This application claims the priority benefit under 35 U.S.C. §119 of Japanese Patent Application No. 2010-268886 filed on Dec. 2, 2010, which is hereby incorporated in its entirety by reference.
The presently disclosed subject matter relates to a vehicle light.
Japanese Patent Application Laid-Open Nos. 2010-21001 and 2008-186786 discloses that some vehicle lights such as vehicle headlamps are conventionally known which allow a beam of light incident upon an end face of a light guide plate (or a lens) to be transmitted from the front end face of the light guide plate.
The vehicle lights disclosed in these patent references employ a light guide plate having a reflective structure such as reflective dots on the rear end face, so that the light incident upon the lower face of the light guide plate can be reflected by the reflective structure provided on the rear end face and then transmitted from the front end face, thereby allowing the front end face of the light guide plate to emit light.
However, the vehicle lights disclosed in the above patent references can control the light incident on the lower face of the light guide plate not in the right-to-left direction but only in the back-and-forth direction. Thus, in the conventional art, it may not always be possible for one light source to emit light from an area widened in the right-to-left direction on the front end face of the light guide plate. Accordingly, in the conventional art, to emit light from a widened area on the front end face of the light guide plate elongated in the right-to-left direction, a number of light sources have to be disposed in the right-to-left direction, which may lead to additional parts costs.
Furthermore, the vehicle lights disclosed in the above patent references only allow the light reflected by the reflective structure provided on the rear end face of the light guide plate to be transmitted from the front end face of the light guide plate. This may cause variations in brightness depending on the distance from the light source in a manner such that a portion on the front end face closer to the light source can emit light at a greater intensity. It may not, therefore, be possible to provide uniform emission through the front end face of the light guide plate. In particular, the reflective structure with a plurality of reflective dots formed on the rear end face of the light guide plate would cause the vicinity of the reflective dots to transmit light through the front end face of the light guide plate at a greater intensity when compared with the other portions. Thus, this would also cause variations in brightness depending on the distance from the reflective dots in addition to variations in brightness depending on the distance from the light source.
The presently disclosed subject matter was devised in view of these and other problems and features and in association with the conventional art. According to an aspect of the presently disclosed subject matter, a vehicle light is provided which can allow light to be emitted more uniformly through an elongated area using a fewer number of light sources as compared with a conventional system.
According to another aspect of the presently disclosed subject matter, a vehicle light can include:
a plurality of light sources arranged in a predetermined array direction, each light source having an optical axis orthogonal to the array direction, and each light source emitting light in a direction of the optical axis;
a lens elongated in the array direction and disposed in the optical axis direction of the plurality of light sources to transmit light emitted from the plurality of light sources in the optical axis direction, the light being dispersed in a longitudinal direction of the lens; and a diffusion reflector elongated in the longitudinal direction of the lens and disposed in the optical axis direction of the lens to diffuse and reflect the light emitted from the lens.
In the vehicle light with the above configuration, the lens can be formed in such a shape that a plurality of light guide blocks associated with the plurality of light sources are coupled in the longitudinal direction of the lens, and
the plurality of light guide blocks can each include: an incidence face opposed to the light source; a first reflecting face for internally reflecting light in the longitudinal direction of the lens, the light having passed through the incidence face into the light guide block; a plurality of second reflecting faces for internally reflecting in the optical axis direction of the lens the light having been internally reflected from the first reflecting face, those of the second reflecting faces located farther away in the longitudinal direction of the lens from the light source opposed to the incidence face being arranged to be more aligned with the optical axis direction; and an emission face for allowing the light internally reflected from the plurality of second reflecting faces to be projected out of the light guide block.
In the vehicle light with the above configuration, the lens can have a diffusing portion for further diffusing the light having been diffused and reflected by the diffusion reflector.
In the vehicle light with the above configuration, the diffusion reflector can be painted white or formed of a white-colored raw material.
In the vehicle light with the above configuration, the array direction and the longitudinal direction can be oriented along an outer edge of the vehicle light.
According to the presently disclosed subject matter, the light emitted from the plurality of light sources in the optical axis direction orthogonal to the array direction thereof can be dispersed through the lens in the longitudinal direction of the lens that is elongated along the array direction of the plurality of light sources. Accordingly, when compared with the conventional vehicle light which provides little or no control to the light in the longitudinal direction of the lens (the light guide plate), fewer light sources are sufficient to be able to provide emission through the elongated area along the longitudinal direction.
Furthermore, the light emitted from the lens can be diffused and reflected by the diffusion reflector elongated in the longitudinal direction of the lens. Accordingly, unlike the conventional vehicle light which employs a reflective structure, such as reflective dots to simply reflect light thereon in order to provide emission from the front end face of the lens (light guide plate), variations in brightness depending on the distance from the light source or the reflective dots can be prevented or the variations in brightness can be alleviated, and thus more uniform light emission can be provided through the elongated area along the longitudinal direction.
These and other characteristics, features, and advantages of the presently disclosed subject matter will become clear from the following description with reference to the accompanying drawings, wherein:
A description will now be made below to vehicle lights of the presently disclosed subject matter with reference to the accompanying drawings in accordance with exemplary embodiments.
Note that the vehicle light according to this exemplary embodiment can be a rear lamp to be mounted on each of the right and left sides at the rear portion of a vehicle (not shown). A description will be made below only to the vehicle light 1 that is mounted on the left of the rear portion of the vehicle as an example. Furthermore, in the description below, unless otherwise specified, the terms, “upper (up),” “lower (down),” “forward (front),” “rearward (rear, back),” “left,” “right,” “inner,” and “outer” will be used to refer to the directions when viewed from the vehicle light 1 in conjunction with the illustrations of the drawings.
As shown in
As shown in
As shown in
Of these components, the light sources 4 can be a light emitter such as a light-emitting diode, and as shown in
As shown in
As shown in
The light guide block 510 can be configured to be elongated in a manner such that the position of the corresponding light source 4 is located at the center in the longitudinal direction X and generally in the middle position between that light source 4 and a light source 4 adjacent thereto is located at an end in the longitudinal direction X. The light guide blocks 510 each have an incidence face 511, a pair of first reflecting faces 512, a plurality of second reflecting faces 513, and emission faces 514.
The incidence face 511 can be a convex surface (aspherical surface) formed to be projected at the position opposed to the corresponding light source 4, and disposed so that the light source 4 is located at or near the focus thereof, allowing the light emitted from the light source 4 to be incident upon the light guide block 510 while being refracted in the optical axis Ax direction.
The first reflecting faces 512 can be formed in pairs to be recessed on a face opposite to the incidence face 511 so as to be positioned in the optical axis Ax direction relative to the incidence face 511. More specifically, the first reflecting face 512 can be inclined from a point as an inflection on the optical axis Ax to both sides in the longitudinal direction X, and can internally reflect the light incident from the incidence face 511 on the light guide block 510 so as to branch the light into both sides of the optical axis Ax in the longitudinal direction X.
The second reflecting faces 513 can be formed in plurality on both sides of the incidence face 511 in the longitudinal direction X and arranged in a manner such that those of the faces 513 which are located farther away in the longitudinal direction X from the light source 4 opposed to the incidence face 511 are more aligned with the optical axis Ax direction. The faces 513 can form a step-wise surface by being alternately linked in the longitudinal direction X to the step faces that are coupled therebetween. The second reflecting faces 513 can be each formed to be positioned on both sides of the first reflecting face 512 in the longitudinal direction X as well as to be parallel to the nearer of a pair of the first reflecting faces 512. The second reflecting faces 513 can internally reflect individually in the optical axis Ax direction the beams of light which have been branched and internally reflected at the first reflecting face 512 to both sides thereof in the longitudinal direction X. As can be seen in
The emission face 514, which can be each elongated in the longitudinal direction X, can be disposed on both sides of the first reflecting face 512 in the longitudinal direction X so as to be located in the optical axis Ax direction relative to the second reflecting faces 513. The emission face 514 allows the light internally reflected on the second reflecting faces 513 in the optical axis Ax direction to come out of the light guide blocks 510.
In addition, as shown in
The extension 6 can be disposed so as to serve as a cover in front of the light source 4 while exposing the diffusing portion 52 of the inner lens 5. The extension 6 can be configured to hide the light sources 4 so that the light sources 4 cannot be visually identified from outside through the outer lens 3.
As shown in
As shown in
This allows for providing uniform emission through the area of the outer lens 3 opposed to the diffusing portion 52 of the inner lens 5, that is, the elongated area along the outer edge of the outer lens 3.
According to the vehicle light 1 configured as described above, the light emitted from the light sources 4 in the optical axis Ax direction can be dispersed in the longitudinal direction X by the light guide portion 51 of the inner lens 5 which is elongated in the array direction of the light sources 4. Accordingly, when compared with the conventional vehicle light which provides little or no control of the light in the longitudinal direction of the lens (the light guide plate), a fewer number of light sources 4 can provide emission through the elongated area along the longitudinal direction X.
Furthermore, the light emitted from the light guide portion 51 of the inner lens 5 can be diffused and reflected on the first diffusion reflector 21 and the second diffusion reflector 22 which are elongated along the longitudinal direction X. Accordingly, unlike the conventional vehicle light which employs a reflective structure such as of reflective dots to simply reflect light thereon in order to provide emission from the front face of the lens (the light guide plate), variations in brightness depending on the distance from the light source or the reflective dots can be prevented or the variations in brightness can be alleviated, and thus more uniform light emission can be provided through the elongated area along the longitudinal direction X.
Furthermore, the light diffused and reflected on the first diffusion reflector 21 and the second diffusion reflector 22 can further be diffused by the diffusing portion 52 of the inner lens 5. It is thus possible to provide further uniform light emission through the elongated area along the longitudinal direction X.
Furthermore, the light guide portion 51 and the diffusing portion 52 can be integrated with each other as the inner lens 5, the parts count in the case of which is reduced as compared with the count of those components when employed separately.
Furthermore, since the elongated area along the outer edge of the outer lens 3 (the vehicle light 1) can provide emission, the design of light emission can show a great deal of outstanding originality.
Note that the embodiments described herein are exemplary and applicant's disclosure should not be limited to those disclosed embodiments. These disclosed embodiments may be modified or changed as appropriate without deviating from the scope and spirit of the applicant's disclosure.
For example, in the aforementioned exemplary embodiment, the first diffusion reflector 21 and the second diffusion reflector 22 are painted white. However, either one of the first diffusion reflector 21 and the second diffusion reflector 22 can be employed as a regular reflector, which is subjected to a surface treatment such as aluminum vapor deposition to allow light to be regularly reflected on the regular reflector. This arrangement can provide light with a higher intensity when compared with the case where both the first diffusion reflector 21 and the second diffusion reflector 22 are painted white. Nevertheless, in this case, more uniform emission can be provided through the emission surface (the outer lens 3) when light is diffused and reflected not on the first diffusion reflector 21 but on the second diffusion reflector 22 that is closer to the emission surface.
Furthermore, although the two surfaces, i.e., the first diffusion reflector 21 and the second diffusion reflector 22 are employed to diffuse and reflect light, only one diffusion reflector may be required as long as the single diffusion reflector can reflect light into the diffusing portion 52 of the inner lens 5 while diffusing the light.
Furthermore, graining may not necessarily be provided to both the front and rear surfaces of the diffusing portion 52 of the inner lens 5 but may also be provided to at least one of the front and rear surfaces. Furthermore, graining can also be replaced with another method which enables diffusing of light, for example, the diffusing portion 52 may be made of a milk-white material or the diffusing portion 52 may be mixed with a diffusing agent.
It will be apparent to those skilled in the art that various modifications and variations can be made in the presently disclosed subject matter without departing from the spirit or scope of the presently disclosed subject matter. Thus, it is intended that the presently disclosed subject matter cover the modifications and variations of the presently disclosed subject matter provided they come within the scope of the appended claims and their equivalents. All related art references described above are hereby incorporated in their entirety by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-268886 | Dec 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6585402 | Ohkodo et al. | Jul 2003 | B2 |
8113701 | Ishikawa | Feb 2012 | B2 |
8292480 | Koizumi et al. | Oct 2012 | B2 |
8454214 | Kazaoka | Jun 2013 | B2 |
20080186726 | Okada | Aug 2008 | A1 |
20100008088 | Koizumi et al. | Jan 2010 | A1 |
20130044491 | Chen et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2008-186786 | Aug 2008 | JP |
2010-21001 | Jan 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20120163031 A1 | Jun 2012 | US |