles, and determines the vehicle lateral velocity and surface coefficient of friction from the tables.
Additional features of the present invention will become apparent from the following description and appended claims taken in conjunction with the accompanying drawings.
The following discussion of the embodiments of the invention directed to a system and method for estimating surface coefficient of friction is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses. For example, the discussion below concerns estimating surface coefficient of friction for a vehicle system. However, as will be appreciated by those skilled in the art, the coefficient of friction estimation system may have other applications.
The present invention proposes an algorithm for estimating vehicle lateral velocity, or side-slip angle, that requires measurement inputs from a standard vehicle stability enhancement system's (VSES) sensor set, such as, steering wheel angle, yaw-rate, lateral acceleration and wheel speeds. The proposed algorithm employs a vehicle-dependent nonlinear lateral force model, a kinematic observer and a surface coefficient of friction estimator. The nonlinear force model is obtained by performing a set of nonlinear handling maneuvers on at least three different surfaces, such as high, medium and low coefficient of friction surfaces, while measuring longitudinal and lateral vehicle speed with an optical sensor, in addition to the standard VSES measurements. This lateral force model is then used to estimate the vehicle lateral forces. The model provides an estimate of the vehicle lateral velocity until the tire's lateral forces saturate the surface adhesion capability. The model is also robust to bank angle. However, the model cannot provide robust lateral velocity estimates when the tires saturate the surface lateral capability and becomes nonlinear. In addition, the model cannot provide robust estimates when tire characteristics change due to tire change, wear, aging, etc. To estimate the lateral velocity correctly in both linear and nonlinear regions, and to compensate for tire characteristic changes, a kinematic observer is integrated with the lateral force model. The estimation of the surface coefficient of friction μ is a critical part of assessing the transition from linear to nonlinear tire behavior. The proposed surface coefficient of friction estimation is also insensitive to bank angle.
First, a fitted model of the lateral axle force relationship to side-slip angle is obtained. An important part of the observer used to estimate lateral velocity νy is determining the relationship between the axle side-slip angles αF, αF and the lateral forces at each axle FyF, FyR. Often, the relationship between the axle side-slip angles and the lateral axle forces is modeled using a simple linear tire model by FyF=CFαF and FyR=CRαR, where CF and CR are the front and rear cornering stiffness, respectively. This model breaks down when the lateral force saturates, which is often accounted for by a second cornering stiffness at some axle side-slip angle value or by using a non-linear tire model that mimics the lateral force saturation as the side-slip angle increases.
The model employed in the observer uses neither of those approaches, but instead uses front and rear axle lateral forces versus side-slip angle relation including suspension compliance. The lateral force versus side-slip angle tables are empirically obtained by performing nonlinear handling maneuvers while measuring lateral acceleration, yaw-rate, steering wheel angle, longitudinal velocity and lateral velocity. One advantage of this model over other methods is that it uses the measured vehicle data directly. Since the data is collected on the vehicle, the tire non-linearity, suspension effects, etc. are included in the values that go into the table. The resulting model is a lumped parameter relation that encompasses all compliance elements that affect the lateral forces. Such a model is in general more accurate for vehicle dynamics use than other models typically used, such as derived from tire machine experimental measurements.
One method for collecting the data is to instrument a vehicle and take measurements on various surfaces while allowing the vehicle to achieve large side-slip angle values. This is best achieved by slalom and step steering to the steering wheel angle corresponding to the maximum lateral capability of the vehicle 10 and then holding the input. As the steering wheel 24 is held, the vehicle 10 should slowly develop the desired level of side-slip angle for this test. The driver can then steer out of the skid. This procedure may need to be adjusted based on the vehicle 10.
Once the vehicle data is collected, the lateral force versus side-slip angle tables can be generated by calculating lateral forces and side-slip angles at the front and rear axles 16 and 22 from the measurements. The axle forces are calculated from lateral acceleration and yaw rate measurements.
Lateral acceleration measurements should be compensated for vehicle roll because lateral acceleration measurements are affected by gravity due to vehicle roll. Vehicle roll angle can be estimated using a 1-DOF (degree-of-freedom) vehicle roll dynamics model with lateral acceleration input. Previous research has shown that roll angle and roll rate estimation based on a 1-DOF model provides accurate and robust estimation results in both linear and non-linear ranges. The inertial force Msay due to lateral acceleration produces the roll moment Msayhs on the vehicle sprung mass, where Ms is the sprung mass, ay is the lateral acceleration and hs is the sprung mass center of gravity height above the roll axis. The roll moment then generates the vehicle roll angle φ. Taking into account the effect of gravity, the equation of vehicle roll motion is given by:
(Ix+Mshs2){umlaut over (φ)}+cφ{dot over (φ)}+kφφ=Msay,mhs (1)
Where, Ix is the moment of inertia about its roll axis, kφ is the roll stiffness and cφ is the roll damping coefficient. The value ay,m represents the measured lateral acceleration, which includes gravity due to vehicle roll (ay,m=ay+g sin φ).
The lateral acceleration measurement is then compensated for gravity due to vehicle roll based on equation (1) as:
ay,m=ay+g sin φ (2)
Where,
Front and rear axle forces are then calculated from compensated lateral acceleration and yaw-rate measurements based on the force and moment balance as:
Where, FyF and FyR are front and rear lateral forces, respectively, δ is the steering angle at the front axle 16, a and b are longitudinal distances of the front and rear axles 16 and 22 from the center of gravity (CG), Iz is the moment of inertia about its yaw axis and τ is the vehicle yaw-rate. Equation (5) is based on a single track bicycle model.
The front and rear axle side-slip angles are calculated from measured lateral velocity, yaw-rate and longitudinal velocity. Because vehicle roll motion adds an extra component to the lateral velocity measurement, measured lateral velocity is compensated for roll motion using roll rate information. Similarly to the lateral acceleration case, vehicle roll rate is estimated using the 1-DOF model described in equation (1) as:
νy,compensated=νy,m+cνy,rrp (6)
Where,
The value νy,m is the measured lateral velocity and p is the vehicle roll rate. The value cνy,rr is a coefficient for translating roll rate to an additional lateral velocity component, and can be empirically determined based on static vehicle roll center height. Front and rear axle side-slip angles are then computed based on kinematic relationship between the lateral velocity νy and the axle side-slip angles αF,αR as:
Where, νx is the vehicle longitudinal velocity and δ is the steering angle. Front and rear axle lateral force versus side-slip angle tables are generated using calculated forces and side-slip angles as described in equations (8) and (10).
The lateral force side-slip angle tables can be generated by calculating lateral forces and side-slip angles at the front and rear axles 16 and 22. Axle forces are calculated from lateral acceleration and yaw-rate measurements. In addition, front and rear axle side-slip angles are calculated from measured lateral velocity, yaw-rate and longitudinal velocity. Lateral acceleration and lateral velocity measurements should be compensated for vehicle roll motion because lateral acceleration measurement is affected by gravity due to vehicle roll, and vehicle roll motion adds an extra component in lateral velocity measurements.
Axle lateral force versus side-slip angle tables can be provided from experimental data on dry asphalt (high μ) and snow field (low μ). The actual table data can be fit with any non-linear function. For example, the table data can be fit using a hyperbolic tangent function with the following form.
Where, FyF and FyR are front and rear lateral forces, αF and αR are front and rear axle side-slip angles and μ represents the surface coefficient of friction. The values ctableF, dtableF, ctableR and dtableR are function parameters.
Note that the slope of each curve in the linear range is almost the same, which implies that surface determination is not easily achieved in the linear range. It is assumed that there is no significant lag between the lateral tire side-slip angle and the lateral tire force.
The estimation of surface coefficient of friction μ is required to determine an accurate and robust estimation of vehicle lateral velocity. One proposed estimation method assumes the use of a standard VSES sensor set including a yaw-rate sensor, a lateral acceleration sensor, a steering wheel angle sensor and wheel speeds sensors. Common coefficient of friction μ estimation methods are typically based on the measurement of lateral acceleration and/or its error with respect to a tire model based estimate.
One relevant issue when relying on the measured lateral acceleration signal is its sensitivity to road bank angle. When a vehicle is driven on a banked road, or an on-camber curve, the lateral acceleration signal outputs a lower acceleration due to the gravity bias. Thus, in general, if the lateral acceleration signal is used to determine the surface coefficient of friction μ on banked roads, the accelerometer would suggest that the surface coefficient of friction μ is equivalent to a low value of the coefficient of friction μ. Such wrong interpretation of the surface coefficient of friction would cause the estimate of lateral velocity to diverge.
In equations (11) and (12), a tire mathematical model was presented that fits the experimental measurements quite accurately. The proposed model demonstrates that the axles' lateral forces are a function of the surface coefficient of friction and the vehicle's lateral velocity. Furthermore, it is clear that the slope of the lateral tire force with respect to the axle's side-slip angle is practically the same for all surface coefficients of friction. This is because it is very difficult to fit different lines through the linear data spread acquired experimentally. Based on this statement, it is concluded that the estimation of the surface coefficient of friction μ can only be accurately performed when the tire forces saturate, or almost saturate, and the vehicle's dynamic state is nonlinear. In order to establish when the vehicle dynamic state is linear or nonlinear, kinematic relations need to be introduced.
Where, L is the vehicle wheel base, νx is the vehicle speed and r is the vehicle yaw-rate.
This simple relationship reflects the kinematics of a general plane motion of a rigid body. It states that the difference between the lateral velocity at the front and the rear axles 16 and 22 is equal to the product of the angular velocity and the wheelbase. Equation (13) holds for any surface coefficient of friction and is independent of tire dynamics and a vehicle's inertial parameters. The front and rear axle side-slip angles can be related to the lateral force and lateral coefficient of friction μ through the following generic nonlinear function.
αF=ftableF(FyF,μ) (14)
αR=ftableR(FyR,μ) (15)
By introducing the nonlinear equations (14) and (15) into equation (13), the following equation (16) is obtained.
The front and rear axle lateral forces FyF and FyR are estimated by equation (16). In an alternate embodiment, the front and rear axle lateral forces FyF and FyR are measured. All of the variables in the equation are insensitive to the road bank angle effects since all the equations are considered in the road plane. An interesting characteristic of equation (16) is that there is only one unknown, the surface coefficient of friction μ. However, solving equation (16) is non-trivial due to the lack of a unique solution. Moreover, a simple and effective method to solve equation (16) numerically is yet to be found.
Even without a unique solution, equation (16) is very useful to determine when the vehicle dynamic state is nonlinear.
Equation (17) holds only when the vehicle is driven in the linear region, typically when the lateral acceleration is below 3 m/sec2. When the vehicle's dynamic state is nonlinear, equation (17) becomes an inequality and the coefficient of friction μ can be estimated where the tire forces are saturated in the nonlinear region.
For all practical purposes, when the error between the two sides of equation (17) exceeds a pre-established threshold, the coefficient of friction μ is approximated by the following relation.
Where, FyF,MAX and FyR,MAX are front and rear axle maximum lateral force at μ=1, respectively.
The value μestimate is gradually returned to the default value of one when the vehicle kinematics condition is such that the difference between the left and right hand side of equation (18) is less than the threshold. The threshold is vehicle-dependent and can be determined empirically considering the noise level of the measured data. The threshold is in general a function of forward velocity and steering wheel angle.
In summary, the estimate of lateral surface coefficient of friction μestimate is given by the following two conditions.
The proposed coefficient of function μ estimation is robust for banked curve and is sufficiently accurate if used to estimate the vehicle's lateral velocity.
A discussion above is given for estimating the vehicle lateral velocity νy and the surface coefficient of friction μ. According to another embodiment, the lateral velocity νy and the surface coefficient of friction μ can be estimated using an algebraic estimator that employs at least part of the discussion above, including the lateral force versus tire side-slip angle tables shown in
The resulting estimated lateral velocity νy and surface coefficient of friction μ are robust to bank angle bias because the table model representation of the force side-slip angle relation is insensitive to bank angle effects. Furthermore, since the table look-up relation is of an algebraic nature, the resulting lateral velocity estimate does not accumulate sensor bias and/or sensitivity errors.
The lateral velocity νy and the coefficient of surface friction μ are simultaneously estimated by algebraically solving the relationship between the lateral axle force and the side-slip angle. This approach purely relies on the front and rear axle lateral forces versus side-slip angle tables and does not use any vehicle lateral dynamics model.
Front and rear axle forces are calculated from compensated lateral acceleration and yaw-rate measurements based on the force and moment balance as:
Where, δ is the steering angle at the front axle 16, a and b are longitudinal distances of the front and rear axles 16 and 22 from the center of gravity, Iz is the moment of inertia about its yaw axis and r is the vehicle yaw-rate. Equation (20) is based on a single track bicycle model.
Two equations with two unknowns are then generated from the calculated lateral forces and available measurements as follows.
Where, the lateral velocity νy and the coefficient of friction μ are the two unknowns.
The lateral velocity νy and the coefficient of friction μ can be estimated by solving equations (21) and (22) with respect to the lateral velocity νy and the coefficient of friction μ. However, the solution of these non-linear equations may not be unique, especially when the force is small and in the linear range, or may not be stable due to measurement noise, especially when the force is large and near the limit.
To avoid providing unstable or unrealistic solutions, equations (21) and (22) need to be solved with a constraint based on a kinematic relationship between lateral acceleration ay and the rate of change of lateral velocity {dot over (ν)}y as:
{dot over (ν)}y=ay−rνx (23)
The rate of change of lateral velocity {dot over (ν)}y is represented in terms of lateral acceleration ay, yaw-rate r and longitudinal velocity νx in equation (23). Because all of the terms in the right side of equation (23) are measured or estimated, the rate of change of the lateral velocity νy can be calculated as follows.
{dot over (ν)}y|measured=ay,compensated−rνx (24)
At the same time, the rate of change of the lateral velocity can be estimated at every sample time from the lateral velocities at the current and previous time steps as:
Where, νy(k) and νy(k−1) represent lateral velocities at the current and previous time steps, respectively, and Δt represents the time step size.
The estimated rate of change of the lateral velocity according to equation (25) should be consistent with the measured rate of change of the lateral velocity according to equation (24). Therefore, equations (21) and (22) are solved with the following constraints.
Where, Kνydot,threshold is a vehicle-dependent threshold, which can be empirically determined considering the noise level of the measurements.
According to another embodiment of the invention, the vehicle lateral velocity νy is estimated using a dynamic or closed loop observer. The discussion below for this embodiment also employs at least part of the discussion above concerning the vehicle lateral velocity νy. The closed loop observer is based on the dynamics of a single track bicycle model with a nonlinear tire force relations. Such an observer representation results in two state variables, namely, estimated yaw-rate r and lateral velocity νy as:
In equations (27) and (28), all of the variables with ^ are estimates, δ is the road wheel angle, m is the vehicle mass, Iz is the vehicle's moment of inertia and K is the yaw-rate observer gain. The gain K is chosen based on offline tuning. In general, this gain can be made a function of forward velocity. The front and rear axle forces are described by the hyperbolic tangent fit function discussed above in equations (11) and (12) and rewritten as:
Inverting these two functions, assuming an estimate of the coefficient of friction μ is available, and calculating the axle forces from the available measurement, an estimate of the front and rear axle side-slip angles can be given as:
Two lateral velocities are computed from the side-slip angles and kinematics as:
νyF=νx tan({circumflex over (α)}Ftable+δ)−ar (32)
νyR=νx tan({circumflex over (α)}Rtable+δ)+br (33)
In equations (29) and (30), four lateral force parameters cf, df, cr and dr have been introduced that result from the analysis above, and the estimate of front and rear axle side-slip angles defined, respectively, as:
From this, front and rear axle forces are obtained as:
A virtual lateral velocity νyvirtual that minimizes the error between the estimated and the measured lateral forces is then determined as:
An observer based on a bicycle model is updated with the yaw-rate and virtual lateral velocity measurements as:
It should be noted that the steering ratio is typically not a linear function of the steering wheel angle. In this context, it is assumed that a fixed steering ratio is employed using an on-center value. However, in practical implementation it would be more appropriate to implement a look-up table that describes the steering ratio as a function of steering wheel angle magnitude. The implementation of the proposed dynamic observer requires the estimate of the surface coefficient of friction μ discussed above.
According to another embodiment of the present invention, the vehicle lateral velocity νy is estimated using a kinematic observer or estimator. A kinematic estimator is provided using a closed loop Luenberger observer with a kinematic relationship between the lateral velocity and standard sensor measurements for lateral acceleration, yaw-rate and vehicle longitudinal velocity. Measurement updates for the Luenberger observer are based on virtual lateral velocity measurements from front and rear axle lateral force versus side-slip angle tables. The tables represent relationships between lateral force and side-slip angle for combined tire and suspension, which provides the model with a lumped parameter that encompasses everything that affects the lateral forces including tire non-linearity, suspension effect, etc. The lateral velocity estimation is robust to road bank and does not accumulate sensor bias and sensitivity errors.
The kinematic estimator is constructed using a closed-loop Leunberger observer. The observer is based on the kinematic relationship between lateral acceleration measurement and the rate of change of the lateral velocity νy as:
{dot over (ν)}y=ay−rνx (42)
ay,m=ay−bay (43)
Where, bay represents the bias of the lateral accelerometer.
A virtual lateral velocity measurement is calculated using the front and rear axle lateral force verses side-slip angle tables with measured lateral acceleration, yaw-rate and steering angle. The tables give the front and rear axle lateral force relation to the front and rear axle side-slip angles as:
Fy=ftable(α,μ) (44)
Such as:
The front and rear axle lateral forces are calculated from the lateral acceleration and yaw-rate measurements as:
The lateral acceleration measurement is compensated for vehicle roll.
The front and rear axle side-slip angles are estimated from the calculated front and rear axle lateral forces using the tables.
αtableF=ftableF−1(FyF,m,μ) (48)
αtableR=ftableR−1(FyR,m,μ) (49)
Multiple virtual lateral velocities are computed from the front and rear side-slip angles as:
νyvirtual=fα,νy(αtableF,αtableR) (50)
For example,
νy,αFvirtual=νx tan(αF+δ)−ar (51)
νy,αRvirtual=νx tan(αr)+br (52)
νy,ανevirtual=(νy,αF+νy,αR)/2 (53)
One virtual lateral velocity is chosen to minimize the error between the measured force and the estimated force as:
Fy,err=|FyF,m+FyF,estimated|+|FyR,m−FyR,estimated| (54)
The estimated force can be calculated as:
The observer gain is adaptively changed based on the lateral force and the difference between the measured front and rear axle lateral velocity and the estimated force as:
Kνy=Gνy,fFGνy,fRGνy,dνy (57)
Kbay=Gbay,fFGbay,fRGbay,dνy (58)
Where, Gνy,fF and Gbay,fF are a non-linear function of the front axle force FyF, Gνy,fR and Gbay,fR are a non-linear function of the rear axle force FyR, and Gνy,dνy and Gbay,dνy are adaptively changed based on dνy,FR, which is the difference between the measured front and real axle lateral velocity and the estimated.
A linear dynamic system can be constructed using inertial measurements as the input.
While the kinematic relationship in equation (60) is always valid and robust regardless of any changes in vehicle parameters and surface condition, direct integration based on equation (60) can accumulate sensor errors and unwanted measurements from vehicle roll and road bank angle. Note that equation (60) does not have a term for effects from vehicle roll and road bank explicitly, so the value bay will include all of these unmodeled effects as well as the true sensor bias. To avoid the error accumulation due to these effects, the observer adopts measurement updates from virtual lateral velocity measurement using the front and rear axle lateral force versus side-slip angle tables as follows.
Where, Kνy and Kbay are the observer gains and νyvirtual is the virtual lateral velocity measurement from the front and rear axle lateral force versus side-slip angle tables.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5747682 | Hirano | May 1998 | A |
6125319 | Hac et al. | Sep 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6195606 | Barta et al. | Feb 2001 | B1 |
6453226 | Hac et al. | Sep 2002 | B1 |
6547343 | Hac | Apr 2003 | B1 |
6549842 | Hac et al. | Apr 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20100131145 A1 | May 2010 | US |